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Abstract

The problem of estimating subjective visual properties

(SVP) of images (e.g., Shoes A is more comfortable than

B) is gaining rising attention. Due to its highly subjective

nature, different annotators often exhibit different interpre-

tations of scales when adopting absolute value tests. There-

fore, recent investigations turn to collect pairwise compar-

isons via crowdsourcing platforms. However, crowdsourc-

ing data usually contains outliers. For this purpose, it is

desired to develop a robust model for learning SVP from

crowdsourced noisy annotations. In this paper, we con-

struct a deep SVP prediction model which not only leads

to better detection of annotation outliers but also enables

learning with extremely sparse annotations. Specifically,

we construct a comparison multi-graph based on the col-

lected annotations, where different labeling results corre-

spond to edges with different directions between two ver-

texes. Then, we propose a generalized deep probabilis-

tic framework which consists of an SVP prediction module

and an outlier modeling module that work collaboratively

and are optimized jointly. Extensive experiments on vari-

ous benchmark datasets demonstrate that our new approach

guarantees promising results.

1. Introduction

In recent years, estimating subjective visual properties

(SVP) of images [9, 19, 24] is gaining rising attention in

computer vision community. SVP measures a user’s subjec-

tive perception and feeling, with respect to a certain prop-

erty in images/videos. For example, estimating properties

of consumer goods such as shininess of shoes [9] improves

customer experiences on online shopping websites; and es-

timating interestingness [8] from images/videos would be

helpful for media-sharing websites (e.g., Youtube). Mea-

suring and ensuring good estimation of SVP is thus highly

subjective in nature. Traditional methods usually adopt ab-

solute value to specify a rating from 1 to 5 (or, 1 to 10)

to grade the property of a stimulus. For example, in im-

age/video interestingness prediction, 5 being the most in-

teresting, 1 being the least interesting. However, since by

definition these properties are subjective, different raters of-

ten exhibit different interpretations of the scales and as a re-

sult the annotations of different people on the same sample

can vary hugely. Moreover, it is unable to concretely define

the concept of scale (for example, what a scale 3 means for

an image), especially without any common reference point.

Therefore, recent investigations turn to an alternative ap-

proach with pairwise comparison. In a pairwise compari-

son test, an individual is simply asked to compare two stim-

uli simultaneously, and votes which one has the stronger

property based on his/her perception. Therefore individual

decision process in pairwise comparison is simpler than in

the typical absolute value tests, as the multiple-scale rating

is reduced to a dichotomous choice. It not only promises

assessments that are easier and faster to obtain with less de-

manding task for raters, but also yields more reliable feed-

back with less personal scale bias in practice. However, a

shortcoming of pairwise comparison is that it has more ex-

pensive sampling complexity than the absolute value tests,

since the number of pairs grows quadratically with the num-

ber of items to be ranked.

With the growth of crowdsourcing [2] platforms such as

MTurk, InnoCentive, CrowdFlower, CrowdRank, and Al-

lOurIdeas, recent studies thus resort to using crowdsourcing

tools to tackle the cost problem. However, since the partic-

ipants in the crowdsourcing experiments often work in the
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absence of supervision, it is hard to guarantee the annota-

tion quality in general [5]. If the experiment lasts too long,

the raters always lose their patience and end the test in a

hurry with random annotations. Worse, the bad users might

even provide wrong answers deliberately to corrupt the sys-

tem. Such contaminated decisions are useless and may de-

viate significantly from other raters’ decisions thus should

be identified and removed in order to achieve a robust SVP

prediction result.

Therefore, existing approaches on SVP prediction are of-

ten split into two separate steps: the first is a standard outlier

detection problem (e.g., majority voting) and the second is

a regression or learning to rank problem. However, it has

been found that when pairwise local rankings are integrated

into a global ranking, it is possible to detect outliers that

can cause global inconsistency and yet are locally consis-

tent, i.e., supported by majority votes [14]. To overcome

this limitation, [9] proposes a more principled way to iden-

tify annotation outliers by formulating the SVP prediction

task as a unified robust learning to rank problem, tackling

both the outlier detection and SVP prediction tasks jointly.

Different from this work which only enjoys the limited rep-

resentation power of the image low-level features, our goal

in this paper is to leverage the strong representation power

of deep neural networks to explore the SVP prediction issue

from a deep perspective.

