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Abstract

We consider the problem of providing dense segmenta-

tion masks for object discovery in videos. We formulate the

object discovery problem as foreground motion clustering,

where the goal is to cluster foreground pixels in videos into

different objects. We introduce a novel pixel-trajectory recur-

rent neural network that learns feature embeddings of fore-

ground pixel trajectories linked across time. By clustering

the pixel trajectories using the learned feature embeddings,

our method establishes correspondences between foreground

object masks across video frames. To demonstrate the effec-

tiveness of our framework for object discovery, we conduct

experiments on commonly used datasets for motion segmen-

tation, where we achieve state-of-the-art performance.

1. Introduction

Discovering objects from videos is an important capa-

bility that an intelligent system needs to have. Imagine

deploying a robot to a new environment. If the robot can

discover and recognize unknown objects in the environment

by observing, it would enable the robot to better understand

its work space. In the interactive perception setting [8], the

robot can even interact with the environment to discover

objects by touching or pushing objects. To tackle the object

discovery problem, we need to answer the question: what de-

fines an object? In this work, we consider an entity that can

move or be moved to be an object, which includes various

rigid, deformable and articulated objects. We utilize motion

and appearance cues to discover objects in videos.

Motion-based video understanding has been studied in

computer vision for decades. In low-level vision, different

methods have been proposed to find correspondences be-

tween pixels across video frames, which is known as optical

flow estimation [18, 3]. Both camera motion and object mo-

tion can result in optical flow. Since the correspondences

are estimated at a pixel level, these methods are not aware of

the objects in the scene, in the sense that they do not know

which pixels belong to which objects. In high-level vision,
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Figure 1: Overview of our framework. RGB images and

optical flow are fed into a recurrent neural network, which

computes embeddings of pixel trajectories. These embed-

dings are clustered into different foreground objects.

object detection and object tracking in videos has been well-

studied [1, 22, 16, 50, 4, 48]. These methods train models

for specific object categories using annotated data. As a

result, they are not able to detect nor track unknown objects

that have not been seen in the training data. In other words,

these methods cannot discover new objects from videos. In

contrast, motion segmentation methods [9, 24, 5, 34] aim at

segmenting moving objects in videos, which can be utilized

to discover new objects based on their motion.

In this work, we formulate the object discovery problem

as foreground motion clustering, where the goal is to cluster

pixels in a video into different objects based on their motion.

There are two main challenges in tackling this problem. First,

how can foreground objects be differentiated from back-

ground? Based on the assumption that moving foreground

objects have different motion as the background, we design

a novel encoder-decoder network that takes video frames

and optical flow as inputs and learns a feature embedding

for each pixel, where these feature embeddings are used in

the network to classify pixels into foreground or background.

Compared to traditional foreground/background segmenta-

tion methods [10, 19], our network automatically learns a

powerful feature representation that combines appearance

and motion cues from images.

Secondly, how can we consistently segment foreground

objects across video frames? We would like to segment

individual objects in each video frame and establish corre-

spondences of the same object across video frames. Inspired
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by [9] that clusters pixel trajectories across video frames for

object segmentation, we propose to learn feature embeddings

of pixel trajectories with a novel Recurrent Neural Network

(RNN), and then cluster these pixel trajectories with the

learned feature embeddings. Since the pixel trajectories are

linked in time, our method automatically establishes the ob-

ject correspondences across video frames by clustering the

trajectories. Different from [9] that employs hand-crafted

features to cluster pixel trajectories, our method automati-

cally learns a feature representation of the trajectories, where

the RNN controls how to combine pixel features along a tra-

jectory to obtain the trajectory features. Figure 1 illustrates

our framework for object motion clustering.

Since our problem formulation aims to discover objects

based on motion, we conduct experiments on five motion

segmentation datasets to evaluate our method: Flying Things

3D [29], DAVIS [35, 37], Freiburg-Berkeley motion segmen-

tation [32], ComplexBackground [30] and CamouflagedAn-

imal [6]. We show that our method is able to segment po-

tentially unseen foreground objects in the test videos and

consistently across video frames. Comparison with the state-

of-the-art motion segmentation methods demonstrates the

effectiveness of our learned trajectory embeddings for ob-

ject discovery. In summary, our work has the following key

contributions:

• We introduce a novel encoder-decoder network to learn

feature embeddings of pixels in videos that combines

appearance and motion cues.

