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Abstract

In 3D surface reconstruction from normals, discontinu-

ity preservation is an important but challenging task. How-

ever, existing studies fail to address the discontinuous nor-

mal maps by enforcing the surface integrability in the con-

tinuous domain. This paper introduces a robust approach

to preserve the surface discontinuity in the discrete geom-

etry way. Firstly, we design two representative normal in-

compatibility features and propose an efficient discontinuity

detection scheme to determine the splitting pattern for a dis-

crete mesh. Secondly, we model the discontinuity preserva-

tion problem as a light-weight energy optimization frame-

work by jointly considering the discontinuity detection and

the overall reconstruction error. Lastly, we further shrink

the feasible solution space to reduce the complexity based

on the prior knowledge. Experiments show that the pro-

posed method achieves the best performance on an exten-

sive 3D dataset compared with the state-of-the-arts in terms

of mean angular error and computational complexity.

1. Introduction

Surface reconstruction from normals is driven by sev-

eral computer vision tasks, such as shape from shading

(SfS), deflectometry, and photometric stereo (PS). Given a

static scene captured by a camera with fixed viewpoint, PS

[15, 16, 20, 21] is widely used to obtain the surface nor-

mal orientations. To reconstruct a surface from the esti-

mated normals, the most common way [1, 3, 8, 11, 17] is to
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Figure 1. Reconstruction surfaces from a saddle normal map

padded with the orientation vectors of [0, 0, 1]T . (Left): Xie et

al. [24]; (Right): Proposed.

conduct integration on the depth gradients which are trans-

formed from the normal orientations. However, the normal

map produced by PS may not be uniformly integrable, due

to occlusion boundary, sharp surface changes, or computa-

tion error. To reconstruct a surface from such a discontin-

uous and noisy normal map, Terzopoulos et al. [18] pro-

vided a compact framework to compute the depth field and

surface discontinuity simultaneously, where a rough depth

map was needed for initialization. Approaches in [6, 7, 9]

used binary weights to indicate the presence of surface dis-

continuities, so that the integrability constraint can be ap-

plied partially. Although these methods can reconstruct sur-

faces from discontinuous and noisy normals, none of them

satisfactorily preserves the discontinuity, where the recon-

structed surfaces are somewhat distorted. One key reason is

that forming a discontinuity between two adjacent patches

requires breaking their connection. The aforementioned ap-

proaches assume that the number of total reconstructed ver-

texes is equal to the number of normal orientations, which

means every patch is connected, and distortion in the local

shape is propagated to the whole surface. Fig. 1 shows an

example of reconstructing the boundary vertexes of the Sad-

dle model, the object surface is split and can be separately

to form a more accurate shape.

In this paper, we concentrate on addressing the preser-

vation of the discontinuity feature in surface reconstruction
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from normals. The input is a single normal map which can

be obtained by PS or point cloud, and the output is a 3D

surface with rich discontinuities. We study and model the

normal discontinuity in a discrete geometry domain [24]

which is used for surface reconstruction. To measure the

incompatibility between two adjacent normal orientations,

we introduce two new features, including absolute depth

difference and normal angle difference. The surface discon-

tinuities are detected by these two normal incompatibility

features, and followed by vertex partition and redistribution.

We build a geometry-based energy function to optimize the

discontinuity and the surface shape simultaneously. Be-

sides, the prior statistical knowledge of the normal incom-

patibility features greatly facilitates obtaining the optimal

result with low computation complexity. Extensive exper-

imental results (e.g., comparisons on 16 different models)

validate the efficiency of the proposed method.

Comparing to [24], the proposed method accurately re-

constructs the surface discontinuities by allowing the mesh

node to have multiple vertexes, rather than approximating

it in the continuous domain. To the best of our knowledge,

this is the first approach to address the discontinuity prob-

lem in a discrete geometry way, which has the following

main merits:

• Discontinuity preservation: As two adjacent facets

oriented by incompatible normals are taken to be in-

dependent, the discontinuity between them can be

formed along the breaking boundary. Meanwhile, as a

light-weight least-square optimization is used to com-

pute the depth map, and the surface smoothness on

continuous segments is preserved.