When it comes to deep learning, it is known that several

kinds of factors can drive the deep learning model away

from a perfect one, with the data perturbation issue as an

typical example. Besides the notorious issue coming from

the crowdsourcing process, deep learning is in itself known

to be more vulnerable to contaminated data since the ex-

tremely high model complexity brings extra risks to overfit

the noisy/contaminated data [20, 10, 30, 32, 15, 25, 22]. We

believe that how to guarantee the robustness is one of the

biggest challenges when constructing deep SVP prediction

models. In this sense, we propose a deep robust model for

learning SVP from crowdsourcing. As an overall summary,

we list our main contributions as follows:

• A novel method for robust prediction of SVP is pro-

posed. To the best of our knowledge, our framework

offers the first attempt to carry out the prediction pro-

cedure with automatic detection of sparse outliers from

a deep perspective.

• In the core of the framework lies the unified proba-

bilistic model, which is used to formulate the generat-

ing process of the labels when outliers exist. Based on

this model, we then propose a Maximum A Posterior

(MAP) based objective function.

• An alternative optimization scheme is adopted to solve

the corresponding model. Specifically, the network

parameters could be updated from the gradient-based

method with the back-propagation, whereas the outlier

pattern could be solved from an ordinal gradient de-

scent method or a proximal gradient method.

2. Related Work

2.1. Subjective visual properties

Subjective visual property prediction has gained rising

attention in the last several years. It covers a large variety

of computer vision problems, including image/video inter-

estingness [8], memorability [16], and quality of experience

[27] prediction, etc. When used as a semantically meaning-

ful representation, the subjective visual properties are of-

ten referred to as relative attributes [29, 19]. The original

SVP prediction approach treats this task as a learning-to-

rank problem. The main idea is to use ordered pairs of train-

ing images to train a ranking function that will generalize to

new images. Specifically, a set of pairs ordered according

to their perceived property strength is obtained from human

annotators, and a ranking function that preserves those or-

derings is learned. Given a new image pair, the ranker indi-

cates which image has the property more. A naive way to

learn the ranker is to resort to traditional pairwise learning-

to-rank methods such as RankSVM [17], RankBoost [6],

and RankNet [3], etc. However, these methods are not a

natural fit in the scenarios with crowdsourced outliers. In

[9], it proposes a unified robust learning to rank (URLR)

framework to solve jointly both the outlier detection and

learning to rank problems. Different from this line of re-

search, we study the robust SVP prediction in the context

of deep learning. Equipped with better feature representa-

tion power, we show both theoretically and experimentally

that by solving both the outlier detection and ranking pre-

diction problems jointly in a deep framework, we achieve

better outlier detection and better ranking prediction.

2.2. Learning with noisy data

Learning from noisy data has been studied extensively in

recent years. Traditionally, such methods could be tracked

back to statistical studies such as Majority voting, M -

estimator [13], Huber-LASSO [27], and Least Trimmed

Squares (LTS) [28], etc. However, these work do not have

prediction (especially with the power of deep learning) abil-

ity for unseen samples. Recently, there is a wave to explore

robust methods to learn from noisy labels, in the context

of deep learning. Generally speaking, there are four types

of existing methods: (I) robust learning based on proba-

bilistic graphical models where the noisy patterns are of-

ten modeled as latent variables [30, 25]; (II) progressive

and self-paced learning, where easy and clean examples are

learned first, whereas the hard and noisy labels are pro-

gressively considered [10]; (III) loss-correction methods,
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Figure 1: Overview of our approach. (1) Constructing a comparison graph from the crowdsourcing annotations, which is

contaminated with outlier labels. (2) We propose a generalized deep probabilistic framework, where an outlier indicator γ

is learned along with the network parameters Θ. (3) Our Framework will output a clean graph on the training set, where

contaminated annotations are eliminated. Furthermore, our model could predict a rank-preserved score for each unseen

instance. Best viewed in color.

where the loss function is corrected iteratively [22]; (IV)

network architecture-based method, where the noisy pat-

terns are modeled with specifically designed modules [15].

Meanwhile, there are also some efforts on designing deep

robust models for specific tasks and applications: [20] pro-

poses a method to learn from weak and noisy labels for se-

mantic segmentation; [32] proposes a deep robust unsuper-

vised method for saliency detection, etc.

Compared with these recent achievements, our work dif-

fers significantly in the sense that: a) We provide the first

trial to explore the deep robust learning problem in the con-

text of crowdsourced SVP learning. b) We adopt a pairwise

learning framework, whereas the existing work all adopt

instance-wise frameworks.

3. Methodology

3.1. Problem definition

Our goal in this paper is two-fold:

(a) We aim to learn a deep SVP prediction model from

a set of sparse and noisy pairwise comparison labels.

Specifically the ranking patterns should be preserved.

(b) To guarantee the quality of the model, we expect that

all the noisy annotations could be detected and re-

moved along with the training process.

We denote the id of two images in the ith pair as i1 and

i2, and denote the corresponding image pair as (xi1 , xi2 ).