• We introduce a novel recurrent neural network to learn

feature embeddings of pixel trajectories in videos.

• We use foreground masks as an attention mechanism

to focus on clustering of relevant pixel trajectories for

object discovery.

• We achieve state-of-the-art performance on commonly

used motion segmentation datasets.

This paper is organized as follows. After discussing re-

lated work, we introduce our foreground motion clustering

method designed for object discovery, followed by experi-

mental results and a conclusion.

2. Related Work

Video Foreground Segmentation. Video foreground seg-

mentation is the task of classifying every pixel in a video as

foreground or background. This has been well-studied in the

context of video object segmentation [6, 33, 44, 44, 21], espe-

cially with the introduction of unsupervised challenge of the

DAVIS dataset [35]. [6] uses a probabilistic model that acts

upon optical flow to estimate moving objects. [33] predicts

video foreground by iteratively refining motion boundaries

while encouraging spatio-temporal smoothness. [44, 45, 21]

adopt a learning-based approach and train Convolutional

Neural Networks (CNN) that utilize RGB and optical flow as

inputs to produce foreground segmentations. Our approach

builds on these ideas and uses the foreground segmentation

as an attention mechanism for pixel trajectory clustering.

Instance Segmentation. Instance segmentation algorithms

segment individual object instances in images. Many

instance segmentation approaches have adopted the gen-

eral idea of combining segmentation with object proposals

[17, 36]. While these approaches only work for objects that

have been seen in a training set, we make no such assump-

tion as our intent is to discover objects. Recently, a few

works have investigated the instance segmentation problem

as a pixel-wise labeling problem by learning pixel embed-

dings [11, 31, 27, 13]. [31] predicts pixel-wise features using

translation-variant semi-convolutional operators. [13] learns

pixel embeddings with seediness scores that are used to com-

pose instance masks. [11] designs a contrastive loss and [27]

unrolls mean shift clustering as a neural network to learn

pixel embeddings. We leverage these ideas to design our

approach of learning embeddings of pixel trajectories.

Motion Segmentation. Pixel trajectories for motion analy-

sis were first introduced by [42]. [9] used them in a spec-

tral clustering method to produce motion segments. [32]

provided a variational minimization to produce pixel-wise

motion segmentations from trajectories. Other works that

build off this idea include formulating trajectory clustering

as a multi-cut problem [23, 24, 25] or as a density peaks

clustering [46], and detecting discontinuities in the trajectory

spectral embedding [15]. More recent approaches include

using occlusion relations to produce layered segmentations

[43], combining piecewise rigid motions with pre-trained

CNNs to merge the rigid motions into objects [7], and jointly

estimating scene flow and motion segmentations [39]. We

use pixel trajectories in a recurrent neural network to learn

trajectory embeddings for motion clustering.

3. Method

Our approach takes video frames and optical flow be-

tween pairs of frames as inputs, which are fed through an

encoder-decoder network, resulting in pixel-wise features.

These features are used to predict foreground masks of mov-

ing objects. In addition, a recurrent neural network is de-

signed to learn feature embeddings of pixel trajectories in-

side the foreground masks. Lastly, the trajectory embeddings

are clustered into different objects, giving a consistent seg-

mentation mask for each discovered object. The network

architecture is visualized in Figure 2.

3.1. Encoder­Decoder: Y­Net

Let It ∈ R
H×W×3, Ft ∈ R

H×W×2 be an RGB image

and forward optical flow image at time t, respectively. Our
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Figure 2: Overall architecture. First, feature maps of each frame are extracted from the Y-Net. Next, foreground masks

are computed, shown in orange. The PT-RNN uses these foreground masks to compute trajectory embeddings (example

foreground trajectory from frame 1 to T shown in purple), which are normalized to produce unit vectors. Backpropagation

passes through the blue solid arrows, but not through the red dashed arrows.

network receives these images from a video as inputs and

feeds them into an encoder-decoder network separately at

each time step, where the encoder-decoder network extracts

dense features for each video frame. Our encoder-decoder

network is an extension of the U-Net architecture [38] (Fig-

ure 3a) to two different input types, i.e., RGB images and

optical flow images, by adding an extra input branch. We

denote this mid-level fusion of low-resolution features as

Y-Net. We illustrate the Y-Net architecture in Figure 3b.