• Robustness to noise: This research can be applied to

the continuous/discontinuous normal maps with noise.

Examples with heavy Gaussian noise (e.g., variance up

to 8◦ angle degree) can be successfully reconstructed,

where discontinuities are still accurately distinguished

from noise and preserved.

• Parameter-tuning free: Due to the convexity of the

proposed surface energy model, the optimal parameter

used for discontinuity detection can be uniquely de-

termined. As a result, the proposed approach can be

adaptive to varying continuous/discontinuous normals

without parameter tuning.

2. Related Work

This paper aims to reconstruct a surface from normals

and allow the normal map to contain occlusion boundary,

discontinuities, and noise. Traditional approaches [6, 9, 13]

enforce the integrability constraint over the whole normal

map to estimate the depths, and can be mainly catego-

rized into regularization-based, weighting-based, and basis

function-based methods.

Regularization-based: Regularization method attempts to

smooth the depth gradients by introducing additional con-

straints. The most common way [4] is to use the least square

energy function which is defined on residuals between the

depth difference and the depth gradient. Although it is

useful to noisy gradients, its quadratic behavior may over-

penalize discontinuities which have higher residuals. Meth-

ods in [2, 18] considered the discontinuity through a vari-

ational formulation where a rough depth map was needed

to estimate discontinuities and depth values simultaneously.

Petrovic et al. in [11] used a belief propagation to enforce

integrability constraints in Markov Random Field network.

Weighting-based: Instead of enforcing the regularization

uniformly over the whole gradient field, methods in [6, 7]

employed the constraint partially by a weighting map,

where the weight values were designed to be inversely pro-

portional to the probability of lying on a discontinuity. An

extreme case is Mumford et al. [9], where a binary template

was used to indicate the presence of discontinuities. Stud-

ies in [12, 14, 19, 23] used an expectation maximization

method to estimate a weighted discontinuity map, and then

reconstructed the surface in segments according to the dis-

continuity labels. It is worth noting that all these methods

either require manually labeling or thresholding for edge

detection, thus cannot guarantee the reconstruction quality

for a general surface.

Basis function-based: Frankot and Chellappa [3] projected

the densely non-integrable gradients onto a set of Fourier

basis functions for enforcing surface integrability. Hsieh

et al. [5] and Karacali et al. [7] used wavelet basis func-

tions instead. Kovesi et al. [8] computed the correlations

of gradients via a bank of shapelets, which could solve the

gradients with a certain ambiguity by carefully parameter

tuning. One inevitable drawback of all these basis function-

based approaches is that the global integrability enforce-

ment constraint on the whole gradient field can smooth out

the occlusion boundary. To address this problem, Wu et

al. in [10, 22] further developed to introduce the kernel ba-

sis function, but these approaches are limited to the normal

map of rectangular boundary and bring extremely computa-

tional complexity.

3. Discontinuity Detection

This research addresses the discontinuity problem based

on a discrete geometry processing (DGP) framework. In

this section, we first give a brief review of the DGP defor-

mation method, and discuss the difficulty of reconstructing

the surface discontinuities by the state-of-the-art method in

a discrete geometry way. Considering the characteristics

of DGP, we introduce two new features to measure the in-

compatibility between normals, and demonstrate how to use

these two features to detect discontinuities.

5329



Figure 2. Example of all possible splitting patterns for a vertex with four facets.
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Figure 3. Example of a discrete mesh consisting of vertexes and

facets. (Left): A facet and its four vertexes; (Middle): A vertex

and the facets around; (Right): Related normals used to calculate

the depth difference along the positive direction of the y−axis at

vi,j .

