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Abstract

There is much interest in computer vision to utilize com-

modity hardware for gaze estimation. A number of papers

have shown that algorithms based on deep convolutional

architectures are approaching accuracies where streaming

data from mass-market devices can offer good gaze track-

ing performance, although a gap still remains between what

is possible and the performance users will expect in real

deployments. We observe that one obvious avenue for im-

provement relates to a gap between some basic technical

assumptions behind most existing approaches and the sta-

tistical properties of the data used for training. Specifically,

most training datasets involve tens of users with a few hun-

dreds (or more) repeated acquisitions per user. The non

i.i.d. nature of this data suggests better estimation may

be possible if the model explicitly made use of such “re-

peated measurements” from each user as is commonly done

in classical statistical analysis using so-called mixed effects

models. The goal of this paper is to adapt these “mixed ef-

fects” ideas from statistics within a deep neural network ar-

chitecture for gaze estimation, based on eye images. Such a

formulation seeks to specifically utilize information regard-

ing the hierarchical structure of the training data — each

node in the hierarchy is a user who provides tens or hun-

dreds of repeated samples. This modification yields an ar-

chitecture that offers state of the art performance onvarious

publicly available datasets improving results by 10-20%.

1. Introduction

Gaze serves as an important cue in understanding human

attention, emotion and social interaction. Therefore, the

ability to estimate and track gaze is important for various

fields including psychology [19], neuroscience [13, 35, 8]
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and more recently, computer vision [45, 17, 21, 23]. While

specialized eye gaze tracking hardware from several ven-

dors have been available and used in research experiments

for some time, in the last few years, many commodity prod-

ucts (such as [1]) can also be purchased that offer good real-

time accuracy. Unfortunately, many of the high performing

devices remain quite expensive and so, there is intensive

work to come up with accurate computer-vision based gaze

estimation techniques. One of the ideas in this line of work

is appearance-based methods [48], using the appearance of

the eye images to predict human gaze direction.

Generally speaking, appearance-based 3D gaze estima-

tion can be formulated as a regression f : x ∈ Rp
→ y ∈

R3, where x is a set of features, e.g., image derived features

and estimates of head pose from images and y is a gaze

direction in 3D space. This problem can be approached

in various ways. For example, we may use a standard k-

NN regression estimator as in [46] or random forests for

person-independent gaze estimation in [46]. The authors

in [30] design adaptive linear regression whereas Schneider

et al.[39] used support-vector regression with a polynomial

kernel. More recently, deep neural networks have been suc-

cessfully investigated for the problem in [60, 43]. For ex-

ample, in [60], one provides an input eye image to a deep

convolutional neural network and the last layer encodes the

three-dimensional gaze vector. The parameters of the net-

work can be trained with sufficient training data.

Are assumptions satisfied? Observe that independent

of which scheme we use for inference, gaze estimation is

a statistical fitting problem and understanding some of the

basic assumptions and properties may suggest natural av-

enues of improvement. One of the basic assumptions most

regression models make is that the samples are independent

identically distributed (i.i.d.) [50]. It is meaningful to as-

sess how (and whether) the common datasets used in many

gaze estimation works satisfy (or violate) this property. (A)

The Eyediap dataset [32] includes 94 video sequences of 16
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subjects looking at three different targets with both static

and free head motion under two different illumination con-

ditions. (B) The UT Multiview dataset contains 160 gaze

samples of 50 subjects recorded under controlled labora-

tory settings and 3D reconstructions of eye regions are used

to generate synthetic images for arbitrary head poses. (C)

A total of 214, 000 images from 15 subjects is collected in

MPIIGaze dataset, which is considered to be a challeng-

ing dataset captured under extreme illumination conditions.

The common feature in these (and other similar) datasets

is that the data is “grouped” naturally which correspond to

the number of participants in the acquisition study — these

are repeated measurements and not i.i.d. If the statistical

assumptions are violated, we can ask: (1) Is this just a the-

oretical issue or is this relevant in practice? (2) Are there

simple fixes to this problem? For any gaze dataset, we can-

not expect a researcher to collect i.i.d. data: which would

mean spending effort into bringing in a participant and col-

lect only one gaze sample.

