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Abstract

Recent deep neural networks (DNN) utilize identity map-

pings involving either element-wise addition or channel-

wise concatenation for the propagation of these identity

mappings. In this paper, we propose a new propagation

mechanism called channel-wise addition (cAdd) to deal

with the vanishing gradients problem without sacrificing

the complexity of the learned features. Unlike channel-

wise concatenation, cAdd is able to eliminate the need to

store feature maps thus reducing the memory requirement.

The proposed cAdd mechanism can deepen and widen exist-

ing neural architectures with fewer parameters compared to

channel-wise concatenation and element-wise addition. We

incorporate cAdd into state-of-the-art architectures such as

ResNet, WideResNet, and CondenseNet and carry out ex-

tensive experiments on CIFAR10, CIFAR100, SVHN and

ImageNet to demonstrate that cAdd-based architectures are

able to achieve much higher accuracy with fewer parame-

ters compared to their corresponding base architectures.

1. Introduction

After the impressive performance of deep neural network

[17] at the ImageNet [3] 2012 competition, there has been

a rapid introduction of new neural network architectures

with improved performance. These architectures include

ResNet [7], Wide-ResNet [32], ResNeXt [31], Pyramid-

Net [6], DenseNet [12], Dual Path Network [2], MobileNet

[10], Shake-Shake Net [4], ShuffleNet [33], CondenseNet

[11] etc. Recent attempts to use the sheer power of numer-

ous GPU servers to automatically search for good neural

network architectures have led to NASNet [34], EAS [1],

ENAS [22] and AmoebaNets [24]).

One trend that is consistent across these neural network

architectures is that a deeper and wider neural network often

yields better performance. However, a deep and wide net-

work suffers from the problem of vanishing gradient as well

as a quadratic growth in the number of parameters. Further,

the computational complexity and memory requirements

also escalate in these architectures which are formidable for

scalable learning in real world applications.

It remains non-trivial to design neural architectures that

can address the vanishing gradient problem, yet are capable

of capturing complex features to significantly lift the per-

formance of the learned models which are also sufficiently

small in size to reduce power consumption and potentially

be deployable on IoT devices and mobile platforms.

We observe that the depth of a neural architecture is key

to its performance. Current neural architectures use iden-

tity mappings in the form of skip connections to increase

their depth. This allows the gradient to be passed back-

wards directly thus allowing the increase in depth without

the issue of vanishing gradients. The propagation of these

identity mappings from one block to the next is achieved

either via element-wise addition (eAdd) [7] or channel-wise

concatenation (cCon) [12]. Figure 1 shows these propaga-

tion mechanisms. In eAdd, addition is performed on the

corresponding elements, hence the input size for each unit

remains the same. On the other hand, cCon concatenates the

inputs from all the preceding units, thus increasing the in-

put size quadratically for each subsequent units. As a result,

cCon can learn more complex features, however, it needs

more memory to store the concatenated inputs [23] .

(a) Element-wise addition

(b) Channel-wise concatenation

Figure 1. Propagation mechanism of element-wise Addition

(eAdd) and channel-wise Concatenation (cCon).
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Figure 2. General architecture of a deep neural network using cAdd.

In this work, we propose a novel propagation mecha-

nism, called channel-wise addition (cAdd), that can be eas-

ily incorporated into any of the state-of-art neural architec-

tures to reduce the computational and memory requirements

while achieving high accuracy. In order to keep the memory

requirement small, we sequentially produce small residual

part and add them to part of channels of the identity part in

one unit. The unit is repeated multiple times until all the

channels are added. With this, the depth of a network is

increased while the number of parameters is reduced.

Figure 2 shows a general architecture of a neural net-

work using cAdd. It has several stages and the cAdd units

within each stage have the same resolution for both input

and output feature maps to allow for channel-wise addition.

The resolution across the stages may be different as they

could be down-sampled by transition units. This design has

several advantages:

1. Vanishing gradient can be alleviated since cAdd also

has a shortcut that allows the gradient to bypass the

unit directly.

2. Less memory is needed since cAdd adds back the out-

put features instead of concatenation, thus keeping the

input size the same for each unit.

3. More complex features can be generated as cAdd sig-

nificantly increases the width and depth of CNNs.

4. Fewer parameters and FLOPs compared to existing

neural networks with the same width and height.

