
Aggregation Cross-Entropy for Sequence Recognition

Zecheng Xie∗, Yaoxiong Huang∗, Yuanzhi Zhu, Lianwen Jin†, Yuliang Liu, Lele Xie

South China University of Technology

{zcheng.xie,hwang.yaoxiong,lianwen.jin,zzz.yuanzhi,shaxiaoai18,arlog.lele}@gmail.com

Abstract

In this paper, we propose a novel method, aggregation

cross-entropy (ACE), for sequence recognition from a brand

new perspective. The ACE loss function exhibits compet-

itive performance to CTC and the attention mechanism,

with much quicker implementation (as it involves only four

fundamental formulas), faster inference\back-propagation

(approximately O(1) in parallel), less storage requirement

(no parameter and negligible runtime memory), and

convenient employment (by replacing CTC with ACE).

Furthermore, the proposed ACE loss function exhibits two

noteworthy properties: (1) it can be directly applied for

2D prediction by flattening the 2D prediction into 1D pre-

diction as the input and (2) it requires only characters and

their numbers in the sequence annotation for supervision,

which allows it to advance beyond sequence recognition,

e.g., counting problem. The code is publicly available

at https://github.com/summerlvsong/Aggregation-Cross-

Entropy.

1. Introduction

Sequence recognition, or sequence labelling [13] is to as-

sign sequences of labels, drawn from a fixed alphabet, to se-

quences of input data, e.g., speech recognition[14, 2], scene

text recognition [38, 39], and handwritten text recognition

[34, 48], as shown in Fig. 1. The recent advances in deep

learning [30, 41, 20] and the new architectures [42, 5, 4, 46]

enabled the construction of systems that can handle one-

dimensional (1D) [38, 34] and two-dimensional (2D) pre-

diction problems [56, 4]. For 1D prediction problems, the

topmost feature maps of the network are collapsed across

the vertical dimension to generate 1D prediction [5] because

characters in the original images are generally distributed

sequentially. Typical examples are regular scene text recog-

nition [38, 54], online/offline handwritten text recognition

[12, 34, 48], and speech recognition [14, 2]. For 2D predic-

tion problems, characters in the input image are distribut-
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Figure 1. Examples of sequence recognition and counting prob-

lems.

ed in a specific spatial structure. For example, there are

highly complicated spatial relations between adjacent char-

acters in mathematical expression recognition [56, 57]. In

paragraph-level text recognition, characters are generally

distributed line by line [4, 46], whereas in irregular scene

text recognition, they are generally distributed in a side-

view or curved angle pattern [51, 8].

For the sequence recognition problem, traditional meth-

ods generally require to separate training targets for each

segment or time-step in the input sequence, resulting in

inconvenient pre-segmentation and post-processing stages

[12]. The recent emergence of CTC [13] and attention

mechanism [1] significantly alleviate this sequential train-

ing problem by circumventing the prior alignment between

input image and their corresponding label sequence. How-

ever, although CTC-based networks have exhibited remark-

able performance in 1D prediction problem, the underlying

methodology is sophisticated; moreover, its implementa-

tion, the forward-backward algorithm [12], is complicated,

resulting in large computation consumption. Besides, CTC

can hardly be applied to 2D prediction problems. Mean-

while, the attention mechanism relies on its attention mod-

ule for label alignment, resulting in additional storage re-

quirement and computation consumption. As pointed out

by Bahdanau et al. [2], recognition model is difficult to

learn from scratch with attention mechanism, due to the
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misalignment between ground truth strings and attention

predictions, especially on longer input sequences [25, 9].

Bai et al. [3] also argues that the misalignment problem can

confuse and mislead the training process, and consequently

make the training costly and degrade recognition accuracy.

Although the attention mechanism can be adapted for 2D

prediction problem, it turns out to be prohibitive in terms of

memory and time consumption, as indicated in [4] and [46].