In detail, our network has two parallel encoder branches

for the RGB and optical flow inputs. Each encoder branch

consists of four blocks of two 3 × 3 convolutions (each of

which is succeeded by a GroupNorm layer [47] and ReLU

activation) followed by a 2 × 2 max pooling layer. The

encodings of the RGB and optical flow branches are then

concatenated and input to a decoder network, which consists

of a similar architecture to [38] with skip connections from

both encoder branches to the decoder.

We argue that this mid-level fusion performs better than

early fusion and late fusion (using completely separate

branches for RGB and optical flow, similar to two-stream

networks [40, 14, 45]) of encoder-decoder networks while

utilizing less parameters, and show this empirically in Sec-

tion 4.1. The output of Y-Net, φ(It, Ft) ∈ R
H×W×C , is a

pixel-dense feature representation of the scene. We will refer

to this as pixel embeddings of the video.

3.2. Foreground Prediction

The Y-Net extracts a dense feature map for each video

frame that combines appearance and motion information of

the objects. Using these features, our network predicts a

foreground mask for each video frame by simply applying

another convolution on top of the Y-Net outputs to compute

foreground logits. These logits are passed through a sigmoid

layer and thresholded at 0.5. For the rest of the paper, we

will denote mt to be the binary foreground mask at time t.
The foreground masks are used as an attention mechanism

to focus on the clustering of the trajectory embeddings. This

results in more stable performance, as seen in Section 4.1.

Note that while we focus on moving objects in our work,

the foreground can be specified depending on the problem.

For example, if we specify that certain objects such as cars

should be foreground, then we would learn a network that

learns to discover and segment car instances in videos.

3.3. Trajectory Embeddings

In order to consistently discover and segment objects

across video frames, we propose to learn deep representa-

tions of foreground pixel trajectories of the video. Specif-

ically, we consider dense pixel trajectories throughout the

videos, where trajectories are defined as in [42, 9]. Given the

outputs of Y-Net, we compute the trajectory embedding as a

weighted sum of the pixel embeddings along the trajectory.
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(a) U-Net architecture (b) Y-Net architecture

Figure 3: We show U-Net [38] and our proposed Y-Net to

visually demonstrate the difference. Y-Net has two encoding

branches (shown in green) for each input modality, which is

fused (shown in purple) and passed to the decoder (shown in

yellow). Skip connections are visualized as blue arrows.

3.3.1 Linking Foreground Trajectories

We first describe the method to calculate pixel trajectories ac-

cording to [42]. Denote Ft−1 ∈ R
H×W×2 to be the forward

optical flow field at time t− 1 and F̂t ∈ R
H×W×2 to be the

backward optical flow field at time t. As defined in [42], we

say the optical flow for two pixels (i, j) at time t − 1 and

(i′, j′) at time t is consistent if

∥∥∥F i,j
t−1 + F̂ i′,j′

t

∥∥∥
2

≤ 0.01

(∥∥∥F i,j
t−1

∥∥∥
2

+
∥∥∥F̂ i′,j′

t

∥∥∥
2
)
+ 0.5,

(1)

where F i,j
t−1 denotes the i, j-th element of Ft−1. Essentially,

this condition requires that the backward flow points in the

inverse direction of the forward flow, up to a tolerance inter-

val that is linear in the magnitude of the flow. Pixels (i, j)
and (i′, j′) are linked in a pixel trajectory if Eq. (1) holds.

To define foreground pixel trajectories, we augment the

above definition and say pixels (i, j) and (i′, j′) are linked if

Eq. (1) holds and both pixels are classified as foreground. Us-

ing this, we define a foreground-consistent warping function

g : RH×W → R
H×W that warps a set of pixels v ∈ R

H×W

forward in time along their foreground trajectories:

g(v)i
′,j′ =

{
vi,j if (i, j), (i′, j′) linked

0 otherwise.

This can be achieved by warping v with F̂t with bilinear

interpolation and multiplying by a binary consistency mask.

This mask can be obtained by warping the foreground mask

mt−1 with F̂t using Eq. (1) and intersecting it with mt,

resulting in a mask that is 1 if (i′, j′) is linked to a foreground

pixel at time t−1. Figure 4 demonstrates the linking of pixels

in a foreground pixel trajectory.