Extensive experiments on CIFAR10 [16], CIFAR100

[16], SVHN [21] and ImageNet [3] datasets demon-

strate that cAdd-based neural networks consistently achieve

higher accuracy with fewer number of parameters compared

to the original networks that use either eAdd or cCon.

2. Related Work

Neural Networks using eAdd. Depth is vital for neural

networks to achieve higher performance. However, it is

hard to optimize deep neural networks. Element-wise ad-

dition was introduced in ResNet [7] to significantly deepen

the neural network and ease the training process [8]. It has

been widely used in many deep neural networks, including

Inception-ResNet [29], Wide-ResNet [32], ResNeXt [31],

PyramidNet [6], Shake-Shake Net [4], and ShuffleNets

[33]. It is also adopted by AlphaGo [26] and the automati-

cally designed architectures, like NASNet [34], ENAS [22],

and AmoebaNets [24].

The width of a neural network is also crucial to gain

accuracy. Unlike ResNet, which achieves higher perfor-

mance by simply stacking element-wise addition, Wide-

ResNet widens the network by increasing the input chan-

nels along the depth. Experimental results show a 16-layer

Wide-ResNet can outperform a thousand-layer ResNet in

both accuracy and efficiency. For Wide-ResNet, the in-

crease in width occurs only between stages, and the input

size within a stage remains the same. PyramidNet gradually

increases its width in a pyramid-like shape with a widen-

ing step factor, which has been experimentally proven to

improve generalization ability. ResNext uses multi-branch

element-wise additions, by replacing the only branch with

a set of small homogeneous branches. Simply adding more

branches can improve the the performance of ResNext. In-

stead of directly summing up all the small branches, Shake-

shake Net uses a stochastic affine combination to signifi-

cantly improve the generalization ability.

Unlike the manually designed architectures which need

human expertise, automatically designed architectures

search the entire architecture space to find the best de-

sign. Although the learned architectures have many differ-

ent small branches, the distinct characteristic is that they all

use eAdd to sum up the branches. Since eAdd requires the

output size to be at least the same or larger than the input

size, a neural network can go deeper or wider, but not both

when the number of parameters is limited. In contrast, the

proposed cAdd can both deepen and widen a neural network

for the same number of parameters.

Neural Networks using cCon. Channel-wise concatena-

tion was first used in DenseNet [12]. Features from all pre-

ceding units are used as inputs to generate a small number

of outputs, which are passed to subsequent units. While this

strengthens feature propagation and reuse, not all prior fea-

tures need to be used as inputs to every subsequent layer.

As such, CondenseNet selects only the most relevant in-

puts through an learned group convolution [11]. It spar-

sifies the convolutional layer by pruning away unimportant

filters during the condensing stage, and optimizes the spar-

sified model in the second half of the training process. Con-

denseNet is more efficient than the compact MobileNes [10]

and ShuffleNets [33], which are designed for mobile de-

vices using depth-wise separable convolutions [15].
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Figure 3. Propagation mechanism within four cAdd units.

The best models obtained from automatically designed

architectures all utilize cCon, especially for the combination

of all the cell outputs. Since concatenation increases the in-

put size linearly, this also increases the number of param-

eters and memory requirements. In contrast, the proposed

cAdd is able to keep the input size constant by adding back

outputs to selected inputs.

3. Channel-wise Addition

The proposed cAdd propagation mechanism combines

the benefits of eAdd and cCon to deepen and widen neural

networks yet using fewer parameters. The key idea is that

each unit must generate a small number of output channels

whereby the generated outputs are then added back to the

corresponding skipped connections to form the inputs to the

next unit. Figure 3 shows the propagation across 4 units

using cAdd. The first cAdd unit generates 3 outputs which

are then added back to the first 3 skipped connections to

form the inputs to the second cAdd unit.

Suppose M is the number of input channels. To ensure

all the skipped connections are covered, we group the in-

put channels of each unit into non-overlapping parts. The

size of each part is controlled by a parameter α such that

each part has exactly ⌊M/α⌋ channels except the final part

which has ⌊M/α⌋ + R channels where R is the remaining

channels. In Figure 3, we see that the second input part

(green parallelogram) has ⌊M/α⌋ = 3 channels and these

are covered by the addition to the outputs of the cAdd2 unit,

while the third and final input part (blue parallelogram) has

⌊M/α⌋ + R = 4 channels and they are covered by the ad-

dition to the outputs of the cAdd3 unit.