Compelled by the above observations, we propose a nov-

el aggregation cross-entropy (ACE) loss function for the se-

quence recognition problem, as detailed in Fig. 2. Given

the prediction of the network, the ACE loss consists of three

simple stages: (1) aggregation of the probabilities for each

category along the time dimension; (2) normalization of the

accumulative result and label annotation as probability dis-

tributions over all the classes; and (3) comparison between

these two probability distributions using cross-entropy. The

advantages of the proposed ACE loss function can be sum-

marized as follows:

• Owing to its simplicity, the ACE loss function is much

quicker to implement (four fundamental formulas), faster

to infer and back-propagate (approximately O(1) in par-

allel), less memory demanding (no parameter and ba-

sic runtime memory), and convenient to use (simply re-

place CTC with ACE), as compared to CTC and attention

mechanism. This is illustrated in Table 5, Section 3.4,

and Section 4.4.

• Despite its simplicity, the ACE loss function achieves

competitive performance to CTC and the attention mech-

anism, as established in experiments of regular\irregular

scene text recognition and handwritten text recognition

problems.

• The ACE loss function can be adapted to the 2D predic-

tion problem by flattening the 2D prediction into 1D pre-

diction, as verified in the experiments of irregular scene

text recognition and counting problems.

• The ACE loss function does not require instance order

information for supervision, which enable it to advance

beyond sequence recognition, e.g., counting problem.

2. Related Work

2.1. Connectionist temporal classification

The advantages of the popular CTC loss were first

demonstrated in speech recognition [16, 14] and online

handwritten text recognition [15, 12]. Recently, an integrat-

ed CNN-LSTM-CTC model was proposed to address the

scene text recognition problem [38]. There are also meth-

ods that aim to extend CTC in applications; e.g., Zhang

et al. [55] proposed an extended CTC (ECTC) objective

function adapted from CTC to allow RNN-based phoneme

recognizers to be trained even when only word-level an-

notation is available. Hwang et al. [21] developed an

expectation-maximization-based online CTC algorithm that

allows RNNs to be trained with an infinitely long input se-

quence, without pre-segmentation or external reset. How-

ever, the calculation process of CTC is highly complicated

and time-consuming, and it require substantial effort to re-

arrange the feature map and annotation when applied to 2D

problems [46, 4].

2.2. Attention mechanism

The attention mechanism was first proposed in machine

translation [1, 42] to enable a model to automatically search

for parts of a source sentence for prediction. Then, the

method rapidly became popular in applications such as (vi-

sual) question answering [32, 52], image caption generation

[50, 52, 31], speech recognition [2, 25, 32] and scene tex-

t recognition [39, 3, 19]. Most importantly, the attention

mechanism can also be applied to 2D predictions, such as

mathematical expression recognition [56, 57] and paragraph

recognition [4, 5, 46]. However, the attention mechanism

relies on a complex attention module to fulfill its function-

ality, resulting in additional network parameters and run-

time. Besides, missing or superfluous characters can easily

cause misalignment problem, confusing and misleading the

training process, and consequently degrading the recogni-

tion accuracy [3, 2, 9].

3. Aggregation Cross-Entropy

Formally, given the input image I and its sequence an-

notation S from a training set Q, the general loss function

for the sequence recognition problem evaluates the proba-

bility of annotation S of length L conditioned on image I
under model parameter ω as follows:

L(ω) = −
∑

(I,S)∈Q

logP (S|I;ω)

= −
∑

(I,S)∈Q

L
∑

l=1

logP (Sl|l, I;ω) (1)

where P (Sl|l, I;ω) represents the probability of predict-

ing character Sl at the l-th position of the predicted se-

quence. Therefore, the problem is to estimate the gen-

eral loss function Eq. (1) based on the model prediction

{ytk, t = 1, 2, · · · , T, k = 1, 2, · · · , |Cǫ|}, where Cǫ = C∪ǫ,
with C being the character set and ǫ the blank label. Nev-

ertheless, directly estimating the probability P (S|I;ω) was

excessively challenging until the emergence of the popu-

lar CTC loss function. The CTC loss function elegantly

calculates P (S|I;ω) using a forward-backward algorithm,

which removes the need for pre-segmented data and exter-

nal post-processing. The attention mechanism provides an

alternative solution to estimate the general loss function by

directly predicting P (Sl|l, I;ω) based on its attention mod-

ule. However, the forward-backward algorithm of CTC is
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Figure 2. (Left) Illustration of proposed ACE loss function. Generally, the 1D and 2D predictions are generated by integrated CNN-LSTM

and FCN model, respectively. For the ACE loss function, the 2D prediction is further flattened to 1D prediction, {yt

k, t = 1, 2, . . . , T}.

