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Abstract

In this paper, we propose an efficient multi-scale geo-

metric consistency guided multi-view stereo method for ac-

curate and complete depth map estimation. We first present

our basic multi-view stereo method with Adaptive Checker-

board sampling and Multi-Hypothesis joint view selection

(ACMH). It leverages structured region information to sam-

ple better candidate hypotheses for propagation and infer

the aggregation view subset at each pixel. For the depth es-

timation of low-textured areas, we further propose to com-

bine ACMH with multi-scale geometric consistency guid-

ance (ACMM) to obtain the reliable depth estimates for low-

textured areas at coarser scales and guarantee that they can

be propagated to finer scales. To correct the erroneous esti-

mates propagated from the coarser scales, we present a nov-

el detail restorer. Experiments on extensive datasets show

our method achieves state-of-the-art performance, recover-

ing the depth estimation not only in low-textured areas but

also in details.

1. Introduction

Multi-view stereo (MVS) has traditionally been a topic

of interest in computer vision for decades. It aims at es-

tablishing dense correspondence from multiple calibrated

images, which results in a dense 3D reconstruction. Over

the last few years, much effort has been put into improv-

ing the quality of dense 3D reconstructions and some works

have achieved impressive results [7, 8, 9, 23, 24, 25, 36, 19].

However, with the large-scale data, low texture, occlusions,

repetitive patterns and reflective surface, it is still a chal-

lenging problem to perform efficient and accurate multi-

view stereo in computer vision domain.

Recently, PatchMatch Stereo methods [1, 36, 8, 19] show

great power in depth map estimation with their fast global

search for the best match in other images [2]. These meth-

ods follow a popular four-step pipeline, including random
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Figure 1. Propagation scheme. (a) Sequential propagation. (b)

Symmetric checkerboard propagation. (c) Adaptive checkerboard

propagation. The light red areas in (c) show sampling regions. The

solid yellow circles in (b) and (c) show the sampled points.

initialization, propagation, view selection and refinement.

In this pipeline, propagation and view selection are two key

steps to PatchMatch Stereo methods. The former is impor-

tant to efficiency while the latter is critical to accuracy.

For propagation, there generally exist two distinct types

of parallel schemes: sequential propagation [1, 36, 19] and

diffusion-like propagation [8]. The former traverses pixels

following parallel scanlines only in the vertical (or horizon-

tal) direction (Figure 1(a)). In contrast, the later simulta-

neously updates the status of half of the pixels in an image

with a checkerboard pattern (Figure 1(b)). In terms of effi-

ciency, the diffusion-like propagation achieves better algo-

rithm parallelism. However, it is reported in [19, 21] that, its

reconstruction results are not competitive with the sequen-

tial propagation’s in some challenging cases. As pointed out

in [36], this mainly attributes to its less robust view selection

instead of propagation. For example, in the sequential prop-

agation, [36, 19] construct a probabilistic graphical model

to perform pixelwise view selection. Unlike their elabo-

rate view selection, the diffusion-like propagation adopts a

simple threshold truncation scheme to determine aggrega-

tion view subsets [8]. This leads to its biased view selec-

tion for different hypotheses. Then a motivating question

is, whether it is possible to design a more robust view selec-

tion based on the checkerboard pattern.

To this end, we first propose our basic MVS method with

Adaptive Checkerboard sampling and Multi-Hypothesis
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Figure 2. Texture richness for different scales. (a) Original Image.

(b) The zoomed-in version of the white box in (a). (c) The down-

sampled version of (b). (d) Depth map obtained with the original

scale. (e) Depth map obtained with the multi-scale scheme. The

patch windows in red are kept the same size.

joint view selection (ACMH). Our key idea is based on the

assumption of [18] that pixels within a relatively large re-

gion can be approximately modeled by one 3D plane, which

indicates structured region information and a shared hy-

pothesis among these pixels. Thus, unlike fixed sampling

in diffusion-based conventions which may be misleading,

ACMH searches larger regions to adaptively sample better

candidate hypotheses for propagation (Figure 1(c)). With

these better hypotheses, we propose a multi-hypothesis

joint strategy to infer pixelwise view selection. For a specif-

ic pixel, this strategy employs a voting scheme to supply the

same aggregation view subset for different propagated hy-

potheses, and gives credible views greater weights to aggre-

gate the final multi-view matching cost. As a result, ACMH

can achieve accurate depth map estimation while inheriting

the high efficiency of the checkerboard pattern.