In order for the addition operation to make sense, the

number of generated outputs from a unit must match the

number of channels to be covered in the next unit. Mathe-

matically, the number of output channels for the kth cAdd

unit is given by:
{

⌊M/α⌋ , k% α 6= 0

⌊M/α⌋+M% α, otherwise
(1)

We show that the cAdd propagation mechanism is able

to alleviate the vanishing gradient problem. Let X =
[x1,x2, · · · ,xM ] be the input to a cAdd unit, and Y =
[y1,y2, · · · ,yN ] be the output of X after passing through

the non-linear transformation function F(·) of the convo-

lutional block, which may have different layers consisting

of batch normalization [14] (BN), rectified linear units [5]

(ReLU), and convolution layers (Conv). that is,

Y = F(X) (2)

The cAdd unit adds back its outputs Y into part of its

inputs X to form the inputs X
′

for the next unit as follows:

X′ = X+TY (3)

where T is a M × N sparse matrix, Tij = 1 if yj is to be

added to xi.

With Equations 2 and 3, we have:

X′ = X+T · F(X) (4)

Let us consider the propagation from cAdd unit s to

cAdd unit e whose corresponding inputs are Xs and Xe

respectively. We have

Xe = Xs +

e−1
∑

i=s

Ti · F(Xi) (5)

Let E be the error loss. The gradient on Xs can be ex-

pressed as:

∂E

∂Xs
=

∂E

∂Xe

∂Xe

∂Xs
=

∂E

∂Xe

(

1 +
e−1
∑

i=s

Ti · ∂F(Xi)

∂Xs

)

(6)

Since it is not possible for all the training samples within

a batch to have the component
∑e−1

i=s Ti · ∂F(Xi)
∂Xs in Equa-

tion (6) to be always equal to -1, this implies that gradient

is unlikely to be 0, thus alleviating the vanishing gradient

problem.
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4. Architectures using cAdd

The proposed cAdd propagation mechanism can be eas-

ily incorporated into existing neural networks. There are

two kinds of units in neural networks, namely, basic and

bottleneck units. We use the following notations for the dif-

ferent layers in a unit:

• Conv(I , O, L, L). Convolution layer with I input

channels, O output channels, and kernel size L× L.

• BN(I). Batch normalization with I input channels.

• ReLU. Rectified linear unit.

We first consider networks that use eAdd propagation

mechanism. In the eAdd basic unit, the number of output

channels must be the same as that of the input channels for

element-wise addition. This constraint is no longer required

when we replace eAdd by cAdd. Recall Equation 1 where

the number of output channels in cAdd is determined by α.

A large α will imply a significant reduction in the number of

output channels. Figure 4 shows that the initial convolution

layer of cAdd basic unit is Conv(M , M/α, L, L) instead of

eAdd basic unit from Conv(M , M , L, L).

(a) eAdd (b) cAdd

Figure 4. Basic unit using eAdd vs cAdd

The eAdd bottleneck unit uses convolution layer with

kernel size 1×1 [19] to spatially combine large numbers of

input feature maps with few parameters (see Figure 5(a)).

Due to the element-wise addition requirement, an additional

convolution layer is needed to expand the size of the out-

put channels back to M . However, this is not needed for

channel-wise addition. Figure 5(b) shows the correspond-

ing bottleneck unit that uses cAdd.

Adapting cCon-based neural networks to use the cAdd

propagation mechanism is straightforward. Instead of using

the growth rate g to determine the number of output chan-

nels in both the basic and bottleneck units, we use Equa-

tion 1. Figure 6 shows the basic unit using cAdd vs cCon

where the convolution layer is Conv(M , M/α, L, L) in-

stead of Conv(M , g, L, L).

Similar adaptations can be made to neural architecture

variants such as PyramidNet [6].

(a) eAdd (b) cAdd

Figure 5. Bottleneck unit using eAdd vs cAdd

(a) cCon (b) cAdd

Figure 6. Basic unit using cCon vs cAdd

We analyze the number of parameters required in a neu-

ral architecture that uses cAdd vs eAdd or cCon. We assume

that the neural architecture has U basic units, and each unit

has M input channels with size of h× w. For fair compar-

ison, we assume that the growth rate g for a cCon unit is

M/α so that the cCon unit has the same number of output

as cAdd. Table 1 gives the number of parameters required.