3.1. DGP-based Shape Deformation

In DGP deformation [24], the surface to be reconstructed

is taken as a mesh consisting of a set of micro square facets

oriented by the input normal map, and then a local/global

deformation is iteratively conducted on the mesh to gener-

ate the final shape. Specifically, each pixel (i, j) in a nor-

mal map is converted into a facet fi,j bounded by four ver-

texes vi,j , vi,j+1, vi+1,j+1, and vi+1,j as shown in Fig. 3

(Left). A vertex vi,j has its x− and y−coordinates fixed,

and z−coordinate (i.e., the depth value zi,j) as an unknown

variable to be determined. In each iteration of the shape

deformation, a local shaping step is first performed to deter-

mine the position of each facet according to its demanding

normal orientation. Meanwhile, a global blending step is

applied to generate all facets into a connected mesh surface.

The local/global steps can be summarized as a least square

formulation:

Φ (zi,j) =
∑

fi,j

‖z (fi,j)− p (fi,j)‖
2
, (1)

where z(fi,j) is a column vector stacking the

depth values of four vertexes of fi,j , z(fi,j) =
[zi,jzi,j+1zi+1,j+1zi+1,j ]

T , and p(fi,j) is the updated

depth values of z(fi,j) after employing the local shaping.

By iteratively solving Eq. (1), the depth converges to

form a surface whose orientations are expected to be the

same as the input normals. However, in [24], all facets are

supposed to be connected, and the reconstructed shape for

the discontinuous normals can be inevitably distorted as

shown in Fig. 1.

Actually, for a vertex vi,j with discontinuity, the
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Figure 4. Illustration of the conflicting normals. Arrows in gray

are the ground-truth normals, while arrows in black are the recon-

structed ones.

z−coordinate value is not unique. Let us denote it as

[z
(1)
i,j , ..., z

(K)
i,j ]T . The total number K should be greater than

one, and less or equal to the total number of facets around

vi,j . We enumerate all possible splittings for vi,j in Fig. 2,

which in general can be grouped into four types: I) vi,j has

a unique depth value, and four facets are connected and con-

tinuous; II) vi,j has two depth values, e.g., the first group

separated by dotted line in Fig. 2. There are two cases in

this group: 1) Three facets are connected to one split vertex,

and the last one independently holds another vertex alone

(i.e., the first four graphs); 2) Two pairs of adjacent facets1

are connected by one split vertex (i.e., the last two graphs

of the first group); III) vi,j has three depth values, e.g., the

second group in Fig. 2. A pair of facets is connected to

one vertex, and the remaining two facets hold one vertex in-

dependently; IV) vi,j has four depth values, e.g., the third

group in Fig. 2, where every facet holds one independent

vertex. How to determine the splitting pattern for a vertex

vi,j is the main issue that this research is going to address

in the rest of this section.

3.2. Absolute Depth Difference Feature

An intuitive way to detect the compatibility between two

adjacent normals is to check whether the facets oriented by

them can be connected. Let us consider a patch Pi,j consist-

ing of 2 × 2 facets and centering at vi,j as shown in Fig. 3

(Middle). If there are two adjacent conflicting orientations,

the associated two facets are divided along the z−axis but

still hold the joint vertex vi,j as illustrated in Fig. 4. It is

observed that the depth difference between these two split

1In this paper, “adjacent” refers to “adjacent but non-diagonal”. We

do not consider the discontinuity on the diagonal joints due to its weak

connection relationship.
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Figure 5. Statistics of the ADD feature for the normal map. (Left):

The normal map of Bunny padded with [0, 0, 1]T ; (Middle): The

ADD statistics of all continuous Pi,j ; (Right): The discontinuity

statistics of all Pi,j with the non-zero ADDs.

facets can be used to measure the degree of incompatibility,

and defined as the absolute depth difference (ADD) feature,

δℓi,j =

∣

∣

∣

∣

ℓ · nl

k · nr

−
ℓ · nr

k · nl

∣

∣

∣

∣

, (2)

where ℓ has the four directions in Pi,j as shown in Fig. 3

(Right), which is a unit vector of directions of the x− and

y− axis in the Cartesian coordinate. k is a unit vector of the

positive direction of the z− axis. nl and nr are the left and

right normal orientations along the direction ℓ at vi,j .