Moreover, as a key component of PatchMatch Stereo

methods, view selection heavily depends on a stable visu-

al similarity measure between two image patches. How-

ever, measuring the visual similarity in low-textured areas

is always challenging. As depicted in Figure 2(b), the low

discrimination in low-textured areas leads to the ambiguity

of visual similarity, which further degrades the performance

of PatchMatch Stereo methods (Figure 2(d)). However, we

observe that, for the low-textured areas, though the texture

information with an universal patch window in Figure 2(b)

is not significant , it becomes more discriminative under the

same patch window when an image is downsampled (Fig-

ure 2(c)). That is, the texture richness is a relative measure.

Then, an intuitive idea is that, we can estimate depth in-

formation at coarser scales to alleviate the ambiguities in

low-textured areas and use it as guidance for the matching

progress at finer scales.

Based on the above idea, we further present a multi-

scale patch matching with geometric consistency guidance,

called ACMM. Specifically, our method constructs im-

age pyramids and obtains reliable depth estimates for low-

textured areas at coarser scales. After propagating these es-

timates from coarser scales to finer scales via upsampling,

we resort to geometric consistency to constrain the depth

optimization at finer scales. Considering that the depth

propagation from coarser scales to finer scales often leads to

depth information loss in details, we present a detail restorer

based on the difference map of photometric consistency be-

tween adjacent scales. Through our proposed strategies, our

approach can not only estimate depth information in low-

textured areas but also preserve details.

Our main contributions are summarized as follows: 1)

Inherited from the high efficiency of the diffusion-like prop-

agation, we present an adaptive checkerboard sampling

scheme to select more reasonable hypotheses for propaga-

tion based on the structured region information. Then, a

multi-hypothesis joint view selection is proposed to help s-

elect credible aggregation views. 2) For the ambiguities in

low-textured areas, we propose a multi-scale patch match-

ing scheme with geometric consistency guidance. The ge-

ometric consistency imposed at different scales can guar-

antee that the reliable depth estimates for low-textured ar-

eas obtained at coarser scales are retained at finer scales.

Moreover, a detail restorer is present to correct errors prop-

agated from the coarser scales. Through extensive evalu-

ation, we demonstrate the effectiveness and efficiency of

our method by achieving state-of-the-art performance on

Strecha dataset [27] and ETH3D benchmark[21].

2. Related Work

According to [22], MVS methods can be categorized in-

to four groups, voxel-based methods [5, 29, 26], surface

evolution based methods [4, 11, 3], patch-based method-

s [9, 17, 7] and depth map based methods [36, 8, 19]. The

voxel-based methods are often constrained by their prede-

fined voxel grid resolution. The surface evolution based

methods depend on a good initial solution. As for the patch-

based methods, its dependence on matched keypoints im-

pairs the completeness of 3D models. The depth map based

methods require estimating depth maps for all images and

then fusing them into a unified 3D scene representation. A

more detailed overview of MVS methods is presented in

[22, 6]. Our method belongs to the last category and we

only discuss the related PatchMatch Stereo approaches.

In terms of efficiency, [1, 30, 36, 19] adopt the sequen-

tial propagation scheme. They alternatively perform up-

ward/downward propagation in odd iteration steps and per-

form leftward/rightward propagation in even steps. To in-

crease parallelism, [30] selects an eighth of the image height

(width) as the length of each scanline in the vertical (hori-

zontal) propagation. However, the algorithm parallelism of

sequential propagation is still proportional to the number of

rows or columns of images. Then, Galliani et al. [8] propose

to leverage a checkerboard pattern to perform a diffusion-

like propagation scheme. It allows to simultaneously update

the status of half of the pixels in an image. However, they

ignore good hypotheses should have priority in propagation.
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Figure 3. Overview of our approach. The initial depth maps of the coarsest scale are obtained by our basic MVS model with only photo-

metric consistency (Section 4). After upsampling the estimation of the previous scale to the current scale, detail restorer is implemented

to correct the errors in details. At each scale, geometric consistency is enforced to enhance coherence and prevent the reliable estimates in

low-textured areas from the previous scale being impaired by photometric consistency (Section 5).