More precisely, we are given a pool with n training images

and a set of SVPs. In addition, for each SVP, we are given

a set of pairwise comparison labels. Such pairwise com-

parison data can be represented by a directed multi-graph

where multiple edges could be found between two vertexes.

Mathematically, we denote the graph as G = (V, E). V

is the set of vertexes which contains all the distinct image

items occurred in the comparisons. E is the set of com-

parison edges. For a specific user with id j and a specific

comparison pair i defined on two item vertexes i1 and i2,

if the user believes that i1 holds a stronger/weaker pres-

ence of the SVP, we then have an edge (i1, i2, j)/(i2, i1, j),
respectively. Equivalently we also denote this relation as

i1
j
≻ i2/i2

j
≻ i1. Since multiple users take part in the anno-

tation process, it is natural to observe multi-edges between

two vertexes. Now we could denote the labeling results as a

function Y : E → {−1, 1}. For a given pair i and a rater j

who annotates this pair, the corresponding label is denoted

as yij , which is defined as:

{

yij = −1, (i1, i2, j) ∈ E ;
yij = −1, (i2, i1, j) ∈ E .

(1)

Now we present an example of the defined comparison

graph. See step 1 in Figure 1. In this figure, the SVP in

question is the age of the humans in the images. Suppose

we have 5 images with ground truth ages (marked with

red in the lower right corner of each image), we then have

V = {1, 2, · · · , 5}. Furthermore, we have three users with

id 1, 2, 3 who take part in the annotation. According to the

labeling results shown in the lower left side, we have E =
{(1, 2, 1), (1, 2, 2), (2, 1, 3), · · · , (1, 5, 1), (5, 1, 2), (5, 1, 3)}.

As shown in this example, we would be most likely to

observe both i1 ≻ i2 and i2 ≻ i1 for a specific pair i. This

is mainly caused by the bad and ugly users who provide

erroneous labels. For example for vertexes 1 and 2, the

edge (2, 1, 3) is obviously an abnormal annotation. With

the above definitions and explanations, we are ready to

introduce the input and output of our proposed model.

Input. The input of our deep model is the defined multi-

graph G along with the image items, where each time a spe-

cific edge is fed to the network.
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Output. As will be seen in the next subsection, our model

will output the relative score si1 and si2 of the image pair

along with an outlier indicator which could automatically

remove the abnormal directions on G. Note that learning si1
and si2 directly achieves our goal (a), while detecting and

removing outlier directions on the graph directly achieves

goal (b).

3.2. A deep robust SVP prediction model

In contrast to traditional methods, we propose a deep ro-

bust SVP ranking model in this paper. According to step

2 in Figure 1, we employ a deep Siamese [4, 21] convolu-

tional neural network as the ranking model to calculate the

relative scores for image pairs. In this model, the input is an

edge in the graph G together with the image pair (xi1 ,xi2).
Each branch of the network is fed with an image and outputs

the corresponding scores s(xi1) and s(xi2). Then we pro-

pose a robust probabilistic model based on the difference

of the scores. As a note for the network architecture, we

choose an existing popular CNN architecture, ResNet-50

[11], as the backbone of the Siamese network. Such resid-

ual network is equipped with shortcut connections, bringing

in promising performance in image tasks.

With the network given, we are ready to elaborate a novel

probabilistic model to simultaneously prune the outliers and

learn the network parameters for SVP prediction. In our

model, the noisy annotations are treated as a mixture of

reliable patterns and outlier patterns. More precisely, to

guarantee the performance of the whole model, we expect

s(xi1), s(xi2), i.e., the scores returned by the network to

capture the reliable patterns in the labels. Meanwhile, we

introduce an outlier indicator term γ(yij) to model the noisy

nature of the annotations. During the training process, our

prediction is an additive mixture of the reliable score and

the outlier indicator.

To see how the inclusion of γ could help us detect and

remove outlier, one should realize that, since yij must be

either 1 or -1, there are only two distinct values for γ(yij),
with one for each direction. If we can learn a reasonable

γ(yij) such that γ(yij) 6= 0 only if the corresponding direc-

tion is not reliable, we can then remove the contaminated

directions in G and obtain a clean graph. To illustrate it in

an easier way, let us back to step 1 in Figure 1. According

to the lower left contents, we have three annotations for pair

(V1, V2). We have two distinct γ(yij) for these annotations:

For the correct direction, we have a γ(1) for (1, 2, 1) and

(1, 2, 2); For the contaminated direction, we have a differ-

ent gamma with value γ(−1) for (2, 1, 3). Now if we can

learn γ(yij) in a way that γ(1) = 0 and γ(−1) 6= 0, then

we can easily detect the contaminated direction (2, 1).