During aggregation, the 1D predictions at all time-steps are accumulated for each class independently, according to yk =
∑

T

t=1
yt

k. After

normalization, the prediction y, together with the ground-truth N , is utilized for loss estimation based on cross-entropy. (Right) A simple

example indicates the generation of annotation for the ACE loss function. Na = 2 implies that there are two “a” in cocacola.

highly complicated and time-consuming whereas the atten-

tion mechanism requires extra complex network to ensure

the alignment between attention prediction and annotation.

In this paper, we present the ACE loss function to es-

timate the general loss function based on model prediction

ytk. In Eq. (1), the general loss function can be minimized by

maximizing the predictions at each position of the sequence

annotation, i.e., P (Sl|l, I;ω). However, directly calculat-

ing P (Sl|l, I;ω) based on ytk is challenging because the

alignment between the l-th character in the annotation and

model prediction ytk is unclear. Therefore, rather than pre-

cisely estimating the probability P (Sl|l, I;ω), the problem

is mitigated by supervising only the accumulative probabil-

ity of each class; without considering its sequential order in

the annotation. For example, if a class appears twice in the

annotation, we require its accumulative prediction probabil-

ity over T time-steps to be exactly two, anticipating that its

two corresponding predictions approximate to one. There-

fore, we can minimize the general loss function by requir-

ing the network to precisely predict the character number of

each class in the annotation as follows:

L(ω) = −
∑

(I,S)∈Q

L
∑

l=1

logP (Sl|l, I;ω)

≈ −
∑

(I,S)∈Q

|Cǫ|
∑

k=1

logP (Nk|I;ω) (2)

where Nk represents the number of times that character Cǫ
k

occurs in the sequence annotation S . Note that this new

loss function does not require character order information

but only the classes and their number for supervision.

3.1. Regression­Based ACE Loss Function

Now, the problem is to bridge model prediction ytk to the

number prediction of each class. We propose to calculate

the number of each class yk by summing up the probabilities

of the k-th characters for T time-steps, i.e., yk =
∑T

t=1 y
t
k,

as illustrated by aggregation in Fig. 2. Note that,

max

|Cǫ|
∑

k=1

logP (Nk|I;ω) ⇔ min

|Cǫ|
∑

k=1

(Nk − yk)
2 (3)

Therefore, we adapt the loss function (Eq. (2)) from the per-

spective of regression problem as follows:

L(ω) =
1

2

∑

(I,S)∈Q

|Cǫ|
∑

k=1

(Nk − yk)
2. (4)

Also note that a total of (T − |S|) predictions are expected

to yield null emission. Therefore, we have Nǫ = T − |S|.
To find the gradient for each example (I,S), we first

differentiate L(I,S) with respect to the network output ytk:

∂L(I,S)

∂ytk
= ∆k, (5)

where ∆k = (yk −Nk). Recall that for Softmax functions,

we have:

yi =
eai

∑

j e
aj
,
∂yi
∂aj

= yi(δij − yj), (6)

where δij = 1 if i = j and zero otherwise. Now, we can

differentiate the loss function with respect to atk to back-

propagate the gradient through the output layer:

∂L(I,S)

∂atk
=

|Cǫ|
∑

k′=1

∂L(I,S)

∂ytk′

∂ytk′

∂atk
=

|Cǫ|
∑

k′=1

∆k′ · ytk′(δkk′ − ytk)

= ∆k′ · ytk′(1− ytk)−
∑

k′ 6=k

∆k′ · ytk′ytk (7)

3.1.1 Gradient vanishing problem

From Eq. (7), we observe that the regression-based ACE

loss (Eq. (4)) is not convenient in term of back-propagation.
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In the early training stage, we have {ytk′ ≈ 1/|Cǫ|, ∀k′, t}.

Therefore, ytk′ will be negligible for large vocabulary se-

quence recognition problems, where |Cǫ| is large (e.g.,

7,357 for the HCTR problem). Although the other terms

in Eq. (7) (e.g., ∆k′ ) have acceptable magnitudes for back-

propagation, the gradient would be scaled to a remarkably

small size by the term ytk′ and ytk, resulting in gradient van-

ishing problem.