Fig. 5 shows the statistics of the ADD feature for all con-

tinuous Pi,j from the Bunny model. One can see that there

is about 60% continuous Pi,j having a non-zero δ. In addi-

tion, the distribution of discontinuities for the non-zero δ is

also shown in Fig. 5 (Right). For a noise-free discontinuous

normal map, all facets are supposed to be connected except

for the occlusion boundary. In such a case, the normal dis-

continuities are only caused by the occlusion boundaries,

which indicate that detecting the non-zero δ can be an ef-

fective measure to find discontinuities. However, this con-

dition is too restrict for a real case where the normal map

is obtained by PS or from a set of noisy point cloud. The

computational error introduced by PS and the scanning er-

ror in the point cloud disturb the normal orientations, and

produce the non-zero δ on the Pi,j which is expected to be

continuous. It is obvious that the detection method based on

a single ADD feature cannot distinguish discontinuity from

noise as shown in Fig. 5 (Right). To improve the detection

efficiency, a normal orientation feature is introduced in the

next section.

3.3. Normal Angle Difference Feature

In general, surface discontinuities are mainly caused by

the occlusion boundaries, where the ADD features are non-

zero, and there exists the sharp orientation changes. Thus,

both the non-zero δ and sharp orientation change are jointly

considered to detect the discontinuity. To better quantify

the change of orientations, a new feature called normal an-

gle difference (NAD) is defined as the difference of normal

orientations within a certain range, as given in Eq. (3):

ϕ
ℓ
i,j =

‖θℓi,j‖
∞

‖θℓi,j‖
−∞

,

if δ
ℓ
i,j > 0, and ‖θℓi,j‖∞ ≡ θ

ℓ
i,j

, (3)

where ϕℓ
i,j is the NAD value along ℓ in Pi,j , and θℓi,j is,

θ
ℓ
i,j = [arccos(nl,nll), arccos(nl,nr), arccos(nr,nrr)]

T
,

(4)

where nll and nrr are the left-adjacent and right-adjacent

normals of nl and nr respectively as shown in Fig. 3

(Right). ‖ · ‖±∞ is the ±∞-norm, which can be consid-

ered as the maximum/minimum operation.

3.4. Overall Detection Algorithm

The discontinuity detection that comprehensively con-

siders both the ADD feature and the NAD feature can be

implemented as:

Step 1) If δℓi,j is smaller than a given threshold τδ , then

it is needed to check whether ϕℓ
i,j exists or not.

Otherwise, Pi,j is discontinuous along the di-

rection ℓ.

Step 2) If ϕℓ
i,j exists, it is needed to check the rela-

tionship between ϕℓ
i,j and another threshold τϕ.

Otherwise, Pi,j is continuous along the direc-

tion ℓ.

Step 3) If ϕℓ
i,j is bigger than τϕ, then Pi,j is discontin-

uous along the direction ℓ. Otherwise, Pi,j is

continuous along the direction ℓ.

Step 4) After all four directions are detected, the final

splitting pattern of Pi,j is determined as follows:

If two directions are detected as discontinuities

for a Pi,j , then the splitting pattern is shown

in the first group of Fig. 2; Similarly, if three

and four directions are detected as discontinu-

ities for a Pi,j , the associated splitting patterns

are shown in the second and third group of Fig.

2, respectively.

Since vi,j can be split according to the discontinuity detec-

tion condition, z(fi,j) in Eq. (1) is updated as z(fi,j) =

[zk1

i,j , zk2

i,j+1, zk3

i+1,j+1, zk4

i,j+1]
T . The superscript k repre-

sents the kth depth value along the z-axis.

4. Discontinuity Preservation

This section details the proposed DGP-based disconti-

nuity preservation scheme for surface reconstruction from

normals. A new light-weight energy model jointly consid-

ers the discontinuity detection parameters 〈τδ, τϕ〉 and the
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Figure 6. Energy surfaces of the Kitty, Bunny, Hand, and Face models. (Top): Energy surfaces of the original normal maps; (Bottom):

Energy surfaces of the noisy normal maps with the variance of the Gaussian noise 3◦.

overall surface reconstruction error. We also discuss how to

efficiently compute the optimal detection parameters based

on the prior knowledge.

