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Abstract

Deep metric learning is essential for visual recognition.

The widely used pair-wise (or triplet) based loss objectives

cannot make full use of semantical information in training

samples or give enough attention to those hard samples dur-

ing optimization. Thus, they often suffer from a slow con-

vergence rate and inferior performance. In this paper, we

show how to learn an importance-driven distance metric

via optimal transport programming from batches of sam-

ples. It can automatically emphasize hard examples and

lead to significant improvements in convergence. We pro-

pose a new batch-wise optimal transport loss and combine

it in an end-to-end deep metric learning manner. We use it

to learn the distance metric and deep feature representation

jointly for recognition. Empirical results on visual retrieval

and classification tasks with six benchmark datasets, i.e.,

MNIST, CIFAR10, SHREC13, SHREC14, ModelNet10, and

ModelNet40, demonstrate the superiority of the proposed

method. It can accelerate the convergence rate significantly

while achieving a state-of-the-art recognition performance.

For example, in 3D shape recognition experiments, we show

that our method can achieve better recognition performance

within only 5 epochs than what can be obtained by main-

stream 3D shape recognition approaches after 200 epochs.

1. Introduction

Learning a semantical embedding metric to make similar

positive samples cluster together, while dissimilar negative

ones widen apart is an essential part for modern recognition

tasks [24, 12]. With the flourish of deep learning technolo-

gies [31, 47, 53], deep metric learning has gained more at-

tention in recent years [26, 5, 44, 15, 50]. By training deep

neural networks discriminatively end-to-end, a more com-

plex and highly-nonlinear deep feature representation (from

the input space to a lower dimensional semantical embed-

ding metric space) can be learned. The jointly learned deep

feature representation and embedding metric yield signifi-

cant improvement for recognition applications, such as 2D

image retrieval [59, 5, 37] or classification [60, 42], sig-
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Figure 1. Schematic illustration of learning with the proposed

batch-wise loss objective as compared to the pair-wise loss ob-

jective. Colors of circles represent semantical (or category) infor-

mation. (a): The relationships among batches of samples of these

two loss objectives. (b): Only the semantical information of a pair

of examples is considered at each update in the pair-wise case.

(c): The importance-driven distance metric is optimized using all

available information within training batches so that similar posi-

tive examples with large ground distances and dissimilar negative

examples with small ground distances are emphasized automati-

cally. Arrows indicate the weights (or importance) on distances

arising from the proposed batch-wise optimal transport loss.

nature verification [6], face recognition [12, 60, 44], and

sketch-based 3D shape cross-modality retrieval [33, 58, 63].

Despite the progress made, most of the pre-existing loss

objectives [6, 12, 26, 44, 5] do have some limitations for

metric learning. Commonly used contrastive loss [24, 12] or

triplet loss [60, 10] only considers the semantical informa-

tion within individual pairs or triplets of examples at each
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update, while the interactions with the rest ones within the

batch are ignored. It would bias the learned embedding met-

ric and feature representation. Moreover, they do not give

enough attention to hard positive or negative examples, by

cause of the fact that these samples are often sparsely dis-

tributed and expensive to seek out. These hard samples can

strongly influence parameters during the network is learned

to correct them. As a consequence, methods which neglect

them often suffer from slow convergence rate and subopti-

mal performance. Occasionally, such methods require ex-

pensive sampling techniques to accelerate the training pro-

cess and boost the learning performance [10, 44, 36, 15].