3.2. Cross­Entropy­Based ACE Loss Function

To prevent the gradient-vanishing problem, It is neces-

sary to offset the negative effect of the term ytk′ introduced

by the Softmax function in Eq. (7). We borrow the con-

cept of cross-entropy from information theory, which is de-

signed to measure the “distance” between two probability

distributions. Therefore, we first normalize the accumula-

tive probability of the k-th character yk to yk = yk/T , and

the character numbers Nk to N k = Nk/T . Then, the cross-

entropy between y and N is expressed as:

L(I,S) = −

|Cǫ|
∑

k=1

N k ln yk (8)

The loss function derivatives with respect to atk before

the Softmax activation function has the following form:

∂L(I,S)

∂atk
=

|Cǫ|
∑

k′=1

∂L(I,S)

∂yk′

∂yk′

∂ytk′

∂ytk′

∂atk

=
∑

Cǫ
k′∈S

−
N k′

yk′

·
1

T
· ytk′(δkk′ − ytk)

= −
1

T

∑

Cǫ
k′∈S

N k′

ytk′

yk′

(δkk′ − ytk)

= −
1

T

∑

Cǫ
k′∈S

N k′

ytk′

yk′

(δkk′ − ytk) (9)

3.2.1 Discussion

In the following, we explain how the updated loss function

solves the gradient vanishing problem:

(1) In the early training stage, ytk′ has an approxi-

mately identical order of magnitude at all the time-steps.

Thus, the normalized accumulated probability yk′ is al-

so of an identical order of magnitude as ytk′ . That is,
yt
k′

yk′
≈ 1; therefore, the gradient through the k′-th class is

now − 1
T
N k′(δkk′ − ytk). Thus, the gradient can straight-

forwardly back-propagate to atk through the characters that

appear in sequence annotation S . Besides, when k = k′,
i.e., Cǫ

k ∈ S; the corresponding gradient is approximately

− 1
T
N k′(1 − ytk), which will encourage the model to make

a larger prediction ytk, whereas characters that do not appear

in S become smaller. This was our original intention.

(2) In the later training stage, only a few of the prediction

yt
∗

k∗ will be very large, leaving the other predictions small e-

nough to be omitted. In this situation, prediction yt
∗

k∗ will

occupy the majority of yk∗ , and we have
yt∗

k∗

yk∗
= T ·

yt∗

k∗

yk∗
.

Therefore, when Cǫ
k∗ ∈ S , the gradient can be straightfor-

wardly back-propagated to the recognition network.

3.3. Two­dimensional Prediction

In some 2D prediction problem like irregular scene text

recognition with image level annotations, it is challenging

to define the spatial relation between characters. Characters

may be arranged in multiple lines, in a curved or sloped di-

rection, or even distributed in a random manner. Fortunate-

ly, the proposed ACE loss function can naturally be gener-

alized for the 2D prediction problem, because it does not re-

quire character-order information for the sequence-learning

process.

Suppose that the output 2D prediction y has height H
and width W , and the prediction at the h-th line and w-th

row is denoted as yhwk . This requires a marginal adaptation

of the calculation of yk and N k as follows, yk = yk

HW =
∑

H

h=1

∑
W

w=1
yhw
k

HW , N k = Nk

HW . Then, the loss function for

the 2D prediction can be transformed as follows:

L(I,S) = −

|Cǫ|
∑

k=1

N k ln yk = −

|Cǫ|
∑

k=1

Nk

HW
ln

yk
HW

(10)

In our implementation, we directly flatten the 2D prediction

{yhw, h = 1, 2, · · · ,H, w = 1, 2, · · · ,W} into 1D predic-

tion {yt, t = 1, 2, · · · , T}, where T = HW , and then apply

Eq. (8) to calculate the final loss.

3.4. Implementation and Complexity Analysis

Implementation As illustrated in Eq. (2), N =
{Nk|k = 1, 2, · · · , |Cǫ|} represents the annotation for the

ACE loss function; here, Nk represents the number of times

that the character Cǫ
k occurs in the sequence annotation S .

A simple example describing the translation of sequence an-

notation cocacola into ACE’s annotation is shown in Fig. 2.

In conclusion, given the model prediction ytk and its anno-

tation N , the key implementation for a cross-entropy-based

ACE loss function consists of four fundamental formulas:

• yk =
∑T

t=1 y
t
k to calculate the character number of each

class by summing up the probabilities of the k-th class

for all T time-steps.