3.3.2 Pixel Trajectory RNN

After linking foreground pixels into trajectories, we describe

our proposed Recurrent Neural Network (RNN) to learn fea-

t− 1 t t+ 1 t+ 2

Ft−1 Ft

F̂t F̂t+1

Figure 4: We illustrate pixel linking in foreground pixel tra-

jectories. The foreground mask is shown in orange, forward

flow is denoted by the blue dashed arrow, and backward

flow is denoted by the red dashed arrow. The figure shows

a trajectory that links pixels in frames t − 1, t, t + 1. Two

failure cases that can cause a trajectory to end are shown

between frames t+ 1 and t+ 2: 1) Eq. (1) is not satisfied,

and 2) one of the pixels is not classified as foreground.

ture embedings of these trajectories. Denote {(it, jt)}
L
t=1 to

be the pixel locations of a foreground trajectory, {xit,jt
t ∈

R
C}Lt=1 to be the pixel embeddings of the foreground tra-

jectory (Y-Net outputs, i.e. xt = φ(It, Ft)), and L as the

length of the trajectory. We define the foreground trajectory

embeddings to be a weighted sum of the pixel embeddings

along the foreground trajectory. Specifically, we have

ψ
(
{xit,jt

t }Lt=1

)
=

∑L

t=1
w

it,jt
t ⊙ x

it,jt
t∑L

t=1
w

it,jt
t

, (2)

where ⊙ denotes element-wise multiplication, the division

sign denotes element-wise division, and w
it,jt
t ∈ [0, 1]C .

To compute the trajectory embeddings, we encode ψ(·) as

a novel RNN architecture which we denote Pixel Trajectory

RNN (PT-RNN). In its hidden state, PT-RNN stores

{
h
it,jt
t :=

t∑

τ=1

wiτ ,jτ
τ ⊙ xiτ ,jτ

τ ,Wit,jt
t :=

t∑

τ=1

wiτ ,jτ
τ

}
,

(3)

which allows it to keep track of the running sum and total

weight throughout the foreground trajectory. While Eq. (3)

describes the hidden state at each pixel location and time

step, we can efficiently implement the PT-RNN for all pixels

by doing the following: at time step t, PT-RNN first ap-

plies the foreground consistent warping function to compute

h̃t−1 := g (ht−1) ,W̃t−1 = g (Wt−1). Next, we compute

wt. We design three variants of PT-RNN to compute wt,

named standard (based on simple RNNs), conv (based on

convRNNs), and convGRU (based on [2]). For example, our

conv architecture is described by

ct = ReLU
(
Wc ∗

[
h̃t−1

W̃t−1

xt

])

wt = σ (Ww ∗ ct) ,
(4)
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where ∗ denotes convolution, and Wc,Ww are 3× 3 convo-

lution kernels. After wt is computed by the PT-RNN, we

update the hidden state with:

ht = h̃t−1 +wt ⊙ xt

Wt = W̃t−1 +wt.
(5)

All model variants are described in detail in the supplement.

Essentially, standard treats each set of linked pixels as a

simple RNN, conv includes information from neighboring

pixels, and convGRU allows the network to capture longer

term dependencies by utilizing an explicit memory state.

When a trajectory is finished, i.e., pixel (i, j) does

not link to any pixel in the next frame, PT-RNN outputs

h
i,j
t /Wi,j

t , which is equivalent to Eq. (2). This results in a

C-dimensional embedding for every foreground pixel tra-

jectory, regardless of its length, when it starts, or when it

ends. Note that these trajectory embeddings are pixel-dense,

removing the need for a variational minimization step [32].

The embeddings are normalized so that they lie on the unit

sphere.

A benefit to labeling the trajectories is that we are en-

forcing consistency in time, since consistent forward and

backward optical flow usually means that the pixels are tru-

ely linked [42]. However, issues can arise around the motion

and object boundaries, which can lead to trajectories erro-

neously drifting and representing motion of two different

objects or an object and background [42]. In this case, the

foreground masks are beneficial and able to sever the tra-

jectory before it drifts. We also note the similarity to the

DA-RNN architecture [49] that uses data association in a

RNN for semantic labeling.