4.1. Surface Reconstruction Optimization

In practice, it is infeasible to specify a different 〈τδ, τϕ〉
for each Pi,j . For instance, considering that for a normal

map with resolution of W×H , the total number of unknown

detection parameters is 2×(W ×H). To compute these un-

known parameters, it greatly complicates the reconstruction

process. Thus, we proposed to uniformly apply 〈τδ, τϕ〉 to

the whole normal field, and the reconstruction energy model

with respect to τδ and τϕ can be formulated as,

argmin{zk
i,j}

E(M(τδ, τϕ)) s.t. n(fi,j) ≡ ni,j , (5)

where M(τδ, τϕ) is the reconstructed mesh surface by Eq.

(1), with the input normals whose discontinuities have been

detected and meshed by τδ and τϕ (e.g., see Section 3.4).

E(M) is a function measuring the shape variation, and n(·)
returns the normal vector of a facet.

Fig. 6 shows the energy surfaces of four discontinuous

models with the original normals and the noisy normals, re-

spectively. It can be seen that a large 〈τδ, τϕ〉 results in a

big reconstruction error. The reason is that when there are

no discontinuities detected under the large detection param-

eters, M(·) is taken to be continuous. Strictly speaking,

Xie et al. [24] is a special case of this research with in-

finite 〈τδ, τϕ〉. In addition, the result of a small 〈τδ, τϕ〉
is another extreme case where every Pi,j is determined to

be discontinuous, and every fi,j is separated. In this case,

the total number of unknown depth values is larger than the

total number of normals, and Eq. (5) has no feasible solu-

tion. Consequently, the reasonable 〈τδ, τϕ〉 candidates are

located in the middle range as shown in Fig. 6.
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Figure 7. Histogram statistics of the ADD feature for the Bunny

model in Fig. 5, where x axis is the relative value with respective

to the range of ground-truth depth.

4.2. Determination of the Feasible Solution Space

The conventional way to compute the optimal
〈

τ∗δ , τ
∗
ϕ

〉

is

to use Newton’s method for all possible values of δ and ϕ.

However, it is time-consuming and easy to be stuck in a lo-

cal minimum in the practical reconstruction, especially for

the noisy normal map. Considering that a given surface to

be reconstructed commonly has more continuities than dis-

continuities, the scope of searching
〈

τ∗δ , τ
∗
ϕ

〉

can be shrunk

based on the prior statistical knowledge of δ and ϕ.

The histogram statistics of the ADD feature δ =
{

δℓi,j
}

,

which is computed by Eq. (2). An example of the histogram

of δ for the Bunny model is given in Fig. 7. It can be seen

that the ADD values are mainly concentrated in a narrow

range with the mean value close to zero, and the rest are

randomly distributed in a wide range with the upper limit

approaching to the largest depth of the ground-truth. Sup-

posing the ADD value with the largest probability is de-

noted as δ0 (i.e. the x− coordinate of the first bar in Fig. 7).

A reasonable τδ is expected to be capable of filtering every

Pi,j of δ0 to avoid being disconnected. As a result, τδ can

only be the value bigger than δ0.

To specify the mathematical expression of the range of
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Figure 8. Average time cost and the reduction rate of searching

range of
〈

τ∗

δ , τ
∗

ϕ

〉

for all 16 models, and for the Face model con-

taining the Gaussian noise with variance ranging from 0◦ to 8◦.

τδ , we then fit the histogram hδ by a Gaussian function gδ .

If the peaks of hδ and gδ are close, the optimal τ∗δ should be

larger than the mean value μδ of gδ . If the peaks of hδ and

gδ are far away from each other, it implies that the normal

map contains heavy noise, which causes the distribution of

δ diverging. Thus, in this research, the search range of the

optimal τ∗δ starts from μδ +
dδ

2 , where dδ is the variance of

gδ . Eq. (6) gives the search range of τ∗δ ,

Ωδ =

{

(μδ, ‖δ‖∞), hδ(μδ) ≈ max(hδ)

(μδ +
dδ

2 , ‖δ‖∞), otherwise
. (6)

The distribution of the NAD feature is similar to that of

the ADD feature, i.e., mainly concentrated near small ϕ.