In this paper, we propose a novel batch-wise optimal

transport loss objective for deep metric learning. It can

learn an importance-driven distance metric via optimal

transport programming from batches of samples simulta-

neously. As we know, the fundamental idea behind met-

ric learning is minimizing the intra-category variations (or

distances) while maximizing the inter-category variations

(or distances). Thus, those semantically similar positive

samples with large ground distances and dissimilar nega-

tive examples with small ground distances should be re-

garded as hard samples. Such samples should be em-

phasized correctly to accelerate the metric learning pro-

cess. Figure 1 illustrates our main idea of proposing the

new batch-wise optimal transport loss objective. As illus-

trated, learning with the proposed loss can utilize all avail-

able semantical information of training batches simultane-

ously. The introduced importance-driven distance metric is

partly obtained as a solution to the optimal transport pro-

gram [56, 16]. It can mine and emphasize those hard sam-

ples automatically. Thus, the convergence rate of distance

metric learning process can be significantly improved. We

further develop the new loss objective in a deep metric

learning manner. The whole network can be trained dis-

criminatively in an end-to-end fashion. The jointly learned

semantical embedding metric and deep feature representa-

tion would be more robust to intra-class and inter-class vari-

ations. We finally verify the performance of our proposed

method applying to various visual recognition tasks, includ-

ing 2D image recognition, sketch-based 3D shape cross-

modality retrieval, and 3D shape recognition. Experiment

results on six widely used benchmark datasets, i.e., MNIST,

CIFAR10, SHREC13, SHREC14, ModelNet10 and Model-

Net40, demonstrate the superiority of the proposed method.

Our method can achieve state-of-the-art recognition perfor-

mances with a notably fast convergence rate.

In a nutshell, our main contributions in the present work

can be summarized as follows:

(1) We propose a novel batch-wise optimal transport loss

objective for learning an importance-driven distance metric

to improve the existing pair-wise based loss objectives.

(2) We develop a deep metric learning method based on

the proposed loss objective, which learns the importance-

driven metric and deep feature representation jointly.

(3) We verify the superiority of our proposed method on

visual recognition tasks, including 2D image recognition,

sketch-based 3D shape retrieval, and 3D shape recognition.

2. Related Work

Recognition of 3D shapes is becoming prevalent with the

advancement of modeling, digitizing, and visualizing tech-

niques for 3D objects. The increasing availability of 3D

CAD models, both on the Internet, e.g., Google 3D Ware-

house [1] and Turbosquid [2], and in the domain-specific

field, e.g., ModelNet [3] and SHREC [34], has led to the de-

velopment of several scalable and efficient methods to study

and analyze them, as well as to facilitate practical applica-

tions. For 3D shape recognition, one fundamental issue is

how to construct a determinative yet robust 3D shape de-

scriptor and feature representation. Compared to 2D im-

ages, 3D shapes have more complex geometric structures.

Their appearance can be affected significantly by innumer-

able variations such as viewpoint, scale, and deformation.

These have brought great challenges into the recognition

task. A natural method is to construct a shape descriptor

based on the native 3D structures, e.g., point clouds, poly-

gon meshes, and volumetric grid. Then, shapes can be rep-

resented with distances, angles, triangle areas, tetrahedra

volumes, local shape diameters [38, 9], heat kernel signa-

tures [7, 29], extensions of handcrafted SIFT, SURF [28],

and learned 3D CNNs [62, 35] on 3D volumetric grids. An

alternative way is describing a 3D shape by a collection of

2D view-based projections. It can make use of CNN mod-

els, which have been pre-trained on large 2D image datasets

such as ImageNet [31] and gained a decent ability of gen-

eralization [20, 47, 23]. In this context, DeepPano [46] and

PANORAMA-NN [45] are developed to convert 3D shapes

into panoramic views, e.g., a cylinder projection around

its principal axis. Multi-view CNN (MVCNN) [52] groups

multiple CNNs with a view-pooling structure to process and

learn from all available 2D projections of a 3D shape jointly.

3. Background

Loss objective for metric learning: Metric learning aims

to learn a semantical metric from input samples. Let x ∈ X

be an input sample. The kernel function f(·;θ) : X → R
d

takes input x and generates an feature representation or em-

bedding f(x). In deep metric learning [24, 12, 50], kernel

f(·;θ) is usually defined by a deep neural network, param-

eterized by a series of weights and bias θ. Metric learning

optimizes a discriminative loss objective to minimize intra-

class distances while maximizing inter-class distances. For

example, the contrastive loss in seminal Siamese network

[24, 12] takes pairs of samples as input and trains two iden-
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Figure 2. We formulate the proposed loss into a deep metric learning framework. Given batches of each modality samples, we use LeNet-5

[32], ResNet-50 [25], and MVCNN [52] as f1

CNN to extract deep CNN features for 2D images, 2D sketches, and 3D shapes, respectively.