Given the clarification above, our next step is to propose

a probabilistic model of the labels based on the outlier indi-

cator γ, the network parameters Θ, and the predicted scores

s(·). Specifically, we model the conditional distribution of

the annotations along with the prior distribution of γ and Θ
in the following form:

yij |xi1 ,xi2 ,Θ, γ(yij)
i.i.d
∼ f(yij , s(xi,1,xi,2,Θ)+γ(yij)),

γ(yij) | λ1
i.i.d
∼ h(γ(yij), λ1), Θ | λ2 ∼ g(Θ, λ2).

• s(xi1 ,xi2 ,Θ) = s(xi1 ,Θ) − s(xi2 ,Θ) is the rela-

tive score of the annotation, which will be directly

learned from the deep learning model with the param-

eter set Θ. As mentioned above, s(xi1 ,xi2 ,Θ) are

expected to model the reliable pattern in the annota-

tions. The prior distribution of Θ is assumed to be

associated with a p.d.f. (probability density function)

p(Θ | λ2) = g(Θ, λ2) (λ2 is a predefined hyperparam-

eter), which is denoted as g in short.

• γ(yij) is the outlier indicator which induces unre-

liability. Since only outliers have a nonzero indi-

cator, we model the randomness of γ(yij) with an

i.i.d sparsity-inducing prior distribution (e.g., Lapla-

cian distribution) with the p.d.f. being p(γ(yij)|λ1) =
h(γ(yij), λ1) (λ1 denotes the hyperparameter), which

is denoted as hij in short.

• As we have mentioned above, the noisy prediction

s(xi1 ,xi2 ,Θ) + γ(yij) is an additive mixture of the

reliable score and outlier indicator.

• f(yij , s(xi,1,xi,2,Θ) + γ(yij)) is the conditional

p.d.f. of the labels, which is denoted as fij in short.

Let γ = {γ(yij)}(i1,i2,j)∈E , y = {yij}(i1,i2,j)∈E .

Now our next step is to construct a loss function for this

probabilistic model. According to the Maximum A Pos-

terior (MAP) rule in statistics, a reasonable solution of

the parameters should have a large posterior probability

P (Θ,γ | y,X, λ1, λ2). In other words, with high prob-

ability, the parameters (γ,Θ in our model) should be ob-

served after seeing the data (y,X in our model) and the

predefined hyperparameters (λ1, λ2). This motivates us to

maximize the posterior probability in our objective function.

Furthermore, to simplify the calculation of the derivatives,

we adopt an equivalent form where the negative log poste-

rior probability is minimized:

min
Θ,γ

− log (P (Θ,γ | y,X, λ1, λ2)) .

Following the Bayesian rule, one has:

P (Θ,γ | y,X, λ1, λ2)

=
P (y| X,Θ,γ) · P (Θ| λ1) · P (γ|λ2) · P (X)

∫

Θ

∫

γ
P (X, y| Θ,γ) · P (Θ| λ1) · P (γ|λ2)dΘdγ

.
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It then becomes clear that P (Θ,γ|y,X, λ1, λ2) is not di-
rectly tractable. Fortunately, since X,y are given and
we only need to optimize Θ and γ, the tedious term

P (X)∫
Θ

∫
γ
P (X, y| Θ,γ)·P (Θ| λ1)·P (γ|λ2)dΘdγ

becomes a con-

stant, which suggests that:

P (Θ,γ | y,X, λ1, λ2)

∝
∏

(i,j)∈D

p(yij | xi,1,xi,2, γ(yi,j),Θ) · p(γ(yij) | λ1) · p(Θ | λ2)

=
∏

(i,j)∈D

g · hij · fij .

(2)

where D : {(i, j) : (i1, i2, j) ∈ E or (i2, i1, j) ∈ E}. This

implies that our loss function could be simplified as:

min
Θ,γ

∑

(i,j)∈D

− (log(fij) + log(hij))− log(g).

With the general framework given, we provide two spec-

ified models with different assumptions on the distributions:

• Model A: If the prior distribution of γ(yij)|λ1 is

a Laplacian distribution with a zero location param-

eter and a scale parameter of 1
λ1 : Lap(0, 1

λ1
) =

λ1

2 exp(− |γ|
1/λ1

) ; the prior distribution of Θ is an

element-wise Gaussian distribution N (0, 1
2λ2

); and

yij conditionally subjects to a Gaussian distribution

N (s(xi,1,xi,2,Θ) + γ(yij), 1), then the problem be-

comes:

min
Θ,γ

∑

(i,j)∈D

1

2
(yij − s(xi,1,xi,2,Θ)− γ(yij))

2+

∑

(i,j)∈D

λ1‖γ‖1 + λ2

∑

θ∈Θ

θ2,

where ‖γ‖1 =
∑

(i,j)∈D |γ(yij)|.