According to the above propagation strategies, many

view selection schemes are proposed to tackle the noise in

the propagation process. In the diffusion-like propagation

scheme, [8] selects fixed k views with the minimal k match-

ing costs. However, this leads to a bias due to different ag-

gregation subsets for different hypotheses. In the sequential

propagation, [1, 30] also ignore the pixelwise view selec-

tion by only demanding global view angles. To incorpo-

rate only useful neighboring views at each pixel, Zheng et

al. [36] first try to construct a probabilistic graphical model

to jointly estimate depth maps and view selection. Further,

Schönberger et al. [19] introduce geometric priors and tem-

poral smoothness to better depict the state-transition proba-

bility. However, this sequential inference needs to condition

the status of previous pixels at the current state. It is still

more sensitive to noise in low-textured areas.

Although some methods focus on view selection to im-

prove local smoothness and gain some benefits, they are still

restricted by patch window size. To perceive more useful

information in low-textured areas, Wei et al. [30] adopt the

multi-scale patch matching with variance based consisten-

cy. However, this consistency is too strong to spread some

reliable estimates in few neighboring views across multiple

views. Moreover, they overlook the errors in details.

3. Overview

Given a set of input images I = {Ii | i = 1· · ·N}
with known calibrated camera parameters P = {Pi | i =
1· · ·N}, our goal is to estimate depth maps D = {Di | i =
1· · ·N} for all images and fuse them into a 3D point cloud.

Specifically, we aim to recover the depth map for reference

image Iref sequentially selected from I with the guidance of

source images Isrc (I − Iref).

An overview of our method is illustrated in Figure 3.

We construct a pyramid with k scales for all images with

a downsampling factor η. We denote the l-th scale of Ii and

corresponding camera parameter as Ili and Pl
i, l = 0· · ·k−1.

The finest scale of the pyramids Ik−1
i are the raw images.

We aim to propagate the reliable estimates in low-textured

areas from coarser scales to help with the estimation of finer

scales without much loss in details.

We first use our basic MVS model with photometric con-

sistency, ACMH, to obtain the initial depth maps for all im-

ages at the coarsest scale. To enhance the coherence among

all depth maps, we further perform ACMH with geometric

consistency. Then we upsample the depth maps to the next

scale. The upsampling propagates the reliable depth esti-

mates in low-textured areas to the current scale, which are

obtained at the previous scale. To correct the errors induced

from the previous scale, a detail restorer is first employed.

These corrected depth maps are utilized as initialization to

guide the subsequent ACMH with geometric consistency

such that the reliable estimates within low-textured areas

can be kept and optimized at the current scale. The same

upsampling, detail restorer and ACMH with geometric con-

sistency are repeated until we obtain the depth maps at the

original image scale. We term our whole method ACMM.

4. Structured Region Information

Structured region information means that pixels within a

relatively large region can be approximately be modeled by

the same 3D plane. Our basic MVS method with Adaptive

Checkerboard sampling and Multi-Hypothesis joint view s-

election (ACMH) is inspired by this to sample better candi-

date hypotheses for propagation and select views with more

credibility for multi-view matching costs aggregation. The

details of ACMH are given as follows.

4.1. Random Initialization

Following [8], we first randomly generate a hypothesis

(including depth and normal) to build a 3D plane for each

pixel in the reference image Iref. For each hypothesis, a
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matching cost is computed from each of N − 1 source im-

ages via a plane-induced homography [10]. Then the top

K best matching costs are aggregated into the initial multi-

view matching cost for the subsequent propagation.

4.2. Adaptive Checkerboard Sampling

We first adopt the idea in [8] to partition the pixels of Iref

into red-black grids of a checkerboard. This pattern allows

us to simultaneously update the hypotheses of black pixels

using red pixels and vice versa. In [8], their method samples

from eight fixed positions. Differently, for each pixel in red

or black group, we expand these eight points into four V-

shaped areas and four long strip areas (Figure 1(c)). Each V-

shaped area contains 7 samples while every long strip area

contains 11 samples. Then we sample eight good hypothe-

ses from these areas according to their previous multi-view

matching costs. This sampling scheme is favored by the

structured region information. It means that a hypothesis

with a smaller multi-view matching cost will represent a lo-

cal plane better. This strategy helps a good plane of a local

shared region to spread further as much as possible and sup-

plies more compact estimates.

4.3. Multi­Hypothesis Joint View Selection

To obtain a robust multi-view matching cost for each pix-

el, we further leverage these eight structured hypotheses to

infer the weight of every neighboring views. For pixel p, we

calculate its corresponding matching costs with propagated

hypotheses and embed them into a cost matrix

M =











m1,1 m1,2 · · · m1,N−1

m2,1 m2,2 · · · m2,N−1

...
...