The metric network f2

Metric consisting of four fully connected (FC) layers, i.e., 4096-2048-512-128 (two FC layers 512-256 for LeNet-5)

is used to perform dimensionality reduction of the CNN features. We add three sigmoid functions as activation among these FC layers to

generate normalized and dense feature vectors. The whole framework can be end-to-end trained discriminatively with the new batch-wise

optimal transport loss. The highlighted importance-driven distance metrics TijM
+

ij and TijM
−

ij are used for emphasizing hard positive

and negative samples. It jointly learns the semantic embedding metric and deep feature representation for retrieval and classification.

tical networks to learn a deep distance metric Mij as

L(xi,xj ; f) = yijMij+(1−yij)max{0, ε−Mij}, (1)

where the label yij ∈ {0, 1} indicates whether a pair of

(xi,xj) is from the same class or not. The margin parame-

ter ε imposes a threshold of the distances among dissimilar

samples. The metric Mij can be an arbitrary distance mea-

surement in the feature embedding space. Conventionally,

the Euclidian metric Mij = ||(f(xi) − f(xj)||
2
2 is used to

denote the distance between a pair of samples. Triplet loss

[60, 10] shares a similar idea with contrastive loss, but ex-

tends a pair of samples to a triplet. For a given query xi, a

similar sample xj to the query, and a dissimilar one xk, the

triplet loss can be formulated as

L(xi,xj ,xk; f) = max{0,Mij −Mik + ε}. (2)

Intuitively, it encourages the distance between the dissimilar

pair Mik = ||(f(xi) − f(xk)||
2
2 to be larger than the dis-

tance between the similar pair Mij = ||(f(xi) − f(xj)||
2
2

by at least a margin ε.

Optimal transport distances: Optimal transport distances

[16], also known as Wasserstein distances [56] or Earth

Mover’s distances [43], define a distance between two prob-

ability distributions according to principles from optimal

transport theory [57, 61]. Formally, let r and c be n-

dimensional probability measures. The set of transportation

plans between probability distributions r and c is defined as

U(r, c) := {T ∈ R
n×n
+ |T1 = r,T T

1 = c}, where 1 is an

all-ones vector. The set of transportation plans U(r, c) con-

tains all nonnegative n × n elements with row and column

sums r and c, respectively.

Give an n × n ground distance matrix M , the cost of

mapping r to c using a transport matrix T can be quanti-

fied as 〈T,M〉, where 〈., .〉 stands for the Frobenius dot-

product. Then the problem defined in Equation (3)

DM (r, c) := min
T∈U(r,c)

〈T ,M〉, (3)

is called an optimal transport problem between r and c

given ground cost M . The optimal transport distance

DM (r, c) measures the cheapest way to transport the mass

in probability measure r to match that in c.

Optimal transport distances define a more powerful

cross-bin metric to measure probabilities compared with

some commonly used bin-to-bin metrics, e.g., Euclidean,

Hellinger, and Kullback-Leibler divergences. However,

the cost of computing DM is at least O(n3log(n)) when

comparing two n-dimensional probability distributions in

a general metric space [39]. To alleviate it, Cuturi [16]

formulated a regularized transport problem by adding an

entropy regularizer to Equation (3). This makes the ob-

jective function strictly convex and allows it to be solved

efficiently. Particularly, given a transport matrix T , let
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h(T ) = −
∑

ij Tij logTij be the entropy of T . For any

λ > 0, the regularized transport problem can be defined as

Dλ
M

(r, c) := min
T∈U(r,c)

〈T ,M〉 −
1

λ
h(T ), (4)

where the lager λ is, the closer this relaxation Dλ
M (r, c)

is to original DM (r, c). Cuturi [16] also proposed the

Sinkhorn’s algorithm [49] to solve Equation (4) for the

optimal transport T ∗. Specifically, let the matrix K =
exp(−λM) and solve it for the scaling vectors u and v to a

fixed-point by computing u = r./Kv, v = c./KTu in an

alternating way. These yield the optimal transportation plan

T ∗ = diag(u)Kdiag(v). This algorithm can be solved

with complexity O(n2) [16], which is significantly faster

than exactly solving the original optimal transport problem.

4. Our Method

In this section, we propose a deep metric learning

scheme by using principles of the optimal transport theory

[57]. Currently, research works with optimal transport dis-

tance [16, 18, 17] mainly focus on theoretical analysis and

simulation verification. Thus, it is hard to apply them into

a large-scale 3D shape recognition contest directly. To this

end, we have done the following three works to construct a

trainable batch-wise optimal transport loss objective.