• yk = yk/T to normalize the accumulative probabilities.

• N k = Nk/T to normalize the annotation.

• L(I,S) = −
∑|Cǫ|

k=1 N k ln yk to estimate the cross-

entropy between N k and yk.
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In practical employment, the model prediction ytk is gen-

erally provided by the integrated CNN-LSTM model (1D

prediction) or FCN model (flattened 2D prediction). That

is, the input assumption of ACE is identical to that of CTC;

therefore, the proposed ACE can be conveniently applied

by replacing the CTC layer in the framework.

Complexity Analysis The overall computation of the

ACE loss function is implemented based on the above-

mentioned four formulas that have computation complex-

ities of O(1), O(|Cǫ|), O(|Cǫ|), and O(|Cǫ|), respective-

ly. Therefore, the computation complexity of the ACE loss

function is O(|Cǫ|). Note however that the element-wise

multiplication, division, and log operation in these four for-

mulas can be implemented in parallel with GPU at O(1).
In contrast, the implementation of CTC [12] based on a

forward-backward algorithm has a computation complexi-

ty of O(T ∗ |S|). Because the forward variable α(t, u) and

backward variable β(t, u) [12] of CTC depend on the pre-

vious result (e.g., α(t − 1, u) and β(t + 1, u)) to calculate

the present output, CTC can hardly be accelerated in paral-

lel in the time dimension. Moreover, the elementary oper-

ation α(t, u) of CTC is already very complicated, resulting

in larger overall time consumption than that of ACE. With

regard to the attention mechanism, its computation com-

plexity is proportional to the times of ‘attention’. However,

the computation complexity of the attention module at each

time already has similar magnitude as that of CTC.

From the perspective of memory consumption, the

proposed ACE loss function requires nearly no memo-

ry consumption because the ACE loss result can be di-

rectly calculated based on the four fundamental formulas.

However, CTC requires additional space to preserve the

forward\backward variable that is proportional to the time-

step T and the length of the sequence annotation. Mean-

while, the attention mechanism requires additional module

to implement “attention”. Thus, its memory consumption is

significantly larger than that of CTC and ACE.

In conclusion, the proposed ACE loss function exhibit-

s significant advantages with regard to both computation

complexity and memory demand, as compared to CTC and

attention.

4. Performance Evaluation

In our experiment, three tasks were employed to evalu-

ate the effectiveness of the proposed ACE loss function, in-

cluding scene text recognition, offline handwritten Chinese

text recognition, and counting objects in everyday scenes.

For these tasks, we estimated the ACE loss for 1D and 2D

predictions, where 1D implies that the final prediction is a

sequence of T predictions and 2D indicates that the final

feature map has 2D predictions of shape H×W .

4.1. Scene Text Recognition

Scene text recognition often encounter problems owing

to the large variations in the background, appearance, reso-

lution, text font, and color, making it a challenging research

topic. In this section, we study both 1D and 2D predictions

on scene text recognition by utilizing the richness and vari-

ety of the testing benchmark in this task.

4.1.1 Dataset

Two types of datasets are used for scene text recognition:

regular text datasets, such as IIIT5K-Words [35], Street

View Text [43], ICDAR 2003 [33], and ICDAR 2013 [24],

and irregular text datasets, such as SVT-Perspective [36],

CUTE80 [37], and ICDAR 2015 [23]. The regular dataset-

s were used to study the 1D prediction for the ACE loss

function while the irregular text datasets were applied to e-

valuate the 2D prediction.

IIIT5K-Words (IIIT5K) contains 3000 cropped word im-

ages for testing.

Street View Text (SVT) was collected from Google Street

View, including 647 word images. Many of them are severe-

ly corrupted by noise and blur, or have very low resolutions.

ICDAR 2003 (IC03) contains 251 scene images that are

labeled with text bounding boxes. The dataset contains 867

cropped images.

ICDAR 2013 (IC13) inherits most of its samples from

IC03. It contains 1015 cropped text images.

SVT-Perspective (SVT-P) contains 639 cropped images

for testing, which are selected from side-view angle snap-

shots from Google Street View. Therefore, most of images

are perspective distorted. Each image is associated with a

50-word lexicon and a full lexicon.