. . .
...

m8,1 m8,2 · · · m8,N−1











, (1)

where mi,j is the matching cost for the i-th hypothesis hi
scored by the j-th view Ij . We adopt the bilateral weight-

ed adaption of normalized cross correlation [19] to compute

the matching cost, which describes the photometric consis-

tency between the reference and source patch.

To infer aggregation views from the above cost matrix,

we apply a voting decision in each column to determine

whether a view is appropriate. A key observation behind

this is that for a bad view, its corresponding eight matching

costs are always high. In contrast, a good view always has

some smaller matching costs. Furthermore, the matching

costs for the good view will decrease with the iteration of

our algorithm. Therefore, a good matching cost boundary

is defined as

τ(t) = τ0 · e
−

t2

α , (2)

where t means the t-th iteration, τ0 is the initial matching

cost threshold and α is a constant. Besides, we define a

fixed bad matching cost threshold τ1 (τ1 > τ(t)). Based on

our above observation, for a specific view Ij , there should

exist more than n1 matching costs meeting the condition:

mi,j < τ(t). We define this set as Sgood(j) to calculate

the weight of view Ij later. Also, there should be less than

n2 matching costs meeting the condition: mi,j > τ1. A

view simultaneously satisfying the above conditions will be

incorporated into the current view selection set St in the t-th

iteration.

The above inferred view selection set St may contain

some unstable views because of noise, viewing point and

scale, etc. This means each selected view will contribute

different weights to the final aggregated matching cost. To

evaluate the importance of each selected view, the confi-

dence of a matching cost is computed as follows,

C(mij) = e
−

m2

ij

2β2 . (3)

where β is a constant. This makes good views more dis-

criminative. The weight of each selected view can be de-

fined as

w(Ij) =
1

|Sgood(j)|

∑

mi,j∈Sgood(j)

C(mi,j), Ij ∈ St. (4)

We suppose the most important view vt−1 in iteration t− 1
shall continue to have influence on the view selection of the

current iteration t. Thus, we modify Formula 4 as

w′(Ij) =

{

(I(Ij = vt−1) + 1) · w(Ij), if Ij ∈ St;
0.2 · I(Ij = vt−1), else.

(5)

where I(·) is an indicator function such that I(true) = 1
and I(false) = 0. This modification can make our view

selection method more robust. With the inferred weights

w′, the multi-view aggregated photometric consistency cost

of pixel p for hypothesis hi is defined as

mphoto(p, hi) =

∑N−1
j=1 w′(Ij) ·mi,j

∑N−1
j=1 w′(Ij)

. (6)

The current best estimate for pixel p is updated by the hy-

pothesis with the minimum multi-view aggregated cost.

4.4. Refinement

After each red-black iteration, a refinement step is ap-

plied to enrich the diversity of solution space. There exist

three conditions for the current depth and normal of pix-

el p, i.e., either of them, neither of them, or both of them

are close to the optimal solution [19]. Thus, we generate

two new hypotheses, one of which is randomly generated

and the other is obtained by perturbing the current estimate.

We combine these new depths and normals with the current

depth and normal, yielding another six new hypotheses to

be tested. The hypothesis with the least aggregated cost is

chosen as the final estimate for pixel p. The above propa-

gation, view selection and refinement are repeated multiple

times to get the final depth map for Iref. At the end, a medi-

an filter of size 5× 5 is applied to our final depth maps.
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5. Multi-Scale Geometric Consistency

Combined with the multi-scale scheme, ACMH at the

coarsest scale obtains more reliable depth estimates in low-

textured areas. However, photometric consistency experi-

ences difficulties when applied to optimize these depth es-

timates at finer scales. In this section, we detail how to

leverage geometric consistency guidance to deal with the

optimization of these estimates. Also, a detail restorer is

present to correct the errors induced from coarser scales.

5.1. Geometric Consistency Guidance

After obtaining the reliable depth estimates for low-

texture areas at the coarsest scale and propagating them to

finer scales via upsampling, we need to optimize these es-

timates at finer scales. Our key idea is that the upsampled

depth maps of source images can geometrically constrain

these estimates from being disturbed by photometric con-

sistency, which means geometric consistency. Inspired by

[34, 19], we use the forward-backward reprojection error to

indicate this consistency.