4.1. Importance­driven Distance Metric Learning

Assuming we are given two batches of samples, each

batch has n examples X ∈ R
d×n. Let xi ∈ R

d be the rep-

resentation of the ith shape. Additionally, let r and c be the

n-dimensional probability vectors for two batches, where ri
and ci denote the number of times shape i occurs in r and c

(normalized overall samples in r and c). The optimal trans-

port introduces a transportation plan T ∈ R
n×n such that

Tij describes how much of ri should be transported to cj .

As described in Equation (4), the optimal transport distance

between batches r and c can be re-formulated as

Dλ
OT(r, c) = min

T≥0

∑n

i.j=1
TijMij −

1

λ
h(Tij)

s.t.
∑n

j=1
Tij = r and

∑n

i=1
Tij = c ∀i, j.

(5)

The learned optimal transportation plan T ∗ is a probability

distribution [16], which aims to find the least amount of cost

needed to transport the mass from batch r to batch c. The

unit of cost corresponds to transporting a sample by the unit

of ground distance. Thus, T ∗ solved by Equation (5) prefers

to assign higher importance values to samples with small

ground distances while leaving fewer for others.

Utilizing such property, we define the importance-driven

distance metric via imposing semantical information of

samples. Specifically, we first define the ground distances

for a pair of similar positive samples as

G+
ij(xi,xj ; f) = e−γ||f(xi)−f(xj)||

2

2 , (6)

where γ is a hype-parameter controlling the extent of re-

scaling. This re-scaling operator shrinks large Euclidian

distance between similar samples. After re-scaling G+,

the learned T ∗ solved by Equation (5) tends to put higher

importance values on those similar samples which have far

Euclidian distances among each other (a.k.a., hard postive

samples), while putting lower on the others accordingly.

Thus, it would accelerate the process that similar samples

are getting close to each other. For dissimilar negative sam-

ples, we define the ground distances correspondingly as

G−
ij(xi,xj ; f) = e−γmax{0,ε−||f(xi)−f(xj)||

2

2
}. (7)

The hinge loss max{0, ε − ||f(xi)− f(xj)||
2
2} penalizes

the dissimilar samples within the margin ε and ignores the

others. Thus, contrary to the above similar samples case,

here the learned T ∗ in Equation (5) will pay higher impor-

tance values on those dissimilar samples with small Euclid-

ian distances (a.k.a., hard negative samples), while assign-

ing fewer on the others. Thus, it could accelerate the process

that dissimilar samples are getting apart to each other.

4.2. Batch­wise Optimal Transport Loss Learning

Based on the Euclidian distances of positive and neg-

ative samples M+
ij ,M

−
ij , and optimal transportation plan

T ∗
ij , now we can formulate a batch-wise optimal transport

loss for metric learning. It can be viewed as an n-pairs ex-

tension version of the contrastive loss or triplet loss. We

define the loss objective as

L(xi,xj ; f)=L+ + L−

= Yij

1

2

∑n

ij
TijM

+
ij +(Iij − Yij)

1

2

∑n

ij
TijM

−
ij ,

(8)

where Yij is a binary label assigned to a pair of training

batches. Let Yij = 1 if sample xi and xj are deemed

similar, and Yij = 0 otherwise. An all-ones matrix is de-

noted as I ∈ R
n×n and n is the size of each training batch.

In practice, TijM
+
ij and TijM

−
ij can be regarded as the

importance-driven distance metric for positive and negative

samples, respectively. Substituting our pre-defined ground

distances Gij for Euclidian distances Mij in Equation (5),

the optimal transportation plan T ∗
ij can be obtained. It is

a probability distribution of weights for emphasizing hard

positive and negative samples during the loss objective op-

timization. We just write the loss regarding only one pair of

batches here for simplicity. The overall data loss objective

based on all training batches can be easily derived as
∑

L.

4.3. Batch Gradient Descent Optimization

We further derive the back-propagation form of the

batch-wise optimal transport loss objective. The proposed
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loss objective can be embedded into a deep metric learning

framework, so that the whole network can be trained dis-

criminatively end-to-end via batch gradient descent.
Since the batch-wise optimal transport distance (i.e.,

TijM
+
ij and TijM

−
ij ) is a fully connected dense matrix of

pairs-wise ground distances, its gradient can be deduced as
network flow manner. Specifically, we compute the gradient
of corresponding loss L(xi,xj ; f) with respect to embed-
ding representations f(xi) and f(xj) as follows,

∂L

∂f(xi)
=

n∑

j=1

T
∗

ij(f(xi)− f(xj))(Yij − (Iij − Yij)δij)

∂L

∂f(xj)
=−

n∑

i=1

T
∗

ij(f(xi)−f(xj))(Yij−(Iij−Yij)δij),

(9)

where T ∗ is the optimizer obtained from Equation (4).