• Model B: If we adopt the same assumption as above,

except that we assume that yij conditionally subjects

to a Logistic-like distribution, then the problem could

be simplified as:

min
γ,Θ

∑

(i,j)∈D

log(1 +∆ij) + λ1‖γ‖1 + λ2

∑

θ∈Θ

θ2,

where ∆ij = exp(−yij(s(xi,1,xi,2,Θ) + γ(yij))).

3.3. Optimization

With the model and network clarified, we then introduce

the optimization method we adopt in this paper. Specifi-

cally, we employ an iterative scheme where γ and the net-

work parameters Θ are alternatively updated until the con-

vergence is reached.

3.3.1 Fix γ, Learn Θ

When fixing γ, we see that Θ could be solved from the

following subproblem:

min
Θ

−
∑

(i,j)∈D

log(fij)− log(g)

Since Θ only depends on the network, one could find an

approximated solution by updating the network. For Model

A, this subproblem becomes:

min
Θ

∑

(i,j)∈D

1

2
(yij −s(xi,1,xi,2,Θ)−γ(yij))

2+λ2

∑

θ∈Θ

θ2.

Similarly, for Model B, we come to a subproblem in the

form:

min
Θ

∑

(i,j)∈D

log(1 +∆ij) + λ2

∑

θ∈Θ

θ2.

3.3.2 Fix Θ, Learn γ

Similarly, when Θ is fixed, we could solve γ from:

min
γ

∑

(i,j)∈D

− (log(fij) + log(hij))

This is a simple model of γ which does not involve the net-

work. For Model A, this subproblem becomes:

min
γ

∑

(i,j)∈D

1

2
(yij − s(xi,1,xi,2,Θ)− γ(yij))

2 + λ1‖γ‖1.

It enjoys a closed-form solution with the proximal operator

of ℓ1 norm:

γ(yij) = max(|cij | − λ1, 0) · sign(cij), (3)

where

cij = yij − s(xi,1,xi,2,Θ).

For Model B, this subproblem becomes:

min
γ

∑

(i,j)∈D

log(1 +∆ij) + λ1‖γ‖1.

Generally, there is no closed-form solution for this sub-

problem. In this paper, we adopt the proximal gradient

method [1] to find a numerical solution.

4. Experiments

In this section, experiments are exhibited on three bench-

mark datasets (see Table 1) which fall into two categories:

(1) experiments on human age estimation from face images

(Section 4.1), which can be considered as synthetic exper-

iments. With the ground truth available, this set of experi-

ments enables us to perform in-depth evaluation of the sig-

nificance of our proposed method, (2) experiments on esti-

mating SVPs as relative attributes (Section 4.2 and 4.3).
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Table 1: Dataset summary.

Dataset No.Pairs No.Images No.Classes

FG-Net Face Age Dataset 15,000 1002 1

LFW-10 Dataset[23] 29,454 2000 10

Shoes Dataset [18] 87,946 14,658 7

Table 2: Experimental results on Human age dataset.

Algorithm ACC F1 Prec. Rec. AUC

Maj-LS .5555 .4673 .4369 .5022 .5650

LS-with γ .5594 .4729 .4414 .5093 .5759

Maj-Logistic .5421 .4687 .4264 .5205 .5489

Logistic-with γ .5585 .4743 .4410 .5131 .5735

Maj-RankNet [3] .5611 .4804 .4445 .5227 .5792

Maj-RankBoost [6] .5425 .5991 .6458 .5587 .4507

Maj-RankSVM [17] .5838 .3858 .4517 .3367 .5665

Maj-GBDT [7] .5827 .3880 .4504 .3408 .5619

Maj-DART [26] .5940 .3668 .4648 .3029 .5690

URLR [9] .5765 .4633 .5748 .5131 .5762

LS-Deep-w/o γ .7313 .6694 .6407 .7008 .8060

Logit-Deep-w/o γ .7439 .6818 .6584 .7070 .8168

LS-Deep-with γ .7967 .7414 .7323 .7508 .8784

Logit-Deep-with γ .7917 .7370 .7228 .7518 .8739

4.1. Human age dataset

In this experiment, we consider age as a subjective vi-

sual property of a face. The main difference between this

SVP with the other SVPs evaluated so far is that we do have

the ground truth, i.e., the person’s age when the picture was

taken. This enables us to perform in-depth evaluation of the

significance of our proposed framework.