Basic setup of this paper. The answer to question (1)

is yes (we will experimentally show later). But first, we

address (2) because it helps setup our formulation. Notice

that the issue of non i.i.d. data is not restricted to com-

puter vision and in fact, commonly occurs in social sci-

ences, epidemiology and medicine. The de-facto recom-

mendation when dealing with multiple samples from each

participant is to utilize the so-called mixed effects models

[22, 25] which are a special case of the more general hi-

erarchical Bayesian model. The mixed effects models are

composed of two parts: the fixed effects and the random ef-

fects. The fixed (global) effects are common in all samples

and so the corresponding coefficients are called fixed. In

contrast, the random (local) effects are specific to subjects

(or groups). The random effects coefficients can vary de-

pending on the subjects, assumed to be drawn from some

unknown distribution. This approach is effective in many

applications [22, 2, 16, 12, 20] and broadly used in standard

statistical analysis. This raises the possibility of whether we

can utilize the “mixed effects” idea in deep neural networks

(especially CNNs) which offer state-of-the art performance

in a range of problems in computer vision. Actually, using

mixed effects is natural whenever images come clustered in

groups/hierarchy (not necessarily individual subjects): this

is common in fine-grained multi-label classification, object

detection, medical imaging, and any longitudinal data. In

general, other than participant specific random effects, we

may even consider a separate “site” or “dataset” specific

random effect. This is relevant because recent results have

shown that even for linear regression, different datasets can-

not be easily pooled in simple ways [62, 61].

Other models for repeated measurements. We should

point out that neural networks for non i.i.d. data are

not unique to this paper. In fact, recurrent neural net-

works (RNNs) have been studied in language modeling

[31], speech recognition [37], image captioning generation

[55], motion capture [47], and machine translation [5, 57]

since the 1990s and recent work has substantially built upon

the early formulations. However, RNNs are designed for

sequential (ordered) data and do not directly fit our prob-

lem of gaze estimation based on a single input image. More

importantly, RNNs do not explicitly exploit the group infor-

mation (e.g., these 100 repeated measurements come from

Alice), whereas mixed effects models explicitly use the sub-

ject (group) information by estimating the random effects

per subject where the samples need not sequential. This

is the main gap which is addressed by our work. The con-

tributions of this paper are: 1) We provide a mathemati-

cally sound neural network which includes the benefits of

terms that model repeated measurements, arguably a bet-

ter fit with the statistical properties of most available gaze

datasets. 2) Experimentally, we show that our formulation

outperforms the state of the art by significant margins (10%-

20%) on most available datasets.

1.1. Related work

Model-based methods for gaze estimation use a pre-

defined geometric eye model and can be subdivided into

feature-based methods and shape-based methods. The

feature-based methods use predefined geometric eye fea-

tures such as pupil center corneal reflection [14], iris con-

tours [36], leverage infrared sensors [14], stereo cameras

[42] and depth camera [18]. These approaches can offer

high accuracy but their dependence on specialized hard-

ware and calibration may not be suitable for more mass-

market applications. On the other hand, shape-based meth-

ods [60, 49, 52, 3] extract shape parameters from observed

eye images such as center of pupil, boundary of limbus

and iris and seek to associate them with a geometric eye

model to infer the gaze direction. These methods are quite

successful but since summaries (optical axis, cornea radii,

pupil radii) based on accurate registration are required, it is

not clear whether they can yield high accuracy with low-

resolution images from web cameras.

In contrast to the foregoing line of work, appearance-

based methods, do not use an explicit geometric eye model

and instead utilize eye images (or non-geometric features)

as an input to directly learn the parameters of a map-

ping between eye images and gaze. While early works

[4, 56, 48, 51, 41, 39] assumed fixed head poses for per-

forming gaze estimation on eye images, more recent works

[29, 6, 33, 27, 28, 54, 24] show promising results with ar-

bitrary head poses, illumination and backgrounds. [4, 56]

trained neural networks on eye images for gaze estimation.