Motivated by the fast optimal distance computation [16,

18, 21], we relax the linear program in Equation (5) us-

ing the regularized entropy as in Equation (4). It allows

us to approximately solve Equation (4) in O(n2) time via

T ∗ = diag(u)Kdiag(v), where n is the size of batch.

The δ here is also a binary indicator assigned to the pairs.

Let δij = 1 when the Eucildian distance between shape xi

and xj is within the margin (i.e., ε− ||f(xi)− f(xj)||
2
2 >

0), and δij = 0 otherwise. The f(xi) and f(xj) are fea-

ture representations obtained through deep neural networks.

Therefore, the gradient with respect to the network can be

computed easily with the chain-rule in a back-propagation

fashion, as far as ∂L
∂f(xi)

and ∂L
∂f(xj)

are derived. We also

note that the defined ground distances G+
ij and G−

ij are just

used to determine the optimal transportation plan T ∗ for re-

weighting the importance of similar positive and dissimilar

negative samples. We do not consider them as variables to

compute gradient in Equation (9) for gradient updating.

5. Experiments

In this section, we evaluated the performance of the

proposed method with applications to 2D image recog-

nition (i.e., retrieval and classification), sketch-based 3D

shape retrieval, and 3D shape recognition tasks. Six widely

used benchmark datasets were employed in our experi-

ments, including MNIST [32], CIFAR10 [30], SHREC13

[33], SHREC14 [41], ModelNet10, and ModelNet40 [62].

5.1. Experimental settings

Architecture: Figure 2 illustrates network architecture of

deep metric learning with our batch-wise loss objective.

Datasets: The MNIST [32] is a large handwritten digits

dataset, which has 60, 000 28 × 28 black-and-white train-

ing images and 10,000 testing images. The CIFAR10 [30]

dataset consists of 60, 000 32×32 RGB images in 10 differ-

ent categories, with 6, 000 images per category. There are

50, 000 training images and 10, 000 test images. SHREC13

[33] and SHREC14 [41] are two large-scale datasets for

sketch-based 3D shape retrieval. SHREC13 contains 7, 200
human-drawn sketches and 1, 258 3D shapes from 90 dif-

ferent categories. For each category, 50 sketches are used

for training and remaining 30 sketches are used for the test.

There are 14 3D shapes per category generally. SHREC14

is larger than SHREC13, which has 13, 680 sketches and

8, 987 3D shapes from 171 categories. Each of the cat-

egories has 53 3D shapes on average. There are 8, 550
sketches for training and 5, 130 for test. ModelNet [3] is

a large-scale 3D shape dataset, which contains 151, 128
3D CAD models belonging to 660 unique object categories

[62]. There are two subsets of ModelNet can be used for

evaluation. ModelNet10 contains 4, 899 3D shapes from 10
categories while ModelNet40 has 12, 311 shapes from 40

categories. In our experiments, we used the same training

and test splits as in [62]. Specifically, we randomly selected

100 unique shapes per category, where 80 shapes were cho-

sen for training and the remaining 20 shapes for the test.

Evaluations: For retrieval, we used Euclidian distance to

measure the similarity of the shapes based on their learned

feature vectors output by the metric network as shown in

Figure 2. Given a query from the test set, a ranked list of

the remaining test samples was returned according to their

distances to the query sample. We used the evaluation met-

rics for retrieval as in [63] when presenting our results. The

metrics include nearest neighbor (NN) [14], first tier (FT)

[54], second tier (ST) [13], E-measure (E) [11], discounted

cumulated gain (DCG) [27], and mean average precision

(mAP) [40]. For classification, we trained one-vs-all linear

SVMs [8] to classify 2D images and 3D shapes using their

features. The average category accuracy [62] was used to

evaluate the classification performance.

Parameters settings: In our 2D image recognition, the

learning rate and batch size were 0.01 and 64 respectively.