Number of Parameters

eAdd basic unit 2 ∗ U ∗M2 ∗ L2

corresponding cAdd unit U ∗M2 ∗ L2 ∗ (1/α+ 1/α2)

cCon basic unit U ∗M2/α ∗ L2 +

(M/α)2 ∗ L2 ∗ (U2 − U)/2
corresponding cAdd unit U ∗M2/α ∗ L2

Table 1. Comparison of number of parameters required.

We see that a neural network using cAdd has approxi-

mately 2α times fewer parameters compared to a network

that uses eAdd. That is, with the same number of param-

eters, the depth of a neural network using cAdd can be in-

creased by 2α, or the width can be increased by
√
2α com-

pared to using eAdd. Such an increase can improve the

generalization ability of the neural networks, thus leading

higher accuracy. Clearly, the number of parameters required

by cCon in Table 1 have more parameters than cAdd. The

residual part of (M/α)2 ∗ L2 ∗ (U2 − U)/2 is introduced

by concatenation operation.
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We also compare the number of FLOPs required Table 2

shows that a neural network using cAdd requires approxi-

mately 2α and (1 + U−1
2α ) times fewer FLOPs compared to

a network that uses eAdd and cCon respectively.

Number of FLOPs

eAdd basic unit 2M2L2hwU +MhwU
corresponding cAdd unit (1/α+ 1/α2)M2L2hwU +

1/αMhwU

cCon basic unit 1/αM2L2hwU +

1/α2M2L2hw(U2 − U)/2
corresponding cAdd unit 1/αM2L2hwU + 1/αMhwU

Table 2. Comparison of FLOPs required.

5. Experimental Evaluation

We carry out experiments to compare the performances

of neural architectures that use cAdd, eAdd and cCon. We

incorporate cAdd into three widely used CNN architectures,

namely ResNet, WRN and CondenseNet, and call them

cResNet, cWRN and cCondenseNet respectively. Each ar-

chitecture has 3 stages.

We train these networks using stochastic gradient de-

scent with nesterov momentum [28] of 0.9 without damp-

ening, and a weight decay of 10−4. For fair comparison, all

the training settings (learning rate, batch size, epochs, and

data augmentations) are the same as in the original papers,

unless otherwise specified. The following datasets are used:

• CIFAR10 [16]: It has 10 object classes with 6,000

32x32 color images for each class. There are 50,000

images for training and 10,000 for testing.

• CIFAR100 [16]: It has 100 classes with 600 32x32

color images for each class. The training and testing

sets contain 50,000 and 10,000 images respectively.

• SVHN [21]: This has over 600,000 32x32 images of

real-world house numbers. There are 73,257 images

for training, 26,032 for testing, and additional 531,131

for extra training.

• ImageNet [3]: It has 1,000 classes. The training set

has 1.2 millon images and validaiton set has 50,000

images.

5.1. ResNet vs cResNet

In this set of experiments, we examine the performance

of ResNet with cResNet. Like ResNet, we train all the

cResNet (α = 7) for 300 epochs with batch size of 128.

The learning rate starts from 0.1 and is reduced by 10 after

the 150th and 225th epoch. For the 1224-layer cResNet, the

initial learning rate is 0.01 for the first 20 epochs, and then

go back to 0.1 to continue the training.

Table 3 gives the results of ResNet, pre-activation

ResNet, and cResNet on CIFAR10, CIFAR100, and SVHN

datasets. ResNet-20 with 0.27 million parameters has a

depth of 20, and its width for three stages are 16, 32, and

64 respectively. In contrast, cResNet-86 with comparable

number of parameters (0.21 million) has a depth of 86, and

its corresponding width are 84, 112, and 140. The increased

width and depth in cResNet-86 over ResNet-20 enables it

to have a much higher accuracy on CIFAR10. In fact, the

accuracy of cResNet-86 beats ResNet-56 on CIFAR10, CI-

FAR100 and SVHN datasets, which has four times the num-

ber of parameters.