Thus, the search range of the optimal τ∗ϕ can be derived in a

similar way. The difference is that we do not make analysis

on all values of ϕ =
{

ϕℓ
i,j

}

to compute the histogram hϕ.

As we know that the patch, Pi,j having the largest probabil-

ity δ0, must be continuous, and the associated NAD feature

ϕ|δ0 rarely contains the optimal τ∗ϕ. That is, the optimal τ∗ϕ
is impossible to be ϕ with the largest probability over the

range of ϕ|δ0 . Eq. (7) gives the mathematical formulation

of the search range of τ∗ϕ,

Ωϕ =

{

(μϕ, ‖ϕ|δ0‖∞), hϕ(μϕ) ≈ max(hϕ)

(μϕ +
dϕ

2 , ‖ϕ|δ0‖∞), otherwise
, (7)

where hϕ is the histogram of ϕ|δ0 , μϕ and dϕ are the mean

and variance of the Gaussian function gϕ, which is fitted

from hϕ.

To illustrate the effectiveness of Ωδ and Ωϕ, we define

the range reduction ratio as λ = |Ωδ|
‖δ‖∞

×
|Ωϕ|
‖ϕ‖∞

, and test the

proposed scheme on the Face model containing different

noisy levels, and under the normals of 16 different models.

The optimal detection parameters τ∗δ and τ∗ϕ are efficiently

computed by the Monte Carlo method. As shown in Fig.

8, the searching scope can be shrunk to about 15% of the

original one, even for the Face normals containing Gaussian

noise of variance up to 8◦. The corresponding reconstruc-

tion error is provided in Fig. 9 and Fig. 10, where the mean

angular error is close to 0◦.
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Figure 9. Reconstruction error rate of the Face model containing

the Gaussian noise with variance ranging from 0◦ to 8◦. The indi-

cating percentage is the ratio of the total number of reconstructed

normals with angular error greater than 20◦ to the total number of

input normals.
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Noisy Normal Map

Figure 10. Average reconstruction error rate of the original/noisy

normal maps of all 16 models. Results from the original normal

maps are plotted by solid lines, while the noisy counterparts are

denoted by dot lines.

5. Experimental Results

We implement the proposed approach in MATLAB un-

der Intel i7 CPU with 3.40GHz and 8GB RAM, and com-

pare the performance with five existing methods as men-

tioned in [13], including Quadratic [4], Fourier [3], Mum-

ford Shah [9], Shapelete [8], and DGP shaping [24]. All

the test examples are downloaded from Aim@Shape, and

TurboSquid. For each 3D model, we first sample the nor-

mal vectors, render them via OpenGL, and then read back

the associated depth map and the sampled normal map. To

introduce the discontinuous artifacts into the tested exam-

ples, we simply introduce [0, 0, 1]
T

as surface normals in

the regions where orientations are missing. For compari-

son, the input normal map serves as the ground-truth, where

the angular errors between the input normals and the recon-

structed ones are computed to measure the quality of recon-

struction. Experimental results show that our approach is

efficient and outperforms the other five methods. Detailed

comparison and analysis are discussed as below.

Firstly, our approach is robust not only for the original

normal maps, but also for the noisy ones. As shown in Fig.

9, the Face model containing the Gaussian noise with dif-

ferent variances ranging from 0◦ to 8◦ is used to test the
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Ground-truth Quadratic [4] Fourier [3] Mumford Shah [9] DGP shaping [24] Ours

Figure 11. The Bunny model reconstructed by five different methods. (Top): Results from original normal map; (Bottom): Results from

the normal map containing the Gaussian noise with variance of 4◦.