[48] utilized the local linearity of the eye appearance mani-

fold and applied local interpolation to predict gaze. In [29],

a calibrated approach, called adaptive linear regression, was
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developed for gaze estimation that is robust to head move-

ment. With the recent impact of deep neural network frame-

works in computer vision, interest in appearance-based

methods has been revived, in large part via the use of CNNs

[60, 21, 58, 59, 10]. These works leverage relatively large

scale datasets collected on participants’ laptops and mobile

devices in more general settings during daily life. These

datasets aim to achieve appearance-based head-free and

calibration-free gaze estimation in a wide range of scenarios

involving significant variations in illumination, head pose,

background and so on. We note that distinct from the ap-

proaches above, eye image synthesis has also been studied

towards generating larger training data with bigger varia-

tions in head pose [28] and more recently, via generative ad-

versarial networks (GANs) [43, 40]. [29, 26, 34] proposed

personalized gaze estimation methods to handle variability

across subjects using calibration samples.

2. Review of Mixed effects models

Many statistical models are fixed effects models that use

a single “global” model and all parameters are associated

with the the full set of samples without encoding informa-

tion on which repeated samples came from which partici-

pants. In contrast, random effects models have a set of pa-

rameters for each subject (or group) and assume that the pa-

rameters are drawn from an unknown distribution. Unlike

setting up a prior distribution as in Bayesian methods, cho-

sen based on some domain knowledge, the unknown distri-

bution in random effects models are also estimated [38].

How is a mixed effects model different? A model with

both fixed effects and random effects is called a mixed ef-

fects model [22]. Mixed effects models describe relation-

ships between a response variable and some covariates in

data that are grouped based on some grouping criteria. If

Alice and Bob provide 20 samples each, the model will

know which samples are from whom. It is possible that

the measurements from Alice have higher values and sam-

ples from Bob have a bigger variance. By associating such

“random” effects to repeated measurements with the same

“person” tag, mixed effects models flexibly represent the

covariance structure of the grouping of the samples.

Recall that appearance based gaze estimation is a fitting

problem x → y where x ∈ Rp is an eye image or a fea-

ture vector (e.g., head pose, deep convolutional features)

extracted from an eye image and y ∈ R3 is a gaze direc-

tion. Our goal is to use fixed effects for a global model (as

is the case in most existing schemes) but also include ran-

dom effects to make use of information on which samples

are from which participant — this yields subject-specific

adjustments. We first introduce the linear and non-linear

version of mixed effects model, covered in common text-

books. Then, with this concept in hand, we will add mixed

effects terms within deep neural networks.

2.1. A Linear mixed effects model

We begin with a fixed effects model, i.e., a standard lin-

ear model, and then introduce a linear mixed effects models.

Recall that a linear regression model is given as

y = β0 + β1x1 + · · ·+ βpxp + ǫ, ǫ ∼ N (0,Σǫ) (1)

where x = [x1, . . . , xp] ∈ Rp, β = [β1, . . . , βp]T ∈ Rp,

y ∈ R. We call this the “standard” linear model. When

both x and y are multivariate measurements then we call

it a general linear model. For simplicity of discussion, we

introduce models with a univariate response variable (also

called labels, dependent or target variable). Observe that

in (1), all subjects have exactly the same function to map

eye appearance to gaze directions; the noise permitted in

the model estimation also comes from a distribution identi-

cal to everyone. But most gaze estimation datasets have re-

peated multiple measurements from a subject (see Fig. 1).

These samples are not independent and each subject may

have a slightly different mapping function. To address this

issue, we may add random effects to (1) for participant. This

yields a mixed effects model

y = β0 + β1x1 + · · ·+ βpxp + u1
i z

1 + · · ·+ u
q
i z

q + ǫi,

ui ∼ N (0,Σu) and ǫi ∼ N (0,Σǫi) (2)

where β := [β1, . . . , βp]T are the fixed effects shared over

the entire population, ui := [u1
i , . . . , u

p
i ]

T are the random

effects of the ith subject (or group), and z = [z1, . . . , zq]
is a design vector for q random effects. In the random ef-

fects part in (2), ui allows subject-specific adjustment and

ǫi is drawn from a subject-specific unknown distribution

N (0,Σǫi) which enable precise handling of the non-i.i.d.