Our optimizer had a momentum of 0.9 and 0 weight decay

rate. The regularized parameter λ in Equation (5) was set

to be 5.0 while the re-scaling parameter γ in Equation (6)

being 10. In the sketch-based 3D shape retrieval and 3D

shape recognition experiments, the batch size was reduced

to 32. Meanwhile, the learning rate, weight decay and mo-

mentum remained the same as what has been used in 2D

experiments. We increased the regularized parameter λ to

10, which is the same as the re-scaling parameter γ.

5.2. Evaluation of Our Proposed Method

5.2.1 2D Image Recognition

Firstly, we empirically evaluated the effect of our pro-

posed method on two broadly used 2D images benchmark

datasets, i.e., MNIST and CIFAR10. Training images were

randomly shuffled at the start of each epoch. In each train-

ing step, the optimal transportation plan T ∗ between two

batches of image features was approximated by iterating the
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Figure 3. Left: Mean average precision (mAP) and classification accuracy curves of batch-wise optimal transport loss and pair-wise

contrastive loss on 2D MNIST dataset. Middle: Comparison of their mAP and accuracy curves on 2D CIFAR10 dataset. Right: Comparison

of their mAP curves on sketch-based 3D shapes SHREC13 and SHREC14 dataset.

Table 1. Retrieval results on the SHREC13 benchmark dataset
Method NN FT ST E DCG mAP

CDMR 0.279 0.203 0.296 0.166 0.458 0.250

SBR-VC 0.164 0.097 0.149 0.085 0.348 0.116

SP 0.017 0.016 0.031 0.018 0.240 0.026

FDC 0.110 0.069 0.107 0.061 0.307 0.086

Siamese 0.405 0.403 0.548 0.287 0.607 0.469

LWBR 0.712 0.725 0.725 0.369 0.814 0.752

N-pair 0.634 0.623 0.702 0.335 0.750 0.653

Lifted 0.688 0.705 0.774 0.363 0.803 0.734

Our Method 0.713 0.728 0.788 0.366 0.818 0.754

Table 2. Retrieval results on the SHREC14 benchmark dataset
Method NN FT ST E DCG mAP

CDMR 0.109 0.057 0.089 0.041 0.328 0.054

SBR-VC 0.095 0.050 0.081 0.037 0.319 0.050

DB-VLAT 0.160 0.115 0.170 0.079 0.376 0.131

Siamese 0.239 0.212 0.316 0.140 0.496 0.228

DCML 0.272 0.275 0.345 0.171 0.498 0.286

LWBR 0.403 0.378 0.455 0.236 0.581 0.401

N-pair 0.300 0.270 0.321 0.150 0.484 0.289

Lifted 0.513 0.538 0.634 0.300 0.711 0.573

Our Method 0.536 0.564 0.629 0.305 0.712 0.591

Sinkhorn’s algorithm for 20 times. After each epoch, we

computed all image features with the symmetrical network

trained so far for classification and retrieval. The categori-

cal accuracies provided by one-vs-rest linear SVMs and the

retrieval mAPs given by the similarity measure based on the

testing samples were recorded.

The left-hand and middle subfigures in Figure 3 present

accuracy and mAP curves of the batch-wise optimal trans-

port loss learning concerning the number of epochs. These

figures illustrate the relationship between the convergence

rate and recognition performance. Comparing with the pair-

wise contrastive loss, our method posses a significantly

faster convergence rate. On CIFAR10, it provides a re-

trieval mAP and classification accuracy which are approxi-

mately 15% and 10% higher than the corresponding values

achieved by the pair-wise loss at the end of 50 epochs. The

empirical results indicate that the importance-driven dis-

tance metric learning can effectively adjust the distribution

of weights. It pays more attention to the hard positive and

negative samples during the training process.

5.2.2 Sketch-based 3D Shape Retrieval

We then evaluated our method for sketch-based 3D shape

retrieval on two large-scale benchmark datasets, i.e.,

SHREC13 and SHREC14. The right-hand two subfigures

in Figure 3 demonstrate the mAP curves of our batch-wise

optimal transport loss as compared to the pair-wise loss ob-

jective. As illustrated, our method is about 5 times and 3
times faster than pair-wise loss on SHREC13 and SHREC14

respectively. Meanwhile, the retrieval performance is re-

markably higher than the compared loss objective.