When we increase the width of cResNet-86 to 168-196-

308 so that it has comparable number of parameters (0.84

million) as ResNet-56, the gap in accuracy widens signifi-

cantly. cResNet-86 even outperforms ResNet-110, ResNet-

164 and pre-activation ResNet-164, which have twice the

number of parameters. We see that cResNet-170 with

1.65 million parameters gives the best results over all the

ResNets and pre-activation ResNets.

We observe that ResNet-1202 has 19.4 million parame-

ters, yet its error rate is higher than ResNet-110, possibly

due to over-fitting [7]. On the other hand, our cResNet-

1224, which is much wider and deeper than ResNet-1202,

achieves the lowest top-1 error rate of 4.06 on CIFAR10.

Figure 7 shows the top-1 error rates of the cResNet and

ResNet on CIFAR10 dataset as we vary the number of pa-

rameters. Clearly, the error rate of cResNet is always lower

than ResNet for the same number of parameters. We ob-

serve that ResNet at its lowest error rate has 8 times more

parameters than cResNet.

Figure 7. ResNet vs. cResNet on CIFAR10.

5.2. WRN vs cWRN

Next, we compare the performance of WRN with

cWRN. Similar to WRN, we train cWRN (α = 7) for 200

epochs with batch size of 128. The learning rate starts from

0.1, annealed by a factor of 5 times after the 60th, 120th,

and 160th epochs for CIFAR10 and CIFAR100 datasets.

For SVHN dataset, cWRN are trained for 160 epochs with

batch size of 128, and is optimized by dividing the initial

learning rate of 0.01 by 10 after the 80th and 120th epochs.
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Architecture Width # Params CIFAR10 CIFAR100 SVHN

ResNet-20 [7] 16-32-64 0.27M 8.75 - -

ResNet-32 [7] 16-32-64 0.46M 7.51 - -

ResNet-44 [7] 16-32-64 0.66M 7.17 - -

ResNet-56 [7] 16-32-64 0.85M 6.97 28.25 ∗ 2.49 ∗

ResNet-110 [7] 16-32-64 1.73M 6.61 ± 0.16 27.22 † 2.01 †

ResNet-164 [7] 16-32-64 1.70M - 25.16 -

ResNet-1001 [7] 16-32-64 10.2M - 27.82 -

ResNet-1202 [7] 16-32-64 19.4M 7.93 - -

Pre-activation ResNet -164 [8] 64-128-256 1.7M 5.46 24.33 -

Pre-activation ResNet -1001 [8] 64-128-256 10.2M 4.92 22.71 -

cResNet-86 84-112-140 0.21M 6.37 ± 0.09 27.45 ± 0.11 2.09 ± 0.07

cResNet-86 168-196-308 0.84M 4.76 ± 0.07 23.35 ± 0.17 2.04 ± 0.07

cResNet-170 196-224-280 1.65M 4.33 ± 0.04 21.33 ± 0.20 1.92 ± 0.06

cResNet-1224 196-224-280 13.185M 4.06 - -

Table 3. Top-1 error rate of ResNet and cResNet. Width is the number of input channels in the three stages. ∗ indicates results are from

[30] and † shows results are from [13], Results for cResNet are averaged over 5 runs in the format of “mean±std”.

Architecture Width # Params CIFAR10 CIFAR100 SVHN

WRN-52-1 [32] 16-32-64 0.76M 6.43 28.89 2.08

WRN-16-4 [32] 64-128-256 2.75M 5.02 24.03 1.85

WRN-40-4 [32] 64-128-256 8.95M 4.53 21.18 -

WRN-16-8 [32] 128-256-512 11.00M 4.27 20.43 -

cWRN-130-2 98-126-154 0.39M 6.32 ± 0.10 26.75 ± 0.20 1.99 ± 0.06

cWRN-130-4 196-252-308 1.52M 4.87 ± 0.09 22.4 ± 0.19 1.81 ± 0.05

cWRN-172-6 294-378-462 4.41M 4.34 ± 0.09 20.87 ± 0.13 -

cWRN-172-8 392-504-616 7.80M 4.26 ± 0.07 19.78 ± 0.17 -

cWRN-88-13 637-819-1001 10.90M 4.04 ± 0.09 19.33 ± 0.13 -

Table 4. Top-1 error rate of WRN and cWRN. Width is the number of input channels in the three stages. Results for cWRN are averaged

over 5 runs in the format of “mean±std”.