nature of the data. Typically, the unknown distributions are

assumed to be a zero mean Gaussian with an unknown co-

variance structure. Estimation involves estimating the pa-

rameters of a fixed effects model β, the random effects com-

ponents u1, . . . , uN as well as Σǫi for all i, where N is the

number of subjects. Since the linear mixed effects models

have multiple random effects from unknown distributions,

no closed form solution is available [53]. For estimation,

EM algorithms and MCMC sampling are used [53, 15].
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Figure 1: A simple example. Sleep measurements of Alice, Bob, Char-

lie, Dave, when pooled, do not correspond to an i.i.d. sample of the distri-

bution, rather is hierarchically structured.
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Figure 3: ResBlock structure.

can be formulated in design matrix form as,

yi = f(Xi) + f̃(Xi) + ǫi, i = 1, . . . , N (6)

where yi = [y(i1), . . . , y(ini)]
T is the ni × 1 vector of

responses for the ni observations for subject i, summing

over all ni’s for N subjects gives us n observations, Xi =
[x(i1), . . . , x(ini)]

T is the ni × p design matrix, and ǫi =
[ǫ(i1), . . . , ǫ(ini)]

T ni × 1 vector of errors, ǫi ∼ N (0,Σǫi
).

Recall that the hidden representation after the fully con-

nected layer in Fig. 2 is Γ(Xi) which is the input for the

mixed effects models i.e., f(Xi) = Γ(Xi)β and f̃(Xi) =
Γ(Xi)ui. We further assume that ui and ǫi are indepen-

dent and normally distributed and that the between-subject

observations are independent. We can verify that the covari-

ance of observations yi for subject i is

Vi = COV(yi) = Γ(Xi)ΣuΓ(Xi)
T +Σǫi

.

Estimation of a nonlinear mixed effects model can be

performed by EM algorithm [53, 16] and our algorithm

mimics this strategy for our formulation, see Algorithm 1.

Our algorithm is a variational EM algorithm which involves

an iterative optimization algorithm (SGD) within an EM

procedure. In any EM procedure, data are assumed to be

incomplete and the goal is to estimate the unobserved mea-

surements and model parameters iteratively. In our prob-

lem, β, ui and ǫ are unobserved measurements and they are

estimated in the Expectation step. In the Maximization step,

with the “complete” data (observed plus estimated measure-

ments), the algorithm seeks to find the model parameters

Σu and Σǫi
simply by maximizing the likelihood. Consis-

tent with convention, below, the estimate for any variable,

say ρ, is given as ρ̂.

What does the algorithm do? Algorithm 1 starts with

initial values for β̂, û, σ̂2, Σ̂u. Then in the E step, we cal-

culate the fixed effects part of the response variable, yfixed
i ,

that is, the response variable from which we remove the

current (i.e., estimated) value of the random effects term.

For updating the fixed effects term’s contribution to the re-

sponse variable, we use SGD for fitting (x(ij), y
fixed
(ij) ) using

the convolutional neural network to obtain the β̂ and Γ(X).
We then estimate the random effects part ûi based on re-

moving the update fixed effects term. Lastly, we update the

between-subject and within-subject variance based on the

updated estimates of the residuals at M step. The algorithm

keeps iterating by updating fixed effects and random effects

component until convergence. The convergence of the al-

gorithm can be captured by computing the following loss

function at each iteration:

F (g, β, ui|X,y) =

N∑

i=1

[(yi − Γ(Xi)β − Γ(Xi)ui)
T
Σ

−1
ǫi

(7)

(yi − Γ(Xi)β − Γ(Xi)ui) + uT
i Σ

−1
u ui + log |Σǫi

|+ log |Σu|]

This is the negative log-likelihood function with a Gaussian

assumption on noise (ǫ) and random effects ui as in the clas-

sical mixed effects models (2). To predict the gaze estimate

for a new observation j, we can encounter two cases. First,

the subject was seen at training time and second, when the

subject was not seen at training time. For the first case, we

use both its corresponding population-level network regres-

sion term, f̂(xij)(·) and the predicted random effect term

corresponding to subject i,
ˆ̃
f(·) for prediction. For a sub-

ject not encountered at train time, next, we describe how the

contribution from these terms can be approximated without

knowing the subject “id” at test time.