We also compared our method with several mainstream

approaches for 3D shape retrieval, including CDMR [22],

SBR-VC [33], SP [51], FDC [51], Siamese network [58],

DCML [19], DB-VLAT [55], LWBR [63], N-pair loss [50],

and Lifted loss [37]. The evaluation criteria include NN,

FT, ST, E, DCG, and mAP.
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Figure 4. Mean average precision (mAP) curve with respect to the number of epochs evaluated of various methods on the ModelNet40

dataset. Left subfigure illustrates the mAP curves of four loss objectives for 3D shape retrieval, and right subfigure illustrates the mAP

curves of three weighting modesc. The mAP have been observed every five epochs for 200 epochs in figures.

Table 3. Comparisons of batch-wise optimal transport loss with other benchmark methods on the ModelNet40 dataset.

Evaluation Criteria

Methods NN FT ST DCG E mAP (%) Accuracy (%)

Pair-wise

Individual 0.8287 0.6544 0.7891 0.8562 0.5668 69.3% 88.6%

Triplets 0.8324 0.6968 0.8029 0.8629 0.5927 74.1% 89.1%

Random 0.8688 0.7948 0.9048 0.9140 0.6601 83.1% 89.5%

Batch-wise

Mean Weighted 0.8750 0.7986 0.9032 0.9158 0.6589 83.3% 89.7%

Random Reweighted 0.8688 0.7673 0.8846 0.9051 0.6445 83.1% 89.0%

Optimal Reweighted 0.8762 0.8013 0.8991 0.9178 0.6560 83.8% 90.3%

Table 4. Retrieval and classification results on the ModelNet10 and ModelNet40 datasets.

Methods Shape Descriptor ModelNet10 ModelNet40

mAP (%) Accuracy (%) mAP (%) Accuracy (%)

(1) MVCNN [52] 2D View-based Descriptor (#Views=12) N/A N/A 80.2% 89.5%

2D View-based Descriptor (#Views=80) N/A N/A 79.5% 90.1%

(2) GIFT [4] 2D View-based Descriptor (#Views=64) 91.1 % 92.3% 81.9% 83.1%

(3) 3DShapeNets [62] 3D Voxel Grid (30× 30× 30) 68.3% 83.5% 49.2% 77.0%

(4) Geometry Image [48] 2D Geometry Image 74.9% 88.4% 51.3% 83.9%

(5) PANORAMA-NN [45] 2D Panoramic View 87.4% 91.1% 83.5% 90.7 %

(6) DeepPano [46] 2D Panoramic View 84.1% 85.4% 76.8% 77.6%

(7) N-pair [50] 2D View-based Descriptor (#Views=12) 77.4% 86.8% 67.7% 79.1%

(8) Lifted [37] 2D View-based Descriptor (#Views=12) 88.8% 92.5% 83.0% 91.0%

Our Method 2D View-based Descriptor (#Views=12) 87.5% 93.7% 83.8% 90.3%

As summarized in Table 1 and Table 2, our batch-wise

optimal transport loss based method achieved the best re-

trieval performance with respect to almost all evaluation

metrics on SHREC13 and SHREC14. Among compared

methods, CDMR, DCML, Siamese network, and LWBR

are all deep metric learning based approaches. They mea-

sured similarity based on pairs of samples and mapped data

into an embedding metric space through different pooling

schemes. In contrast, our proposed batch-wise optimal

transport loss objective can correctly re-weight the impor-

tance value of samples, mainly focus on those hard samples.

Thus, our approach obtains better retrieval performance. Its

mAP reaches 0.754, which is slightly better than LBWR

and significantly better than other methods. Furthermore,

the advantage of our approach is enlarged on SHREC14

because this dataset has more severe intra-class and cross-

modality variations. As a consequence, the mAP of our pro-

posed method is 0.591, which is 0.190, 0.302, and 0.018
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higher than LBWR, N-pair, and Lifted loss, respectively.
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Figure 5. Illustration of relationship between the ground distances

G∗ and the optimal transportation plan T ∗ on the ModelNet40

dataset. For two batches (each with batch size 32) of samples,

we visualize the values of the batch-wise ground distances matrix

(i.e., 32× 32) and the corresponding optimal transportation plan.