3.3.3 Spatial Coordinate Module

The foreground trajectory embeddings incorporate informa-

tion from the RGB and optical flow images. However, they

do not encode information about the location of the trajec-

tory in the image. Thus, we introduce a spatial coordinate

module which computes location information for each fore-

ground trajectory. Specifically, we compute a 4-dimensional

vector consisting of the average x, y pixel location and dis-

placement for each trajectory and pass it through two fully

connected (FC) layers to inflate it to a C-dimensional vector,

which we add to the output of ψ(·) (before the normalization

of the foreground trajectory embeddings).

3.4. Loss Function

To train our proposed network, we use a loss function that

is comprised of three terms

L = λfgℓfg + λintraℓintra + λinterℓinter ,

where we set λfg = λintra = λinter = 1 in our experiments.

ℓfg is a pixel-wise binary cross-entropy loss that is com-

monly used in foreground prediction. We apply this on the

predicted foreground logits. ℓintra and ℓinter operate on the

foreground trajectory embeddings. Inspired by [11], its goal

is to encourage trajectory embeddings of the same object to

be close while pushing trajectories that are different objects

apart. For simplicity of notation, let us overload notation

and define
{
xk
i

}
, k = 1, . . . ,K, i = 1, . . . , Nk to be a list

of trajectory embeddings of dimension C where k indexes

the object and i indexes the embedding. Since all the feature

embeddings are normalized to have unit length, we use the

cosine distance function d(x,y) = 1

2
(1− x⊺y) to measure

the distance between two feature embeddings x and y.

Proposition 1 Let {yi}
N
i=1 be a set of unit vectors such

that
∑n

i=1
yi 6= 0. Define the spherical mean of this set of

unit vectors to be the unit vector that minimizes the cosine

distance

µ := argmin
‖w‖2=1

1

n

n∑

i=1

d (w,yi) (6)

Then µ =
∑

n

1=1
yi

‖
∑

n

1=1
yi‖

. For the proof, see the supplement.

The goal of the intra-object loss ℓintra is to encourage these

learned trajectory embeddings of an object to be close to

their spherical mean. This results in

ℓintra =
1

K

K∑

k=1

Nk∑

i=1

✶
{
d(µk,x

k
i )− α ≥ 0

}
d2(µk,x

k
i )∑Nk

i=1
✶
{
d(µk,xk

i )− α ≥ 0
} ,

where µk is the spherical mean of trajectories
{
xk
i

}Nk

i=1
for

object k, and ✶ denotes the indicator function. Note that µk

is a function of the embeddings. The indicator function acts

as a hard negative mining that focuses the loss on embed-

dings that are further than margin α from the spherical mean.

In practice, we do not let the denominator get too small as it

could result in unstable gradients, so we allow it to reach a

minimum of 50.

Lastly, the inter-object loss ℓinter is designed to push tra-

jectories of different objects apart. We desire the clusters to

be pushed apart by some margin δ, giving

ℓinter =
2

K(K − 1)

∑

k<k′

[δ − d(µk, µk′)]
2

+
,

where [x]+ = max(x, 0). This loss function encourages the

spherical means of different objects to be at least δ away

from each other. Since our embeddings lie on the unit sphere

and our distance function measures cosine distance, δ does

not need to depend on the feature dimension C. In our

experiments, we set δ = 0.5 which encourages the clusters

to be at least 90 degrees apart.
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FT3D DAVIS FBMS

Y-Net 0.905 0.701 0.631

Early Fusion 0.883 0.636 0.568

Late Fusion 0.897 0.631 0.570

Table 1: Fusion ablation. Performance is measured in IoU.

3.5. Trajectory Clustering

At inference time, we cluster the foreground trajectory

embeddings with the von Mises-Fisher mean shift (vMF-

MS) algorithm [26]. This gives us the clusters as well as

the number of clusters, which is the estimated number of

objects in a video. vMF-MS finds the modes of the kernel

density estimate using the von Mises-Fisher distribution. The

density can be described as p(y;m, κ) = C(κ) exp (κm⊺y)
for unit vector y where κ is a scalar parameter, ‖m‖2 = 1,

and C(κ) is a normalization constant. κ should be set to

reflect the choice of α. If the training loss is perfect and

d(µk,x
k
i ) < α, ∀i = 1, . . . , Nk, then all of the xk

i lie within

a ball with angular radius cos−1(1 − 2α) of µk. In our

experiments, we set α = 0.02, giving cos−1(1− 2α) ≈ 16
degrees. Thus, we set κ = 10, resulting in almost 50% of the

density being concentrated in a ball with radius 16 degrees

around m (by eyeing Figure 2.12 of [41]).