Dataset The FG-NET 1 image age dataset contains 1002

images of 82 individuals labeled with ground truth ages

ranging from 0 to 69. The training set is composed of

the images of 41 randomly selected individuals and the rest

used as the test set. For the training set, we use the ground

truth age to generate the pairwise comparisons, with the

preference direction following the ground-truth order. To

create sparse outliers, a random subset (i.e., 20%) of the

pairwise comparisons is reversed in preference direction. In

this way, we create a paired comparison graph, possibly in-

complete and imbalanced, with 1002 nodes and 15,000 pair-

wise comparison samples.

Competitors We compare our method Model A and Model

B with 10 competitors. Note that Model A is the least

square based deep model, while Model B is a logistic re-

gression based deep model. In the following experiments,

we give Model A an alias as LS-Deep, and give Model B

an alias as Logit-Deep:

1) Maj-LS: This method uses majority voting for outlier

pruning and least squares problem for learning to rank.

2) LS-with γ: To test the improvement of merely adopting

the robust model, we jointly employ the linear regression

model and our proposed robust mechanism as a baseline.

3) Maj-Logistic: This method stands for another baseline

1http://www.fgnet.rsunit.com/

in our work, where the majority voting is adopted for label

processing followed with the logistic regression.

4) Logistic-with γ: Again, to test the improvement of

merely adopting the robust model, we jointly employ the

logistic regression model and our proposed robust mecha-

nism as a baseline.

5) Maj-RankSVM [17]: We record the performance of

RankSVM to show the superiority of the representation

learning.

6) Maj-RankNet [3]: To show the effectiveness of using a

deeper network, we compare our method with the classical

RankNet model preprocessed by the majority voting.

7) Maj-RankBoost [6]: Besides the deep learning frame-

work, it is also known that the ensemble-based methods

could also serve a model for hierarchical learning and rep-

resentation. In this sense, we compare our method with

the RankBoost model, one of the most classical ensemble

method.

8) Maj-GBDT [7]: Gradient Boosting Decision Tree

(GBDT) has gained surprising improvements in many tra-

ditional tasks. Accordingly, we compare our methods with

GBDT to show its strength.

9) Maj-DART [26]: Recently, the well-known drop-out

trick has also been applied to ensemble-based learning, be

it the DART method. We also record the performance of

DART to show the superiority of our method.

10) URLR [9]: URLR is a unified robust learning to rank

framework which aims to tackle both the outlier detection

and learning to rank jointly. We compare our algorithm with

this method to show the effectiveness of using a generalized

probabilistic model and a deep architecture.

Ablation: To show the effectiveness of the proposed prob-

abilistic model, we additionally add two competitors as the

ablation. Note that the key element to detect outlier is the

factor γ. In this way, the ablation competitors are formed

with γ eliminated:

1) LS-Deep-w/o γ: This is a partial implementation of LS-

Deep, where the factor γ is removed.

2) Logit-Deep-w/o γ: This is a partial implementation of

Logit-Deep, where the factor γ is removed.

Evaluation metrics Because the ground-truth age is avail-

able, we adopt ACC, Precision, Recall, F1-score and AUC

as the evaluation metrics to demonstrate the effectiveness of

our proposed method.

Implementation Details For the four deep learning meth-

ods, the learning rate is set as 10−4, and λ2 is set as 10−3.

For LS-Deep-with γ, λ1 is set as 1.2. For Logit-Deep-with

γ, λ1 is set as 0.6.

Comparative Results In all the non-deep competitive ex-

periments, we adopt LBP as the low-level features. Look-

ing at the five-metrics results in Table 2, we see that our

method (marked with red and green color) consistently out-

performs all the benchmark algorithms by a significant mar-
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Figure 2: Outlier examples detected on Human age dataset.

gin. This validates the effectiveness of our method. In par-

ticular, it can be observed that: (1) LS-with γ (or Logistic-

with γ) is superior to Maj-LS (or Maj-Logistic) because the

global outlier detection is better than local outlier detection

(i.e., Majority voting). (2) The performance of deep meth-

ods is better than all non-deep methods, interestingly even

the ablation baseline methods without γ give better results

than traditional methods with outlier detection, which sug-

gests the strong representation power of deep neural net-

works in SVP prediction tasks. (3) It is worth mentioning

that our proposed Deep-with γ methods successfully ex-

hibit roughly 5%− 8% improvement on all the five-metrics

than Deep-without γ methods, demonstrating the superior

outlier detection ability of our proposed framework. (4)

Our proposed two models A (i.e., LS-Deep-with γ) and B

(i.e., Logit-Deep-with γ) show comparable results on this

dataset, while model A holds the lead by a slight margin.