Table 4 gives the results. All the cWRN are much wider

and deeper compared to the corresponding WRN, and are

able to achieve lower top-1 error rates with fewer parame-

ters on all three datasets. Specifically, cWRN-130-2 outper-

forms WRN-52-1 with half the parameters (0.39 million vs.

0.76 million) on all three datasets. Overall, cWRN-88-13

gives the best performance.

Figure 8 shows the top-1 error rates of the cWRN and

WRN on CIFAR10 dataset as we vary the number of pa-

rameters. We see that cWRN has 1.4 times fewer parame-

ters than WRN for the same error rate.

5.3. CondenseNet vs cCondenseNet

Finally, we examine the performance of using cAdd in

CondenseNet. We train all the cCondenseNet (α = 6) for

300 epochs with a batch size of 64, and use a cosine-shaped

learning rate from 0.1 to 0. For cCondenseNet-254, we train

for 600 epochs with a dropout rate [27] of 0.1 to ensure fair

comparison with CondenseNet-182.

Table 5 shows the results with cCondenseNet-254 giv-

Figure 8. WRN vs. cWRN on CIFAR10.

ing the best performance on both CIFAR10 and CIFAR100.

It has 456 input channels which is 38 times the width of

CondenseNet-182, and 254 convolutional layers which is

1.4 times the depth of CondenseNet-182. We see that

cCondenseNet-146 and cCondenseNet-110 are much wider

and deeper with fewer parameters compared to their coun-

terparts CondenseNet-86 and CondenseNet-50. In partic-
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Architecture Width # Params CIFAR10 CIFAR100

CondenseNet-50 [11] 8-16-32 0.22M 6.22 -

CondenseNet-74 [11] 8-16-32 0.41M 5.28 -

CondenseNet-86 [11] 8-16-32 0.52M 5.06 23.64

CondenseNet-98 [11] 8-16-32 0.65M 4.83 -

CondenseNet-110 [11] 8-16-32 0.79M 4.63 -

CondenseNet-122 [11] 8-16-32 0.95M 4.48 -

CondenseNet-182 [11] 12-24-48 4.22M 3.76 18.47

cCondenseNet-110 96-144-192 0.19M 5.74 ± 0.08 27.40 ± 0.15

cCondenseNet-146 168-216-264 0.50M 4.64 ± 0.08 23.44 ± 0.11

cCondenseNet-254 456-504-576 4.16M 3.40 ± 0.09 18.20 ± 0.13

Table 5. Top-1 error rate of CondenseNet and cCondenseNet. Width is the number of input channels or growth rate in the three stages.

Results for cCondenseNet are averaged over 5 runs in the format of “mean±std”.

Architecture Width # Params Top-1 error rate Top-5 error rate

CondenseNet-74 (G=C=4) [11] 8-16-32-64-128 4.8M 26.2% 8.3%

cCondenseNet-246 (G=C=4) 192-288-384-552-768 4.7M 25.4% 7.7%

ResNet-50 [7] 64-256-512-1024-2048 25.6M 24.7% 7.8%

ResNet-101 [7] 64-256-512-1024-2048 44.5M 23.6% 7.1%

cResNet-72 280-280-560-1120-2240 23.3M 23.7% 7.1%

Table 6. One-crop validation results on ImageNet. Width is the number of input channels or growth rate in the five stages

Figure 9. CondenseNet vs. cCondenseNet on CIFAR10.

ular, although cCondenseNet-110 has 0.03 million fewer

parameters than CondenseNet-50, its top-1 error rate is

smaller than that of CondenseNet-50, 5.74% versus 6.22%.

Figure 9 shows the top-1 error rates on CIFAR10. We

see that cCondenseNet has 1.4 times fewer parameters than

CondenseNet for the same error rate.

5.4. Experiments on ImageNet

We also compare the performances of the various neu-

ral architectures on the ImageNet dataset. Table 6 shows

the results. We observe that cResNet-72 achieves much

lower top-1 and top-5 error rates compared to ResNet-

50 with similar number of parameters. When we com-

pare ResNet-101 and cResNet-72 which has similar top-

1 and top-5 error rates, we see that cAdd-based architec-

ture requires only half the number of parameters. Similarly,

cCondenseNet-246 with 0.1 million fewer parameters out-

performs CondenseNet-74.