Dealing with unseen subjects. A simple solution that

works well is to concurrently learn to “predict” the random

effects term f̃(·) based on the input eye images without

knowing the subject id at test time. Assume we have two

functions, a univariate function, h(a) and a bivariate func-

tion, l(a, b). By marginalizing over the variable b, we can

find the best h(a) such that h(a) ≈
∫
b
l(a, b)db. If h(a)

is learned correctly, it can act as a good proxy for l(a, b)
without access to information regarding the second vari-

able b. Since our main model estimates a subject-specific

f̃(·) we use a function h(·) to predict the random effect

terms based only on the eye images. Notice that h(·) shares

much of the same network architecture as f̃(·), so it is not

necessary to have a separate “network”, instead h(·) can

simply be a fully connected layer at the end which pre-

dicts the random effects offset using Γ(xij) as input, i.e.,

h(·) : Γ(xij) → f̃(xij). In fact, training h(·) does not even

need to happen concurrently with Alg. 1. Once the training

of Alg. 1 has been completed, we can fix the weights of

the convolutional layers, and learn a fully connected layer

h(·) which will best predict f̃(xij) based only on the hid-

den representations Γ() provided by the convolutional lay-

ers. At test time, for a new subject, we use the fixed effects

terms from our model and add in the “offset” provided by

h(Γ(·)) using that specific participant’s eye images (rather

its hidden representations from Γ(·)).

4. Experiments

In this section, we discuss the subject-independent gaze

estimation task and validate the effectiveness of our MeNets
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specialized device to collect groud-truth gaze directions. It

requires calibration for each session. The setup of our data

collection system is shown in Fig. 4 (left) and the details of

the data collection system are available in the appendix. We

use the webcam of a MSI laptop to record eye images with

resolution 848×480 and Tobii X-30 attached to the laptop

to record corresponding gazes. The Tobii X-30 Compact

can offer gaze direction estimation error less than 1◦ under

ideal conditions including subject-specific accurate calibra-

tion [1, 7] and gives gaze direction estimation error 2.46◦

under non-ideal conditions. We collect this data from 7 vol-

unteers: 1,711 to 7,605 images per participant.

Deciding the architecture: We implemented and exper-

imented with using various state-of-the-art deep architec-

tures to serve as the convolutional module in our formula-

tion. We evaluated gaze estimation accuracy on the MPI-

IGaze dataset using leave-one-subject-out cross-validation.

The two options we evaluated were the 18-layer ResNet

and GoogLeNet. To setup the MeNets network, we change

the last classification layer to two fully connected layers for

gaze direction regression as shown in Fig. 2. The evalua-

tions of MeNets with these two architectures versus the cor-

responding baselines (i.e., ResNet on its own, GoogLeNet

on its own) is shown in Table 1, which also shows the per-

formance of other state of the art approaches. From the

results, our proposed MeNets outperforms the correspond-

ing GoogLeNet and ResNet networks and all other contem-

porary approaches (a 10% improvement over GazeNet+, a

paired Wilcoxon test gives p-value < 0.01). Based on these

experiments, we use MeNets with the ResNets architecture

in the remaining evaluations.

Convergence of Variational EM + SGD: Before addi-

tional accuracy plots, we present some results to evaluate

the convergence of our estimation scheme. We conduct ex-

periments under two settings: within-subjects (standard 10-

fold cross-validation) and across-subjects (14 subjects for

training and one subject for testing). Both settings show

good convergence behavior. Evaluating the log-likelihood

as a function of the number of iterations, we see that 7-8

iterations are enough (see the appendix for example).