CUTE80 (CUTE) contains 80 high-resolution images

taken of natural scenes. It was specifically collected for

curve text recognition. The dataset contains 288 cropped

natural images for testing. No lexicon is associated.

ICDAR 2015 (IC15) contains 2077 cropped images in-

cluding more than 200 irregular text. No lexicon is associ-

ated.

4.1.2 Implementation Details

For 1D sequence recognition on regular datasets, our ex-

periments were based on the CRNN [38] network, trained

only on 8-million synthetic data released by Jaderberg et al.

[22]. For 2D sequence recognition on irregular datasets, our

experiments were based on the ResNet-101 [18], with con-

v1 changed to 3×3, stride 1, and conv4 x as output. The

training dataset consists of 8-million synthetic data released

by Jaderberg et al. [22] and 4-million synthetic instances

(excluding the images that contain non-alphanumeric char-

acters) cropped from 80-thousand images [17]. The input
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Table 1. Comparison between regression and cross-entropy.

Method IIIT5K SVT IC03 IC13

Shi et al. [38] 81.2 82.7 91.9 89.6

ACE (1D, Regression) 19.4 6.6 12.0 9.3

ACE (1D, Cross Entropy) 82.3 82.6 92.1 89.7

images are normalized to the shape of (96,100) and the final

2D prediction has the shape of (12,13), as shown in Fig. 5.

To decode the 2D prediction, we flattened the 2D prediction

by concatenating each column in order from left to right and

top to bottom and then decoded the flattened 1D prediction

following the general procedure.

In our experiment, we observed that directly normaliz-

ing the input image to the size of (96,100) overloads the

network training process. Therefore, we trained another

network to predict the character number in the text image

and normalized the text image with respect to the character

number to keep the character size within acceptable limits.

4.1.3 Experimental Result

To study the role of regression and cross-entropy for the

ACE loss function, we conducted experiments with 1D pre-

diction using regular scene text datasets, as detailed in Table

1 and Fig. 3. Because there are only 37 classes in scene text

recognition, the negative effect of the term ytk′ in Eq. (7) is

not as significant as that of the HCTR problem (7357 class-

es). As shown in Fig. 3, with regression-based ACE loss,

the network can converge but at a relatively slow rate, prob-

ably due to the gradient vanishing problem. With cross-

entropy-based ACE loss, the WER and CER evolve at a rel-

atively higher rate and in a smoother manner at the early

training stage and attain a significantly better convergence

result in the subsequent training stage. Table 1 clearly re-

veals the superiority of the cross-entropy-based ACE loss

function over the regression-based one. Therefore, we use

cross-entropy-based ACE loss functions for all the remain-

ing experiments. Moreover, with the same network setting

(CRNN) and training set (8-million synthetic data), the pro-

posed ACE loss function exhibits performance comparable

Figure 3. Word error rate (left) and character error rate (right)

of ACE loss on validation set under regression and cross entropy

perspective.

Table 2. Comparison with previous methods for scene text recog-

nition problem (without rectification)

Method 2D
SVT-P CUTE IC15

50 Full None None None

Shi et al. [38] 92.6 72.6 66.8 54.9 -

Liu et al. [28] 94.3 83.6 73.5 - -

Yang et al. [51] X 93.0 80.2 75.8 69.3 -

Cheng et al. [7] X 92.6 81.6 71.5 63.9 66.2

Cheng et al. [8] X 94.0 83.7 73.0 76.8 68.2

Liu et al. [29] – – 73.9 62.5 –

Shi et al. [39] – – 74.1 73.3 –

ACE (2D) X 94.9 87.8 70.1 82.6 68.9

with that of previous work [38] with CTC.

To validate the independence of the proposed ACE loss

to character order, we conduct experiments with ACE, CTC,

and attention on four datasets; the character order of anno-

tation is randomly shuffled at different ratios, as shown in

Fig. 4. It is observed that the performance of attention and

CTC on all the datasets degrades as the shuffle ratio increas-

es. Specifically, attention is more sensitive than CTC be-

cause misalignment problem can easily misleads the train-

ing process of attention [3]. In contrast, the proposed ACE

loss function exhibits similar recognition results for all the

settings of the shuffle ratio, this is because it only requires

classes and their number for supervision, completely omit-

ting character order information.