Given the depth of pixel p in image Ii is known asDi(p),
with the camera parameter Pi = [Mi|pi,4] [10], its corre-

sponding back-projected 3D point Xi(p) is computed as

Xi(p) =M−1
i · (Di(p) · p− pi,4). (7)

Then the reprojection error between the reference image Iref

and the source image Ij for i-th hypothesis is calculated as

∆ei,j = min(‖Pref ·Xj(Pj ·Xref(p))− p‖, δ), (8)

where δ is a truncation threshold to robustify the reprojec-

tion error against occlusions. We integrate the above equa-

tion into Formula 6 and get the following multi-view aggre-

gated geometric consistency cost as

mgeo(p, hi) =

∑N−1
j=1 w′(Ij) · (mi,j + λ ·∆ei,j)

∑N−1
j=1 w′(Ij)

, (9)

where λ is a factor that balances the weight of the two terms.

Specifically, at the l-th scale (l > 0), we employ the

joint bilateral upsampler [15] to propagate the estimates at

the previous scale to the current scale. The upsampled es-

timates are utilized as the initial seeds of the current scale

to perform the subsequent propagation, view selection and

refinement as in ACMH. Differently, here we adopt Formu-

la 9 instead of Formula 6 to update the hypothesis of pixel

p. In fact, this modification limits the solution space of cur-

rent hypothesis update, especially for the hypothesis update

in low-textured areas. This guarantees that the reliable es-

timates in low-textured areas obtained at the coarsest scale

can be propagated to the finest scale. It is worth noting that

the geometric consistency also optimizes the depth estima-

tion of other areas except low-textured areas.

Additionally, we notice that the initial depth maps ob-

tained by ACMH are noisy due to ambiguities and occlu-

sions. However, photometric consistency is hard to reflect

these errors since large depth variations only induce small

cost changes [19]. Thus, we also perform geometric con-

sistency at the coarsest scale to optimize these initial depth

maps. Intuitively, if the neighboring depth maps are esti-

mated more accurately, the depth map of the reference im-

age will be further boosted. Thus, we conduct geometric

consistency guidance twice to refine depth maps at each s-

cale in our experiments.

5.2. Detail Restorer

The multi-scale geometric consistency guidance on the

one hand helps with the estimation of low-textured areas but

on the other hand often leads to blurred details. At the coars-

er scales, the lost image details directly cause the loss of

their depth information. Additionally, the fixed patch win-

dow size makes ACMH hard to achieve a trade-off between

thin structures and low-textured areas because the local pla-

nar assumption does not hold for details [14, 35, 31]. Fur-

thermore, although upsampling can spread the reliable esti-

mates in low-textured areas to larger regions, it also brings

some extra errors in details. However, we observe that these

details can be better estimated at the original image scale

with only photometric consistency (Figure 4(c)). Thus, we

consider how to leverage photometric consistency to probe

erroneous estimates in details and correct them.

As shown in Figure 4(a), the blurred details often hap-

pen in thin structures or boundaries. We hope to detect

these regions and only enforce photometric consistency in

these specific regions to rectify the erroneous estimates. We

observe that the difference map of photometric consisten-

cy cost between adjacent scales can magnify the errors in

details while suppressing the reflection of reliable estimates

in low-textured areas (Figure 4(e)). Thus, we can leverage

this difference map to probe the errors in details and cor-

rect them in a unified way. Specifically, after we upsample

the estimates (i.e., depth and normal) of the previous scale,

we use them to recompute the photometric consistency cost

Cl
init at the current scale. Then, we execute the basic MVS

model to get new photometric consistency cost Cl
photo. The

estimate for pixel p will be considered as an error if the dif-

ference of photometric consistency cost fulfills

Cl
init(p)− Cl

photo(p) > ξ, (10)

where ξ is a small constant value that increases the robust-

ness to distinguish the erroneous estimates. Meanwhile, the

erroneous estimates will be replaced by the hypotheses re-

flecting the above difference. By combining the detail re-

storer, ACMM can make a better trade-off between low-

textured areas and details as shown in Figure 4(f).

6. Fusion

After getting all depth maps, we adopt a fusion step sim-

ilar to [8, 19] to merge them into a complete point cloud.
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Figure 4. Absolute error maps and photometric consistency cost maps on Fountain-P11 dataset for different methods. (a) shows the absolute

error map of our method without detail restorer. Its depth map is obtained by upscaling the estimation of the penultimate scale. Details are

not preserved. (b) shows the photometric consistency cost map of (a). (c) shows the absolute error map of our basic MVS model. Its details

are better preserved than (a). (d) shows the photometric consistency cost map of (c). (e) shows the difference map of (b) and (d). The cost

difference of the erroneous estimates in details is more discriminative than the cost difference of the reliable estimation in low-textured

areas. (f) shows the absolute error map of ACMM. For absolute error maps, green pixels encode missing ground truth data, red pixels

encode an absolute error larger than 2cm, and pixels with absolute errors between 0 and 2cm are encoded in gray [255, 0].