Does the “mixed effects” terms in the MeNets model

yield improvement? We evaluate whether the fixed effects

terms alone in our architecture perform close to our MeNets

model (with mixed effects terms). We used the strategy in

[60] where a random subset for both training and testing

is used and includes 1500 left + 1500 right eye samples

for each person. Since eyes are not exactly symmetrical,

we swap the right eye image horizontally and mirror the

pose and gaze direction so that both eyes can be handled

by a single regression function. Here, our MeNets model is

trained with the random effects terms and then at test time,

we use two options: use predicted random effects or not

use predicted random effects. On MPIIGaze, even when
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Figure 5: Comparison of MeNet, MeNet[fixed], and ResNet for gaze

estimation under within-subjects and across-subjects settings. MeNet

uses random effects for gaze estimation with ResNet architecture at test

time, while MeNet[fixed] does not incorporate random effects at test time

and ResNet does not consider any individual-level differences in train-

ing/testing. (left) MeNet offers the highest accuracy with 30% gain, 2.66

degrees vs 3.9 degrees by ResNet, even without incorporating random ef-

fects at test time, MeNet[fixed] outperforms ResNet. (right) Shows that

MeNet still gives the highest accuracy for across-subjects gaze estimation,

4.34 degrees vs 6.0 degrees by ResNet.

the random effects are not used at test time (but the model

was trained with the subject-specific random effects), we

achieve better accuracy versus using the ResNets architec-

ture on its own for gaze prediction. This is because incor-

porating subject specific random effects terms improves our

estimating the fixed model in Fig 5. Using the full mixed

effects, yields the best results (p-value < 0.01).

We also evaluate whether other gaze datasets demon-

strate subject-specific random effects. By using subject-

specific random effects, we see that linear mixed effects

regression performs better than linear regression for gaze

estimation on the three datasets in Table 1. Linear mixed

effects model for gaze estimation is more accurate than just

using linear effects model: 2◦ more accurate on Real-video

and UT Multiview dataset. In summary, we find that the

benefit of terms that account for repeated samples is clearly

observed in our experiments.

Performance of MeNets on Within-Dataset evaluation:

We compare our proposed method with other baseline meth-

ods and evaluate gaze prediction accuracy under leave-

one-person-out setting. The model-based method EyeTab

performs poorly on three datasets with mean error larger

than 20 degrees. It means that appearance-based meth-

ods have an advantage over model-based methods for per-

forming gaze estimation on real images. Since kNN, Ran-

dom forests, ALR regression for gaze estimation under-

perform convolutional neural networks [54], in our exper-

iments, we only report the performance of linear model,

linear mixed effects model, support vector regression, sev-

eral CNN based methods and MeNets. We perform leave-

one-person-out gaze estimation on MPIIGaze and 3 fold

cross validation on UT Multiview dataset(consistent with

[46]). Table 1 show the mean estimation errors of within-

dataset evaluation on MPIIGaze and Real-video dataset.

Our MeNet obtains mean error 4.9 degrees on MPIIGaze

under leave-one-person-out setting, while the state-of-the-

art GazeNet+ can only offer mean error of 5.4 degrees on

MPIIGaze (p-value < 0.01). Our gaze estimation also
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Table 1: Comparison of our model with other baselines. Row 2 shows error with leave-one-person-out setting on MPIIGaze data and Row 3 shows error

on Real-video. Row 4 shows error with 3-fold cross validation on UT Multiview. Row 5 shows error with cross-dataset evaluation with training data from

the UT Multiview dataset and test error on MPIIGaze dataset. Our MeNet achieves large consistent accuracy improvement over baselines.

MeNet ResNet GoogLeNet GazeNet+[59] iTracker[21] MPIIGaze[54] SVR LR LME

MPIIGaze 4.90± 0.59 6.04± 0.64 6.15± 0.81 5.40± 0.67 6.20± 0.85 6.59± 1.07 8.94± 3.20 7.44± 1.16 7.06± 1.07

RealVideo 6.72± 1.15 6.98± 1.63 7.13± 1.74 6.90± 1.34 7.65± 2.01 9.78± 2.85 12.67± 3.57 12.90± 2.71 10.14± 1.88

UT Multiview 5.50± 1.03 5.86± 1.10 5.97± 1.15 5.78± 1.04 N/A 5.98± 1.21 9.11± 2.27 9.07± 2.41 6.71± 1.41

Cross-dataset 9.51± 0.75 9.84± 1.73 9.97± 1.82 9.80± 1.83 N/A 13.30± 2.12 > 15 > 15 > 15

outperforms other CNN methods on UT Multiview. We

significantly outperform all other baseline methods, which

supports the advantage of incorporating the specific effects

from each subject for gaze estimation.