For irregular scene text recognition, we conducted tex-

t recognition experiments with 2D prediction. In Table 2,

we provide a comparison with previous methods that con-

sidered only recognition model and no rectification for fair

comparison. As illustrated in Table 2, the proposed ACE

loss function exhibits superior performance on the dataset-

s CUTE and IC15, particularly on CUTE with an abso-

lute error reduction of 5.8%. This is because the dataset

CUTE was specifically collected for curved text recogni-

tion and therefore, fully demonstrates the advantages of the

ACE loss function. For the dataset SVT-P, our naive de-

coding result is less effective than that of Yang et al. [51].

This is because numerous images in the dataset SVT-P have

Figure 4. Performance of ACE, CTC, and attention under different

shuffle ratios and datasets.
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very low resolutions, which creates a very high requiremen-

t for semantic context modeling. However, our network is

based only on CNN, with neither LSTM/MDLSTM nor at-

tention mechanism to leverage the high-level semantic con-

text. Nevertheless, it is noteworthy that our recognition

model achieved the highest result when using lexicons, with

which semantic context is accessible. This again validates

the robustness and effectiveness of the proposed ACE loss

function.

In Fig. 5, we provide a few real images processed by

a recognition model using the ACE loss function. The o-

riginal text images were first normalized and placed in the

center of a blank image of shape (96, 100). We observe that

after recognition, the 2D prediction exhibits a spatial distri-

bution highly similar to that of the characters in the original

text image, which implies the effectiveness of the proposed

ACE loss function.

Figure 5. Real images processed by recognition model using ACE

loss function. The left two columns represent original text images

and their normalized versions within the shape of (96, 100). The

third column shows the 2D prediction of the recognition model for

the text images. In the right column, we overlap the input and the

prediction images, and observe similar character distribution in the

2D space.

4.2. Offline Handwritten Chinese Text Recognition

Owing to its large character set (7,357 classes), diverse

writing style, and character-touching problem, the offline

HCTR problem is highly complicated and challenging to

solve. Therefore, it is a favorable testbed to evaluate the

robustness and effectiveness of the ACE loss in 1D predic-

tions.

4.2.1 Implementation Details

For the offline HCTR problem, our model was trained using

the CASIA-HWDB [26] datasets and tested with the stan-

dard benchmark ICDAR 2013 competition dataset [53].

For the HCTR problem, our network architecture with a

prediction sequence of length 70 is specified as follows:

(126, 576)Input − 8C3 −MP2 − 32C3 −MP2 − 128C3 −

MP2−5∗256C3−MP2−512C3−512C3−MP2−512C2−

3 ∗ 512ResLSTM − 7357FC −Output,

where xCy represents a convolutional layer with kernel

number of x and kernel size of y ∗ y, MPy denotes a max

pooling layer with kernel size of y, and xFC is a fully

connected layer with kernel number of x, and ResLSTM

is residual LSTM proposed in [49]. The evaluation criteria

for the HCTR problem are correct rate (CR) and accuracy

rate (AR) specified by ICDAR2013 competition [53].

4.2.2 Experimental Result

In Table 3, we provide the comparison between ACE loss

and previous methods. It is evident that the proposed

ACE loss function exhibits higher performance than previ-

ous methods, including MDLSTM-based models [34, 47],

HMM-based model [10], and over-segmentation method-

s [27, 44, 45, 48] with and without language model (LM).

Compared to scene text recognition, handwritten Chinese

text recognition problem possesses its unique challenges,

such as large character set (7357 classes) and character-

touching problem. Therefore, the superior performance of

ACE loss function over previous methods can properly ver-

ify its robustness and generality for sequence recognition

problems.

Table 3. Comparison with previous methods for HCTR.

Method
w.o LM with LM

CR AR CR AR

HIT-2 [27] – – 88.76 86.73

Wang et al. [44] – – 91.39 90.75

Messina et al. [34] – 83.50 – 89.40

Wu et al. [47] 87.43 86.64 – 92.61

Du et al. [10] – 83.89 – 93.50

Wang et al. [45] 90.67 88.79 95.53 94.02

Wu et al. [48] – – 96.32 96.20

ACE (1D) 91.68 91.25 96.70 96.22

4.3. Counting Objects in Everyday Scenes

Counting the number of instances of object classes in

natural everyday images generally encounters complex re-

al life situations, e.g., large variance in counts, appearance,

and scales of object. Therefore, we verified the ACE loss

function on the problem of counting objects in everyday

scenes to demonstrate its generality.