Specifically, we cast each image as reference image in turn,

convert its depth map to 3D points in world coordinate and

project them to its neighboring views to get corresponding

matches. We define a consistent match satisfying the rela-

tive depth difference ǫ ≤ 0.01, the angle between normals

θ ≤ 30◦ and the reprojection error ψ ≤ 2 as in [19]. If there

exist n ≥ 2 neighboring views whose corresponding match-

es satisfy the above constraints, the depth estimate will be

accept. At last, the 3D points and normal estimates corre-

sponding to these consistent depth estimates are averaged

into a unified 3D point.

7. Experiments

We evaluate our method on two MVS datasets, Strecha

dataset [27] and ETH3D benchmark [21], from two per-

spectives, depth map assessment and point cloud evaluation.

7.1. Datasets and Settings

Strecha dataset [27] comprises two scenes with ground

truth depth maps, Fountain and HerzJesu. They have 11
and 8 images respectively with 3072× 2048 resolution. Al-

though Strecha dataset provides relatively easy (i.e., well-

textured) scenes and its online service is not available any-

more, there are many state-of-the-art methods evaluating

their depth maps on it. Thus, we will first utilize Strecha

dataset to assess the quality of depth maps. ETH3D bench-

mark [21] consists of three scenarios corresponding to dif-

ferent tasks for (multi-view) stereo algorithms. It is more

challenging for containing a diverse set of viewpoints and

scene types. Here we only focus on high-resolution multi-

view stereo dataset with images at a resolution of 6048 ×
40321. Additionally, the high-resolution multi-view stere-

o dataset contains training datasets and test datasets. The

training datasets provide not only ground truth point clouds

but also ground truth depth maps, while the ground truth of

the test datasets is withheld by the benchmark’s web site.

1In fact, we resize this imagery to no more than 3200 pixels for each

dimension as [19] does.

All of our experiments are conducted on a machine

with two Intel E5-2630 CPUs and two GTX Titan X G-

PUs. In the multi-hypothesis joint view selection scheme,

{τ0, τ1, α, β, n1, n2} = {0.8, 1.2, 90, 0.3, 2, 3}. In our ge-

ometric consistency guidance strategy and detail restorer,

{k, η, δ, λ, ξ} = {3, 0.5, 3, 0.2, 0.1}. Note that, we use only

every other row and column in the window to speed up the

computation of matching cost [8].

7.2. Depth Map Evaluation

We evaluate our method’s effectiveness on depth map es-

timation on Strecha dataset and ETH3D benchmark in this

section. Following [12], we calculate the percentage of pix-

els with a absolute depth error less than 2cm and 10cm from

the ground truth in Table 1. To show the effectiveness of

the structured region information, we replace the adaptive

checkerboard sampling and multi-hypothesis joint view s-

election in ACMH with the diffusion-like propagation and

top-k-winners-take-all view selection, denoted as DWTA.

As can be seen, with the structured region information,

ACMH performs better than DWTA and is also competitive

with COLMAP [19] without geometric consistency. Fur-

thermore, we see that ACMM surpasses ACMH by a note-

worthy margin and almost achieves the best performance

in this dataset. Note that, HerzJesu contains more low-

textured areas and CMPMVS[13] performs a bit better than

ACMM on it in the case of 2cm. This is because CMP-

MVS is a global energy-based method that mainly focus-

es on weakly-supported surface. However, on the Foun-

tain dataset that contains more details, ACMM is much bet-

ter than CMPMVS in the case of 2cm. We also note that,

COLMAP is a representative algorithm among local meth-

ods. ACMM outperforms COLMAP in the case of 2cm, al-

though there is no significant difference in the case of 10cm.

To reflect more challenges such as low-textured areas

and thin structures in real-world scenes, we further compare

our reconstructed depth maps with COLMAP2 on the high-

2Note that, the depth maps of COLMAP are obtained with its default

parameters and are unfiltered.
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Table 1. Percentage of pixels with absolute errors below 2cm and 10cm on Strecha dataset. The related values are from [12, 36, 19].