5.5. Depth vs. Width

Depth and width are vital dimensions for neural net-

works to achieve higher performance. Depth controls the

complexity of the learned features. A deeper neural network

can learn more complex features, while a wider network en-

ables more features to be involved in the final classification.

For cAdd based architectures, we have the flexibility of

either increasing the depth or the width or both and still

retain approximately the same number of parameters. Here,

we investigate the impact of the depth and width of a cAdd

based architecture on its classification accuracy.

We use ResNet-56 with 0.85 million parameters, and

CondenseNet-86 with 0.52 million parameters as the base-

lines, and design different cResNet and cCondenseNet with

approximately the same number of parameters at varying

depth and width. Table 7 shows the results on both CI-

FAR10 and CIFAR100 datasets.

We observe that the best performances are attained when

the increase in depth is balanced with the increase in width,

indicating that both depth and width are equally important.

This makes sense as the performance of a neural net de-

pends both on the number of features as well as the com-

plexity of these features.
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Architecture # Params Width Depth CIFAR10 CIFAR100

ResNet-56 [7] (Base-line) 0.85M 16-32-64 56 6.97 28.25

cResNet-44 0.86M 280-308-336 44 6.20 27.14

cResNet-86 0.81M 196-224-252 86 5.91 27.09

cResNet-128 0.89M 168-196-224 128 5.84 26.94

cResNet-170 0.88M 140-168-196 170 5.66 27.04

cResNet-212 0.89M 126-154-182 212 5.50 26.93

cResNet-254 0.88M 112-140-168 254 5.88 27.39

cResNet-296 0.86M 100-128-156 296 5.95 27.77

cResNet-338 0.82M 91-119-147 338 5.94 27.55

CondenseNet-86 [11] (Base-line) 0.52M 8-16-32 86 5.06 23.64

cCondenseNet-38 0.51M 312-360-384 38 5.08 25.29

cCondenseNet-74 0.49M 240-288-312 74 4.89 24.19

cCondenseNet-110 0.51M 216-240-288 110 4.73 24.02

cCondenseNet-182 0.51M 168-192-240 182 4.61 23.46

cCondenseNet-218 0.51M 144-192-216 218 4.94 23.56

cCondenseNet-254 0.49M 120-168-216 254 4.89 23.74

cCondenseNet-290 0.51M 120-168-192 290 4.86 24.19

cCondenseNet-326 0.51M 120-144-192 326 5.11 24.24

Table 7. Top-1 error rate of cResNet, and cCondenseNets on CIFAR10, and CIFAR100 datasets.

(a) eAdd vs. cAdd (b) cCon vs. cAdd

Figure 10. Neuron weights in the convolutional layer of architectures using cAdd, eAdd and cCon.

5.6. Norm of Weights

Weight norm measures the activeness of neurons dur-

ing feature learning [9, 11, 18, 20]. Figure 10 shows the

mean and standard deviation of the neuron weights within

each convolutional layer of the trained neural networks us-

ing cAdd (ResNet-26 and DenseNet-28), eAdd (ResNet-

26), and cCon (DenseNet-28). We observe that the neurons

in cAdd based networks have larger weights than eAdd and

cCon based networks. This indicates that cAdd neurons are

more active compared to eAdd and cCon neurons during

feature learning. One possible reason could be that many

of the weights in eAdd and cCon are close to zero and can

be pruned without sacrificing accuracy [9, 18, 20]. With

cAdd, we are able to reduce the number of weights, leading

to fewer parameters and higher accuracy.

6. Conclusion

In this paper, we have proposed a new channel-wise ad-

dition propagation mechanism to deepen and widen neu-

ral networks with significantly fewer parameters. We have

described how we can adapt state-of-the-art deep neu-

ral networks, namely, ResNet, WRN and CondenseNet

to use cAdd. Extensive comparative experiments on CI-

FAR10, CIFAR100, SVHN and ImageNet datasets show

that cAdd based neural architectures (cResNet, cWRN and

cCondenseNet) consistently outperform their correspond-

ing counterparts with higher accuracy, fewer parameters and

lower computational costs. Future work includes investigat-

ing how channel-wise addition can be incorporated to fur-

ther enhance the compact neural architectures for real world

deployment.
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