5.2.3 3D Shapes Recognition

We finally verified the proposed method for 3D shape

recognition on two large-scale 3D shape datasets, i.e., Mod-

elNet10 and ModelNet40. Pair-wise loss and triplet loss suf-

fer from slow convergence rate because they are not capa-

ble of exploring all available semantical information within

training batches simultaneously. To alleviate this problem,

we used random sampling techniques (i.e., recurrently shuf-

fle the training batches during each epoch) to loop over as

many randomly sampled pairs as possible. It is expected

that the random pairs based loss objective could make full

use of all information so that the finally learned semantic

metric could be balanced correctly. The left-hand subfigure

in Figure 4 presents the mAP curves of batch-wise optimal

transport loss and other compared loss objectives for 3D

shape retrieval. Similarly, the batch-wise optimal transport

loss objective still has the significantly faster convergence

rate and can achieve a decent retrieval performance within

a small number of epochs (i.e., 5 epochs).

We also examined two different probability distributions,

i.e., uniformly distributed mean value (ν = 1
n2 ) and ran-

dom numbers in the interval (0, 1), as alternatives of the

optimal transportation plan. Uniformly distributed mean

value weights in the batch-wise loss imply that samples are

equally important for later metric learning. Uniformly dis-

tributed random weights randomly mark some samples as

hard samples within a pair of batches during the learning

process. The right-hand subfigure in Figure 4 illustrates

comparison results of the retrieval performance concerning

the number of epochs for these three re-weighting strate-

gies. It demonstrates that the convergence rate of optimal

re-weighted is much faster than the others.

The detailed comparison results are summarized in Table

3. We compared the batch-wise optimal transport loss with

other designed benchmark methods using NN, FT, ST, E,

DCG and mAP on the ModelNet40 dataset. As illustrated

in Figure 4 and Table 3, learning with batch-wise optimal

transport loss objective has considerably faster convergence

rate than other benchmark methods. It takes only a few

epochs (i.e., 5 epochs) to achieve mAP at 83.8% and accu-

racy at 90.3%, which are better than others after 200 epochs.

It demonstrates that the learned optimal transportation plan

can correctly re-weight the training samples according to

their importance values during the metric learning process.

Moreover, solving Equation (5) to learn optimal transporta-

tion plan T ∗ is not computational expensive in practice. The

average running time required by one epoch of individual

pair loss objective is 2.51 seconds, and that of batch-wise

optimal transport loss objective takes 9.02 seconds.

Here, we analyzed the role of the semantical information

embedded ground distances G∗ ∈ R
n×n and the optimal

transportation plan T ∗ ∈ R
n×n in our work. The element

G∗
ij is filled with the distances of batch-wise similar posi-

tive samples G+
ij and the distances of batch-wise dissimilar

negative samples G−
ij . The right-hand subfigure in Figure 5

shows that far similar positive and adjacent dissimilar neg-

ative samples (i.e., hard samples) are sparsely distributed

under our predefined ground distance metric G∗. The left-

hand subfigure is the optimal transportation plan which is

actually a probability distribution [16]. The color map re-

veals the learned optimal transportation plan T ∗ ensures

higher importance weights to those few samples with small

ground distance while giving less on the remaining ones.

In the end, we compared our method with state-of-the-

art approaches for shape retrieval and classification, includ-

ing MVCNN [52], GIFT [4], and DeepPano [46], et al.

The detailed comparison results are summarized in Table

4. Compared to these approaches, our method based on

batch-wise optimal transport loss learning can achieve the

(almost) state-of-the-art performance on both tasks.

6. Conclusion

In this paper, we proposed a novel batch-wise opti-

mal transport loss objective to learn an importance-driven

distance metric. The learned distance metric can effec-

tively emphasize hard samples according to their impor-

tance weights. We then formulated the proposed loss ob-

jective into an end-to-end deep metric learning network for

recognition. We evaluated the performance and versatil-

ity of our method with various visual recognition tasks, in-

cluding 2D image recognition, 2D sketch-based 3D shape

cross-modality retrieval, and multiview based 3D shape

recognition. The empirical results verified the proposed

method could generically accelerate the convergence rate

while achieving excellent recognition performance. Our fu-

ture work will involve facilitating such a trend and apply-

ing this importance-driven distance metric learning to more

widespread applications, for example, 3D point cloud clas-

sification, segmentation, 3D scene reconstruction, cross-

modality correspondence among visual, audio, and text.
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