How does this work for real video data? In order

to show the ability of our method to provide subject-

independent gaze estimation for real data, we perform gaze

direction prediction for our Real-Video dataset. Since the

resolution of the eye image in Real-Video dataset is lower

than MPIIGaze dataset (and other real-world factors), it

makes gaze prediction more challenging than on the MPI-

IGaze dataset. We compared our method with other gaze

prediction methods. We outperform all other methods con-

sistently. Moreover, when adding MPIIGaze dataset for

gaze prediction on real video data, the accuracy increases

to 6.11◦. Some examples of gaze prediction can be seen in

the appendix.

Cross-Dataset evaluation: We assess the effectiveness

of our method for cross-dataset evaluations. We selected the

UT Multiview dataset for training and perform estimation

on MPIIGaze. Table 1 summarizes the mean angular er-

rors and standard deviations of our method and other CNN

based methods on MPIIGaze. Our method still outperforms

the GazeNet+, but the improvement is not as large as in

the within-dataset evaluation setting. Since UT Multiview

dataset uses learning-by-synthesis approach for generating

more eye images, the generated images are very different

from images in MPIIGaze. In [43], by adding realism of

generated images, the refined generated images offers bet-

ter gaze estimation accuracy by more than 3◦. The data shift

problem is significant here, which domain adaptation tech-

niques should be used to deal with, but were not utilized

in this paper. Then, we add the MPIIGaze dataset to the

training data and apply leave-one-person-out gaze estima-

tion for real-video dataset, it improves the gaze estimation

accuracy by more than 1◦ which partly supports the domain

shift problem between UT Multiview and MPIIGaze.

Personalized gaze estimation: As our mixed effects

model can learn the random effects associated with a spe-

cific person, our method is amenable to personalization via

few calibration samples. In order to show our method can

adapt to individual subjects, we perform personalized gaze

estimation on MPIIGaze dataset. We pick calibration sam-

ples from MPIIGaze and use the remaining samples for

evaluation. Given 200 calibration samples for each subject,

our model achieves mean error of 3.8 degrees, comparable

with state-of-the-art personalized gaze approaches [34].

Mixed-Dataset evaluation: In order to further show gaze

estimation performance on multi-datasets, we assess the ef-

fectiveness of our method for mixed-dataset evaluations,

where we pick samples from each dataset for training and

pick other samples for testing. We pick 10 subjects from

MPIIGaze dataset and the same number of eye images were

generated from GAN [44] for training a ResNet model.

Then, another 5 subjects from MPIIGaze dataset and the

same number generated by GAN were used for testing. Al-

though the actual gaze estimation task for both datasets is

the same, the difference between the synthetic dataset and

real dataset is large. Without considering the dataset differ-

ence, the trained ResNet model offers 16.36 degrees error,

while our MeNet formulation using a random effects term

for the dataset gives 11.2 degrees error and MeNet (with-

out random effects) yields 11.7 error. It means that dataset

specific random effects improve estimation over a model

that is agnostic of this information; suggesting the random

effects at test time yields additional improvements.

5. Conclusion

Most researchers performing data analysis know that the

choice of the correct model for the data at hand can lead

to improvements in performance, and conversely a sub-

optimal model can yield poor results. For appearance based

gaze estimation, we explore how an appropriate statistical

model that leverages information regarding repeated mea-

surements from the same participant, a common feature of

most if not all existing datasets, seems like a much better

fit but has not been explored in computer vision much. To

practicalize this observation within modern architectures,

we propose a formulation that estimates a mixed effects

model while leveraging the benefits of powerful deep neural

networks. This conceptually simple idea leads to improve-

ments (10-20% and more in some cases) over the state of the

art on most gaze estimation datasets. Code and appendix are

available at https://github.com/vsingh-group/MeNets.
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