Ground-truth Var = 2◦ Var = 4◦ Var = 6◦

Figure 12. Reconstructed surfaces of Face with varying Gaussian

variances in Fig. 9. (Top): The input noisy normal maps; (Bot-

tom): The reconstructed surfaces by our approach, where the as-

sociate side views are framed in a green box at the bottom-right

corner.

robustness of our method2. It can be seen that when the

variance is increasing but less than 6◦, the reconstruction er-

ror rate and mean angular error (MAE) [24] are kept below

5% and 5◦, respectively. When the variance increases to 8◦,

the error rate and MAE are still below 10% and 10◦ respec-

tively, which are much smaller than the other five methods.

The related reconstructed surfaces are rendered in Fig. 12.

It is clearly shown that all noisy cases of Face are satisfac-

torily separated from the background and accurately recon-

structed.

Secondly, we also validate our approach on the Bunny

and the Hand models as shown in Fig. 11 and Fig. 14,

respectively. Each example is conducted on two types of

inputs, the original normal map and the noisy one. It is

obvious that all the other compared methods fail to break

the discontinuous patches, thereby distort the reconstructed

surface. We also observe that some methods are very sen-

sitive to noise. For example, the reconstructed surfaces by

Shapelete [8] fail to be rendered in the comparison as the

errors are too large (see Fig. 9). In addition, we show more

2Note that the maximum noise value can reach 30
◦ with the Gaussian

variance of 8◦.

Turtle Bear Kitty

Figure 13. Reconstruction results of three real normal maps, i.e.

the Turtle from the Harvard dataset, the Cat and Bear from the

DiLiGenT dataset.

comparisons on 16 different models in Fig. 10. Obviously,

the proposed method achieves the best performance. For

the original normal maps, the reconstruction error rate and

MAE are close to 0% and 0◦, respectively. For the noisy

counterparts, the reconstruction error rate and MAE are be-

low 5% and 5◦. All the other reconstruction results of our

method are rendered and shown in Fig. 15.

Thirdly, we qualitatively evaluate our approach on three

real-world PS normal models, including Turtle from the

Harvard dataset, Cat and Bear from the DiLiGenT dataset,

as shown in Fig. 13. The reconstructed mean angular errors

are 2.16◦, 4.13◦, and 6.01◦, respectively. It is worth noting

that it is usually to remove the dark background to guarantee

the reconstruction quality of computing normal by the tradi-

tional methods. Here, we still use the noisy (non-Gaussian)

and unreliable background in the reconstructions of Cat and

Bear.

Last but not the least, the proposed scheme can be effi-

ciently solved. The reason is that Eq. (6) and Eq. (7) define

an effective feasible solution space of
〈

τ∗δ , τ
∗
ϕ

〉

for different

normals. Especially, for a noisy normal map, the solution

space is shrinking along with the increasing Gaussian vari-

ance. It means our approach can guarantee the reconstruc-
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Ground-truth Quadratic [4] Fourier [3] Mumford Shah [9] DGP shaping [24] Ours

Figure 14. The Hand model reconstructed by five different methods. (Top): Results from original normal map; (Bottom): Results from

normal map containing the Gaussian noise with variance of 6◦.

Vase Bimba Buster Kitty Statue Head Statue Girl Venus

Omotondo Inner Ball Budda Alien Bump Sphere Scorpio Side Statue

Figure 15. Reconstructed surfaces of different models by the proposed method, where the ground-truth under the same view are framed in

a green box at the bottom-right corner.

tion efficiency for the noisy inputs without adding overhead

complexity, which is validated in Fig. 8. The reconstruction

time cost and the reduction rate of the searching range for

the Face model with the different amount of noise are also

plotted. It is observed that the time cost keeps the similar

trend for different noises.

6. Conclusion

In this paper, we present an approach to address the prob-

lem of discontinuity preservation based on a discrete frame-

work in surface reconstruction from normals. To determine

the appropriate splittings of a discrete mesh, we introduce

two new normal incompatibility features and design an effi-

cient discontinuity detection scheme. In addition, we model

the discontinuity preservation as a light-weight energy op-

timization problem, and shrink the feasible solution space

to reduce the computation complexity based on the prior

knowledge. Extensive experimental results show that the

proposed method reconstructs various discontinuous sur-

faces efficiently and robustly.
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