[19]\G means COLMAP without geometric consistency.

error [36] [32] [7] [33] [28] [13] [8] [19] [19]\G DWTA ACMH ACMM

Fountain
2cm 0.769 0.754 0.731 0.712 0.732 0.824 0.693 0.827 0.804 0.778 0.793 0.853

10cm 0.929 0.930 0.838 0.832 0.822 0.973 0.838 0.975 0.949 0.921 0.952 0.974

HerzJesu
2cm 0.650 0.649 0.646 0.220 0.658 0.739 0.283 0.691 0.679 0.614 0.656 0.731

10cm 0.844 0.848 0.836 0.501 0.852 0.923 0.455 0.931 0.907 0.804 0.873 0.932

Table 2. Percentage of pixels with absolute errors below 2cm and 10cm on the high-resolution multi-view training datasets of ETH3D

benchmark. The best results are marked in bold while the second-best results are marked in red.

error method
indoor outdoor

delive. kicker office pipes relief relief. terrai. courty. electro facade meadow playgr. terrace

2cm

[19] 0.697 0.435 0.263 0.411 0.863 0.858 0.576 0.826 0.710 0.742 0.546 0.709 0.808

DWTA 0.705 0.369 0.293 0.419 0.887 0.883 0.675 0.772 0.730 0.684 0.464 0.731 0.801

ACMH 0.733 0.427 0.323 0.536 0.891 0.903 0.714 0.799 0.748 0.685 0.571 0.753 0.820

ACMM 0.777 0.667 0.512 0.765 0.960 0.957 0.854 0.844 0.868 0.745 0.771 0.843 0.897

10cm

[19] 0.806 0.514 0.342 0.478 0.896 0.893 0.635 0.934 0.774 0.909 0.701 0.810 0.891

DWTA 0.815 0.451 0.382 0.496 0.918 0.918 0.738 0.910 0.810 0.899 0.647 0.844 0.894

ACMH 0.842 0.519 0.418 0.617 0.923 0.941 0.778 0.937 0.834 0.908 0.786 0.869 0.915

ACMM 0.930 0.800 0.648 0.839 0.982 0.984 0.904 0.973 0.947 0.934 0.917 0.951 0.980

(a) Reference image (b) Ground truth (c) COLMAP (d) DWTA (e) ACMH (f) ACMM

Figure 5. Qualitative depth map comparisons between different algorithms on some high-resolution multi-view training datasets (courty.,

electro, pipes) of ETH3D benchmark. Black pixels in (b) have no ground truth data. Some challenging areas are shown in white boxes.

resolution multi-view training datasets of ETH3D bench-

mark in Table 2. We see that ACMM clearly outperforms

COLMAP in these challenging datasets, especially in some

indoor datasets including poorly textured regions, such as

kicker, office and pipes. Moreover, ACMH almost achieves

the second-best performance. Figure 5 illustrates some ex-

amples of the depth maps estimated by COLMAP, DWTA,

ACMH and ACMM. As can be seen, ACMH also perform-

s better than DWTA and itself yields more robust results

than COLMAP and DWTA in low-textured areas as it lever-

ages the structured region information. Note that, although

COLMAP outperforms DWTA and ACMH in some well-

textured datasets such as court. and facade, it performs

worse than DWTA and ACMH in some challenging datasets

such as electro and office. This is because COLMAP cannot

gain robust belief in challenging regions to infer pixelwise

view selection. Combined with the multi-scale scheme,

ACMM can further boost the estimation in these regions.

Moreover, the details are also kept.

7.3. Point Cloud Evaluation

In this section, fusion is imposed to get more consistent

point clouds. We evaluate our point clouds on the high-

resolution multi-view test datasets of ETH3D benchmark.

Table 3 lists the accuracy, completeness and F1 score

of the point clouds estimated by PMVS [7], Gipuma [8],

LTVRE [16], COLMAP, ACMH and ACMM. All these

methods show similar results in accuracy. In terms of F1

score, ACMH is competitive with other methods for its

good depth map estimation. And, ACMM outperforms oth-

er methods as it inherits the structured region property of

ACMH and combines with the multi-scale scheme. Fur-

thermore, ACMM obtains much higher completeness than

other methods on indoor datasets that contain more low-

textured areas. This is because ACMM perceives more

credible information in these areas. As for outdoor datasets,
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(a) Images (b) PMVS (c) Gipuma (d) COLMAP (e) LTVRE (f) ACMH (g) ACMM

Figure 6. Qualitative point cloud comparisons between different algorithms on some high-resolution multi-view test datasets (living., old

co.) of ETH3D benchmark. These dense 3D models are reported by the ETH3D benchmark evaluation server [20].