Moreover, we visualize some examples of outliers de-

tected by model A in Figure 2, while results returned by

model B are very similar. It can be seen that those in the

blue/green boxes are clearly outliers and are detected cor-

rectly by our method. For better illustration, the ground-

truth age is printed under each image. Moreover, blue boxes

show pairs with a large age differences while green boxes

illustrate samples with subtle age differences, which indi-

cates that our method not only can detect the easy pairs

with a large age gap, but also can handle hard samples with

small age gap (e.g., within only 1-2 years difference). Four

failure cases are shown in red boxes, in which our method

treats the images on the left are older than the right one as

an outlier, but the ground truth agrees with the annotation.

We can easily find that this often occurs on pairs with small

age differences, which indicates that our methods may oc-

casionally lose its power when meeting highly competitive

or confused pairs.

4.2. LFW10 dataset

Dataset The LFW-10 dataset [23] consists of 2,000 face

images, taken from the Labeled Faces in the Wild [12]

dataset. It contains 10 relative attributes, like smiling, big

eyes, etc. Each pair was labeled by 5 people. For exam-

Table 3: Experimental results (ACC) of 10 attributes on

LFW-10 dataset.

Algorithm Bald D.Hai B.Eye GLook Masc. Mouth Smile Teeth Foreh. Young Aver.

Maj-LS .4767 .5368 .4787 .4788 .5588 .4774 .5220 .5073 .4759 .5162 .5029

LS-with γ .5805 .6400 .5506 .5932 .6009 .5097 .5178 .5198 .5680 .5911 .5672

Maj-Logistic .6123 .6716 .5146 .5890 .6253 .5032 .5031 .5322 .5724 .6599 .5784

Logistic-with γ .6059 .6400 .5640 .6038 .6275 .5269 .5073 .5405 .5724 .6437 .5832

Maj-RankNet [3] .6123 .6421 .5551 .6208 .6275 .5097 .5304 .5468 .5899 .6275 .5862

Maj-RankBoost [6] .5996 .7053 .5236 .5975 .6231 .5097 .5199 .5094 .6053 .6032 .5797

Maj-RankSVM [17] .4852 .6526 .4180 .5805 .5588 .4882 .5283 .5156 .5482 .6397 .5415

Maj-GBDT [7] .5551 .6253 .4899 .5466 .5721 .4903 .5094 .5198 .5965 .6235 .5528

Maj-DART [26] .5508 .6337 .4899 .5339 .5698 .4989 .5597 .5364 .5943 .6134 .5581

URLR [9] .5889 .6538 .6505 .5258 .5614 .6319 .5311 .4968 .5446 .5570 .5742

LS-Deep-w/o γ .5932 .7095 .5551 .6081 .5543 .5742 .6436 .6133 .5746 .6741 .6100

Logit-Deep-w/o γ .5551 .6758 .5124 .6335 .6253 .5806 .6038 .6175 .5724 .6235 .6000

LS-Deep-with γ .6335 .7684 .5551 .6377 .6253 .7312 .7421 .7547 .6469 .7308 .6826

Logit-Deep-with γ .6631 .7726 .5798 .6419 .5965 .7032 .7358 .7069 .6075 .6862 .6694

Figure 3: Outlier examples of 4 representative attributes on

LFW-10 dataset.

ple, given a specific attribute, the user will choose which

one to be stronger in the attribute. As the goal of our pa-

per is to predict SVP from noisy labels, we do not conduct

any pro-precessing steps to meet the agreement of labels as

[31]. The resulting dataset has 29,454 total annotated sam-

ple pairs, on average 2945 binary pairs per attribute.

Implementation Details In competitive experiments, we

adopt GIST as the low-level features. For the four deep

learning methods, the learning rate is set as 10−4, and λ2

is set as 10−3. For LS-Deep-with γ, λ1 is set as 1.2. For

Logit-Deep-with γ, λ1 is set as 0.5.

Comparative Results Table 3 reports the summary ACC

for each attribute. The following observations can be made:

(1) Our deep-methods always outperform traditional non-

deep methods and ablation baseline methods for all exper-

iment settings with higher average ACC on all attributes

(0.6826 vs. 0.6100 and 0.6694 vs. 0.6000 on two mod-

els, respectively). (2) The performance of other methods is

in general consistent with what we observed in the Human

age experiments.

Moreover, Figure 3 gives some examples of the pruned

pairs of 4 randomly selected attributes. In the success cases,

the left images are (incorrectly) annotated to have more of

the attribute than the right ones. However, they are either

wrong or too ambiguous to give consistent answers, and as
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such are detrimental to learning to rank. A number of fail-

ure cases (false positive pairs identified by our models) are

also shown. Some of them are caused by unique viewpoints

(e.g., for ‘dark hair’ attribute, the man has sparse scalp, so

it is hard to tell who has dark hair more); others are caused

by the weak feature representation, e.g., in the ‘young’ at-

tribute example, as ‘young’ would be a function of multiple

subtle visual cues like face shape, skin texture, hair color,

etc., whereas something like baldness or smiling has a bet-

ter visual focus captured well by part-based features.