Running the full vMF-MS clustering is inefficient due to

our trajectory representation being pixel-dense. Instead, we

run the algorithm on a few randomly chosen seeds that are

far apart in cosine distance. If the network learns to correctly

predict clustered trajectory embeddings, then this random

initialization should provide little variance in the results.

Furthermore, we use a PyTorch-GPU implementation of the

vMF-MS clustering for efficiency.

4. Experiments

Datasets. We evaluate our method on video foreground

segmentation and multi-object motion segmentation on five

datasets: Flying Things 3d (FT3D) [29], DAVIS2016 [35],

Freibug-Berkeley motion segmentation [32], Complex Back-

ground [30], and Camouflaged Animal [6]. For FT3D, we

combine object segmentation masks with foreground labels

provided by [44] to produce motion segmentation masks.

For DAVIS2016, we use the J -measure and F-measure for

evaluation. For FBMS, Complex Background, and Camou-

flaged Animal, we use precision, recall, and F-score, and

∆Obj metrics for evaluation as defined in [32, 7]. Full details

of each dataset can be found in the supplement.

It is well-understood that the original FBMS labels are

ambiguous [5]. Some labels exhibit multiple segmentations

for one aggregate motion, or segment the (static) background

into multiple regions. Thus, [5] provides corrected labels

which we use for evaluation.

Implementation Details. We train our networks using

Multi-object Foreground

P R F ∆Obj P R F

conv PT-RNN 75.9 66.6 67.3 4.9 90.3 87.6 87.7

standard PT-RNN 72.2 66.6 66.0 4.27 88.1 89.3 87.5

convGRU PT-RNN 73.6 63.8 64.8 4.07 89.6 85.8 86.3

per-frame embedding 79.9 56.7 59.7 11.2 92.1 85.4 87.4

no FG mask 63.5 60.3 59.6 1.97 82.5 85.7 82.1

no SCM 70.4 65.5 63.2 3.70 89.3 89.1 88.1

no pre-FT3D 70.2 63.6 63.1 3.66 87.6 88.2 86.3

no DAVIS-m 66.9 63.6 62.1 2.07 87.1 86.9 85.2

Table 2: Architecture and Dataset ablation on FBMS testset.

stochastic gradient descent with a fixed learning rate of 1e-

2. We use backpropagation through time with sequences

of length 5 to train the PT-RNN. Each image is resized

to 224 × 400 before processing. During training (except

for FT3D), we perform data augmentation, which includes

translation, rotation, cropping, horizontal flipping, and color

warping. We set C = 32, α = 0.02, δ = 0.5, κ = 10. We

extract optical flow via [20].

Labels for each foreground trajectory are given by the

frame-level label of the last pixel in the trajectory. Due to

sparse labeling in the FBMS training dataset, we warp the

labels using Eq. (1) so that each frame has labels. Lastly,

due to the small size of FBMS (29 videos for training), we

leverage the DAVIS2017 dataset [37] and hand select 42

videos from the 90 videos that roughly satisfy the rubric of

[5] to augment the FBMS training set. We denote this as

DAVIS-m. The exact videos in DAVIS-m can be found in

the supplement.

When evaluating the full model on long videos, we suffer

from GPU memory constraints. Thus, we devise a sliding

window scheme to handle this. First, we cluster all fore-

ground trajectories within a window. We match the clusters

of this window with the clusters of the previous window

using the Hungarian algorithm. We use distance between

cluster centers as our matching cost, and further require that

matched clusters must have d(µk, µk′) < 0.2. When a clus-

ter is not matched to any of the previous clusters, we declare

it a new object. We use a 5-frame window and adopt this

scheme for the FBMS and Camouflaged Animal datasets.

In Section 4.2, we use the conv PT-RNN variant of Figure

2, trained for 150k iterations on FT3D, then fine-tuned on

FBMS+DAVIS-m for 100k iterations.

Our implementation is in PyTorch, and all experiments

run on a single NVIDIA TitanXP GPU. Given optical flow,

our algorithm runs at approximately 15 FPS. Note that we do

not use a CRF post-processing step for motion segmentation.