Table 3. Point cloud evaluation on the high-resolution multi-view

test datasets of ETH3D benchmark showing accuracy / complete-

ness / F1 score (in %) at different evaluation thresholds (including

2cm and 10cm). The related values are from [20].
method 2cm 10cm

indoor

PMVS 90.66 / 28.16 / 40.28 96.97 / 42.50 / 55.40

Gipuma 86.33 / 31.44 / 41.86 98.31 / 52.22 / 65.41

LTVRE 93.44 / 63.54 / 74.54 99.34 / 82.72 / 89.92

COLMAP 91.95 / 59.65 / 70.41 98.11 / 82.82 / 89.28

ACMH 91.14 / 64.81 / 73.93 98.76 / 82.61 / 89.42

ACMM 90.99 / 72.73 / 79.84 97.79 / 88.22 / 92.50

outdoor

PMVS 88.34 / 42.89 / 55.82 95.95 / 55.17 / 68.12

Gipuma 78.78 / 45.30 / 55.16 97.36 / 62.40 / 75.18

LTVRE 91.82 / 74.45 / 81.41 98.72 / 90.18 / 94.19

COLMAP 92.04 / 72.98 / 80.81 98.64 / 89.70 / 93.79

ACMH 83.96 / 80.03 / 81.77 97.51 / 90.57 / 93.87

ACMM 89.63 / 79.17 / 83.58 98.85 / 90.43 / 94.35

all

PMVS 90.08 / 31.84 / 44.16 96.71 / 45.67 / 58.58

Gipuma 84.44 / 34.91 / 45.18 98.07 / 54.77 / 67.86

LTVRE 93.04 / 66.27 / 76.25 99.18 / 84.59 / 90.99

COLMAP 91.97 / 62.98 / 73.01 98.25 / 84.54 / 90.40

ACMH 89.34 / 68.62 / 75.89 98.44 / 84.60 / 90.53

ACMM 90.65 / 74.34 / 80.78 98.05 / 88.77 / 92.96

ACMM achieves almost the same completeness as ACMH

does. Figure 6 illustrates some qualitative results achieved

by these methods. It can be observed that, ACMM produces

more complete point clouds especially in the challenging ar-

eas, e.g., red boxes shown in Figure 6.

7.4. Runtime Performance

We list the runtime of depth map generation for different

methods that belong to the scope of PatchMatch Stereo in

Table 4. All these methods are conducted on a single G-

PU through our same platform3. ACMH and Gipuma both

converge after 6 iterations while COLMAP adopts 10 itera-

tions. For ACMM, it needs 7 iterations at the coarsest scale

and 6 iterations at other scales. As Table 4 shows, ACMH

is around 6× faster than COLMAP. This is because the se-

quential propagation of COLMAP only updates the status

of one row (column) of pixels at a time and its each iter-

3Note that, all these methods use only every other row and column in

the window to compute the matching cost.

Table 4. Runtime (in second) of depth map generation for different

methods on Strecha dataset.
dataset #images Gipuma COLMAP ACMH ACMM

Fountain 11 235.58 1046.88 173.55 321.66

HerzJesu 8 134.34 709.14 88.85 141.26

ation needs propagations in 4 directions. Though ACMH

and Gipuma both leverage the checkerboard propagation,

ACMH is also faster than Gipuma. This is mainly because

Gipuma employs a bisection refinement, which produces

more unnecessary hypotheses to test. As for ACMM, it

spends extra computational time on multi-scale geometric

consistency scheme. However, ACMM takes no more than

twice the runtime spent by ACMH as its geometric con-

sistency at the coarser scales is conducted on downsampled

images. Therefore, it is still about 3× faster than COLMAP.

8. Conclusion

In this work, we propose a novel multi-view stereo

method for effective and efficient depth map estimation.

Based on structured region information, we first present our

basic MVS method with Adaptive Checkerboard sampling

and Multi-Hypothesis joint view selection (ACMH). These

strategies help to propagate good hypotheses as soon as pos-

sible and infer pixelwise view selection. Focusing on the

depth estimation in low-textured areas, we further combine

ACMH with our proposed multi-scale geometric consisten-

cy guidance scheme (ACMM). The multi-scale geometric

consistency together with a detail restorer helps obtain more

discrimination over low-textured areas while retaining fine

details. In experiments, we demonstrate that our method-

s can obtain smooth and consistent depth map estimation

together with complete dense 3D models while keeping a

good efficiency, which shows promising applications of our

methods.
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