4.3. Shoes dataset

Dataset The Shoes dataset is collected from [18] which

contains 14,658 online shopping images. In this dataset,

7 attributes are annotated by users with a wide spectrum of

interests and backgrounds. For each attribute, there are at

least 190 users who take part in the annotation, and each

user is assigned with 50 images. Note that the dataset ac-

tually uses binary annotations rather than pairwise annota-

tions (1 for Yes, -1 for No). We then randomly sample posi-

tive annotations and negatives annotations from each user’s

records to form the pairs we need. For each attribute, we

randomly select such 2000 distinct pairs, finally yielding a

volume of 87,946 total personalized comparisons.

Implementation Details In competitive experiments, we

concatenate the GIST and color histograms provided by the

original dataset as the low-level features. For the LS-based

deep methods, the learning rate is set as 10−3. For the

Logit-based deep methods, the learning rate is set as 10−5.

λ2 is set as 10−3 for all four methods. For LS-Deep-with γ,

λ1 is set as 1.2. For Logit-Deep-with γ, λ1 is set as 0.8.

Comparative Results Similar to the Human age and LFW-

10 datasets, Table 4 again shows that the performance of

our proposed deep models is significantly better than that

of other competitors. Moreover, some outlier detection ex-

amples are shown in Figure 4. In the top four rows with

successful detection examples, the right images clearly have

more of the attribute than the left ones, however are incor-

rectly annotated by crowdsourced raters. The failure cases

are caused by the invisibility (e.g., for ‘comfortable’ at-

tribute, though the transparent rain-boots itself is flat, there

is in fact a pair of high-heeled shoes inside with red color);

others are caused by different visual definitions of attributes

(e.g., for ‘open’ attribute, it has multiple shades of meaning,

e.g., peep-toed (open at toe) vs. slip-on (open at heel) vs.

sandal-like (open at toe and heel)); The remaining may be

caused by ambiguity: both images have this attribute with

similar degree. This thus corresponds to a truly ambiguous

case which can go either way.

5. Conclusion

This work explores the challenging task of SVP predic-

tion from noisy crowdsourced annotations from a deep per-

Table 4: Experimental results (ACC) of 7 attributes on

Shoes dataset.

Algorithm Comf. Fash. Form. Pointy Brown Open Ornate Aver.

Maj-LS .7300 .7825 .7325 .7897 .6950 .7331 .7300 .7418

LS-with γ .8150 .8125 .7975 .7860 .7275 .7444 .7625 .7779

Maj-Logistic .7600 .7850 .7475 .7970 .6900 .7068 .7175 .7434

Logistic-with γ .8375 .8175 .7825 .7934 .7250 .7444 .7525 .7790

Maj-RankNet [3] .7425 .7850 .7200 .7860 .6925 .7444 .7300 .7429

Maj-RankBoost [6] .7525 .7300 .7275 .7675 .6975 .6955 .6725 .7204

Maj-RankSVM [17] .7425 .7925 .7925 .8081 .6850 .7331 .7200 .7534

Maj-GBDT [7] .7075 .7325 .7425 .8007 .6750 .7519 .7550 .7379

Maj-DART [26] .6900 .7275 .7375 .8376 .6975 .7857 .7125 .7412

URLR [9] .8200 .8150 .7900 .7860 .7325 .7444 .7550 .7775

LS-Deep-w/o γ .7100 .8075 .7400 .7749 .7725 .7669 .7050 .7538

Logit-Deep-w/o γ .7100 .8025 .7500 .8044 .7525 .7857 .6975 .7575

LS-Deep-with γ .8500 .8550 .8125 .8044 .8250 .7782 .8300 .8222

Logit-Deep-with γ .8550 .8500 .8200 .8339 .8125 .7481 .8325 .8217

Figure 4: Outlier examples of 4 representative attributes on

Shoes dataset.

spective. We present a simple but effective general prob-

abilistic model to simultaneously predict rank preserving

scores and detect the outliers annotations, where an outlier

indicator γ is learned along with the network parameters

Θ. Practically, we present two specific models with dif-

ferent assumptions on the data distribution. Furthermore,

we adopt an alternative optimization scheme to update γ

and Θ iteratively. In our empirical studies, we perform a

series of experiments on three real-world datasets: Human

age dataset, LFW-10, and Shoes. The corresponding results

consistently show the superiority of our proposed model.
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