4.1. Ablation Studies

Fusion ablation. We show the choice of mid-level fusion

with Y-Net is empirically a better choice than early fusion

and late fusion of encoder-decoder networks. For early

fusion, we concatenate RGB and optical flow and pass it

through a single U-Net. For late fusion, there are two U-
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Video Foreground Segmentation Multi-object Motion Segmentation

PCM [6] FST [33] NLC [12] MPNet [44] LVO [45] CCG [7] Ours CVOS [43] CUT [24] CCG [7] Ours

F
B

M
S

P 79.9 83.9 86.2 87.3 92.4 85.5 90.3 72.7 74.6 74.2 75.9

R 80.8 80.0 76.3 72.2 85.1 83.1 87.6 54.4 62.0 63.1 66.6

F 77.3 79.6 77.3 74.8 87.0 81.9 87.7 56.3 63.6 65.0 67.3

∆Obj - - - - - - - 11.7 7.7 4.0 4.9

C
B

P 84.3 87.6 79.9 86.8 74.6 87.7 83.1 60.8 67.6 64.9 57.7

R 91.7 85.0 69.3 77.5 77.0 93.1 89.7 44.7 58.3 67.3 61.9

F 86.6 80.6 73.7 78.2 70.5 90.1 83.5 45.8 60.3 65.6 58.3

∆Obj - - - - - - - 3.4 3.4 3.4 3.2

C
A

P 81.9 73.3 82.3 77.8 77.6 80.4 78.5 84.7 77.8 83.8 77.2

R 74.6 56.7 68.5 62.0 51.1 75.2 79.7 59.4 68.1 70.0 77.2

F 76.3 60.4 72.5 64.8 50.8 76.0 77.1 61.5 70.0 72.2 75.3

∆Obj - - - - - - - 22.2 5.7 5.0 5.4

A
ll

P 80.8 82.1 84.7 85.3 87.4 84.7 87.1 73.8 74.5 75.1 74.1

R 80.7 75.8 73.9 70.7 77.2 82.7 86.2 54.3 62.8 65.0 68.2

F 78.2 75.8 75.9 73.1 77.7 81.5 85.1 56.2 64.5 66.5 67.9

∆Obj - - - - - - - 12.9 6.8 4.1 4.8

Table 3: Results for FBMS, ComplexBackground (CB), CamouflagedAnimal (CA), and averaged over all videos in these

datasets (ALL). Best results are highlighted in red with second best in blue.

FST [33] FSEG [21] MPNet [44] LVO [45] Ours

DAVIS
J 55.8 70.7 70.0 75.9 74.2

F 51.1 65.3 65.9 72.1 73.9

FT3D IoU - - 85.9 - 90.7

Table 4: Results on Video Foreground Segmentation for

DAVIS2016 and FT3D. Best results are highlighted in red.

Nets: one for RGB and one for optical flow, with a conv

layer at the end to fuse the outputs. Note that Y-Net has

more parameters than early fusion but less parameters than

late fusion. Table 1 shows that Y-Net outperforms the others

in terms of foreground IoU. Note that the performance gap

is more prominent on the real-world datasets.

Architecture ablation. We evaluate the contribution of each

part of the model and show results in both the multi-object

setting and the binary setting (foreground segmentation) on

the FBMS testset. All models are pre-trained on FT3D for

150k iterations and trained on FBMS+DAVIS-m for 100k

iterations. Experiments with the different PT-RNN variants

shows that conv PT-RNN performs the best empirically in

terms of F-score, thus we use this in our comparison with

state-of-the-art methods. Standard performs similarly, while

convGRU performs worse perhaps due to overfitting to the

small dataset. Next, we remove the PT-RNN architecture

(per-frame embedding) and cluster the foreground pixels at

each frame. The F-score drops significantly and ∆Obj is

much worse, which is likely due to this version not labeling

clusters consistently in time. Because the foreground predic-

tion is not affected, these numbers are still reasonable. Next,

we remove foreground masks (no FG mask) and cluster all

foreground and background trajectories. The clustering is

more sensitive; if the background trajectories are not clus-

tered adequately in the embedding space, the performance

will suffer. Lastly, we removed the spatial coordinate module

(no SCM) and observed lower performance. Similar to the

per-frame embedding experiment, foreground prediction is

not affected.