4.3.1 Implementation Details

As a benchmark for multi-label object classification and ob-

ject detection tasks, the PASCAL VOC [11] datasets contain

category labels per image, as well as bounding box anno-

tations that can be converted to the object number label-

s. In our implementation, we accumulated the prediction
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for category k to obtain ĉik by thresholding counts at ze-

ro and rounding predictions to the closest integers. Giv-

en these predictions and the ground truth counts cik for a

category k and image i, RMSE and relRMSE is calculat-

ed by RMSEk =
√

1
N

∑N

i=1(ĉik − cik)2 and relRMSEk =
√

1
N

∑N

i=1
(ĉik−cik)2

cik+1 .

4.3.2 Experimental Result

Table 4 presents a comparison between the proposed ACE

loss function and previous methods for the PASCAL VOC

2007 test dataset for counting objects in everyday scenes.

The proposed ACE loss function outperforms the previ-

ous glancing and subitizing method [6], correlation loss

method [40], and Always-0 method (predicting most-

frequent ground truth count). The results have shown the

generality of ACE loss function, in that it can be readily

applied to problem other than sequence recognition, e.g.,

counting problems, requiring minimal domain knowledge.

In Fig. 6, we provide real images processed by the count-

ing model under ACE loss. As shown in the images, our

counting model trained with ACE loss manage to pay “at-

tention” to the position where crucial objects occur. Unlike

the text recognition problem, where the recognition model

trained with the ACE loss function tends to make a pre-

diction for a character, the counting model trained with the

ACE loss function provides a more uniform prediction dis-

tribution over the body of the object. Moreover, it assigns

different levels of “attention” to different parts of an object.

For example, when observing the red color in the pictures,

we notice that the counting model pays more attention to

the face of a person. This phenomenon corresponds to our

intuition because the face is the most distinctive part of an

individual.

Table 4. Comparison with previous methods on PASCAL VOC

2007 test dataset for object counting problem.

Method m-RMSE m-relRMSE

Always-0 0.665 0.284

Glance [6] 0.500 0.270

Sub-ens [6] 0.420 0.200

Two-stream [40] 0.389 0.189

ACE (2D) 0.381 0.185

4.4. Complexity Analysis

In Table 5, we compare the parameter, runtime memory,

and run time of ACE with those of CTC and attention. The

result is executed with minibatch 64 and model prediction

length T=144 on a single NVIDIA TITAN X graphics card

of 12GB memory. Similar to CTC, the proposed ACE does

not require any parameter to fulfill its function. Owing to

its simplicity, ACE requires marginal runtime memory, five

Figure 6. Real images processed by counting model using ACE

loss function. The first four columns display examples that are cor-

rectly recognized by our model. The top-right image is correctly

recognized, but with an incorrectly annotated label. (Incorrect pre-

dictions are provided with labels in brackets)

times less than those for CTC and attention. Furthermore,

its speed is as least 30 times higher than those of CTC and

attention. It is note worthy that with all these advantages,

the proposed ACE achieve performance that is comparable

or higher than those with CTC and attention.

Table 5. Investigation over parameter (Para), runtime memory

(Mem), and speed (Speed) (in units of MB, MB, and ms, respec-

tively) of CTC, attention, and ACE.

Method
37 classes 7357 classes

Para Mem Time Para Mem Time

CTC none 0.1 3.1 none 47.8 16.2

Attention 2.8 6.6 78.9 17.2 143.6 85.5

ACE none 0.02 <0.1 none 4.2 <0.1

5. Conclusion

In this paper, a novel and straightforward ACE loss func-

tion is proposed for sequence recognition problem with

competitive performance to CTC and attention. Owing to

its simplicity, the ACE loss function is easy to employ by

simply replacing CTC with ACE, quick to implement with

only four basic formulas, fast to infer and back-propagate

at approximately O(1) in parallel, and exhibits marginal

memory requirement. Two following effective properties

of ACE loss function are also investigated: (1) it can eas-

ily handle 2D prediction problem with marginal adaption

and (2) it does not require character-order information for

supervision, which allows it to advance beyond sequence

recognition problem, e.g., counting problem.
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