Dataset ablation. We also study the effects of the training

schedule and training dataset choices. In particular, we first

explore the effect of not pre-training on FT3D, shown in the

bottom portion of Table 2. Secondly, we explore the effect

of training the model only on FBMS (without DAVIS-m).

Both experiments show a noticeable drop in performance in

both the multi-object and foreground/background settings,

showing that these ideas are crucial to our performance.

4.2. Comparison to State­of­the­Art Methods

Video Foreground Segmentation. For FBMS, Com-

plexBackground and CamouflagedAnimal, we follow the

protocol in [7] which converts the motion segmentation la-

bels into a single foreground mask and use the metrics de-

fined in [32] and report results averaged over those three

datasets. We compare our method to state-of-the-art meth-

ods including PCM [6], FST [33], NLC [12], MPNet [44],

LVO [45], and CCG [7]. We report results in Table 3. In

terms of F-score, our model outperforms all other models

on FBMS and CamouflagedAnimal, but falls just short on

ComplexBackground behind PCM and CCG. Looking at all

videos, we show a relative gain of 4.4% on F-score compared

to the second best method CCG, due to our high recall.

Additionally, we report results of our model on FT3D and

the validation set of DAVIS2016. We compare our model to

state-of-the-art methods: including LVO [45], FSEG [21],

MPNet [44], and FST [33] in Table 4. For this experiment

only, we train a Y-Net with C = 64 channels on FT3D
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Figure 5: Qualitative results for motion segmentation. The videos are: goats01, horses02, and cars10 from FBMS, and forest

from ComplexBackground.

for 100k iterations, resulting in outperforming MPNet by a

relative gain of 5.6%. We then fine-tune for 50k iterations

on the training set of DAVIS2016 and use a CRF [28] post-

processing step. We outperform all methods in terms of F-

measure and all methods but LVO on J -measure. Note that

unlike LVO, we do not utilize an RNN for video foreground

segmentation, yet we still achieve performance comparable

to the state-of-the-art. Also, LVO [45] reports a J -measure

of 70.1 without using a CRF, while our method attains a

J -measure of 71.4 without using a CRF. This demonstrates

the efficacy of the Y-Net architecture.

Multi-object Motion Segmentation. We compare our

method with state-of-the-art methods CCG [7], CUT [24],

and CVOS [43]. We report our results in Table 3. We

outperform all models on F-score on the FBMS and Camou-

flagedAnimal datasets. On FBMS, we dominate on precision,

recall, and F-score with a relative gain of 3.5% on F-score

compared to the second best method CCG. Our performance

on ∆Obj is comparable to the other methods. On Camou-

flagedAnimal, we show higher recall with lower precision,

leading to a 4.4% relative gain in F-score. Again, our result

on ∆Obj is comparable. However, our method places third

on the ComplexBackground dataset. This small 5-sequence

dataset exhibits backgrounds with varying depths, which is

hard for our network to correctly segment. However, we still

outperform all other methods on F-score when looking at all

videos. Similarly to the binary case, this is due to our high

recall. Because we are the first work to use FT3D for motion

segmentation, we report results on FT3D in the supplement

for the interested readers.

To illustrate our method, we show qualitative results in

Figure 5. We plot RGB, optical flow [20], groundtruth,

results from the state-of-the-art CCG [7], and our results on

4 sequences (goats01, horses02, and cars10 from FBMS,

and forest from ComplexBackground). On goats01, our

results illustrate that due to our predicted foreground mask,

our method is able to correctly segment objects that do not

have instantaneous flow. CCG struggles in this setting. On

horses02, we show a similar story, while CCG struggles

to estimate rigid motions for the objects. Note that our

method provides accurate segmentations without the use of

a CRF post-processing step. We show two failure modes

for our algorithm: 1) if the foreground mask is poor, the

performance suffers as shown on cars10 and forest, and 2)

cluster collapse can cause multiple objects to be segmented

as a single object as shown in cars10.

5. Conclusion
We proposed a novel deep network architecture for solv-

ing the problem of object discovery using object motion

cues. We introduced an encoder-decoder network that learns

representations of video frames and optical flow, and a novel

recurrent neural network that learns feature embeddings of

pixel trajectories inside foreground masks. By clustering

these embeddings, we are able to discover and segment po-

tentially unseen objects in videos. We demonstrated the

efficacy of our approach on several motion segmentation

datasets for object discovery.
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