
Transferable AutoML by Model Sharing over Grouped Datasets

Chao Xue1, Junchi Yan2, Rong Yan1, Stephen M. Chu1, Yonggang Hu3, Yonghua Lin1

1IBM Research – China, 3IBM Systems
2Department of CSE and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University

{xuechao,yanrong,schu,linyh}@cn.ibm.com, yanjunchi@sjtu.edu.cn, yhu@ca.ibm.com

Abstract

Automated Machine Learning (AutoML) is an active

area on the design of deep neural networks for specific tasks

and datasets. Given the complexity of discovering new net-

work designs, methods for speeding up the search proce-

dure are becoming important. This paper presents a so-

called transferable AutoML approach that leverages previ-

ously trained models to speed up the search process for new

tasks and datasets. Our approach involves a novel meta-

feature extraction technique based on the performance of

benchmark models, and a dynamic dataset clustering algo-

rithm based on Markov process and statistical hypothesis

test. As such multiple models can share a common struc-

ture while with different learned parameters. The transfer-

able AutoML can either be applied to search from scratch,

search from predefined models, or transfer from basic cells

according to the difficulties of the given datasets. The

experimental results on image classification show notable

speedup in overall search time for multiple datasets with

negligible loss in accuracy.

1. Introduction and Related Work

With the wide adoption of deep networks, identifying

proper network architectures tailored to specific task and

dataset is attractive while it still mainly relies on human

expertise. This has motivated rapidly growing research on

automatically discovering the tailored network models1 for

training in a fully automatic fashion without human inter-

vention, which is referred to as AutoML.

There has been considerable literature on AutoML us-

ing methods based on genetic algorithms, random search,

Bayesian optimization, reinforcement learning and con-

tinuous differentiable methods. Genetic algorithm based

method [33] is introduced in the last century to find both

architectures and weights. However, they fail to match

1For deep learning, the meaning of ‘model’ in this paper includes both

the network architecture and learning related hyper-parameters.

the performance of handcrafted networks. [32] proposes

an evolutionary searching methods for generating architec-

tures. The accuracy approaches those of handcrafted mod-

els in some cases [14, 41, 15]. Similarly, random search

has been explored to choose hyper-parameters. [6] shows

empirically and theoretically that random search is more ef-

ficient than grid search for hyper-parameter optimization.

In particular, the method Hyperband [22] speeds up random

search using an early-stopping strategy to allocate resources

adaptively. Bayesian optimization [5, 34, 16, 12, 7] also

provides a sound foundation for AutoML. One choice for

Bayesian optimization is to model the generalization per-

formance as a sample from a Gaussian process (GP) [34],

which can reach expert-level optimization performance for

many machine learning algorithms. The work in [3] devel-

ops a Q-learning agent to pick the modules of the layers in

a neural network architecture. A Neural architecture search

(NAS) method proposed by [42] employs a policy gradient

method to learn networks from a recurrent network and has

achieved good results in tasks in both vision and language.

Recently, the continuous domain differentiable method has

gained interests for AutoML. Unlike evolution or reinforce-

ment learning that is over a discrete search space, DARTS

[25] uses a continuous relaxation of the architecture repre-

sentation and search the architecture by gradient descent.

However, most existing AutoML approaches require

considerable overhead for model searching. To improve

efficiency, one idea is to share information across differ-

ent trials. Multi-task Bayesian optimization and Gaussian

processes (GP) are proposed in [35, 8, 4]. In these meth-

ods, different datasets are regarded as different tasks, and

the covariances between hyper-parameter and task pairs are

defined. The multi-task Bayesian optimization and Gaus-

sian process show some success with established theoretical

foundation. Meanwhile warm-starting of sequential model-

based algorithm configuration is introduced by [24, 26, 30].

In [24], it exploits one trial’s performance to warm-start its

model configuration on the new job type. The work [26]

uses meta-learning for initializing the Bayesian optimizer

and automated ensemble construction from configurations

9002

evaluated during optimization. The work [30] learns model

similarity by building a shared (multi-task) representation

for the hyper-parameter space. While these multi-task and

warm-starting methods are based on GP or Bayesian op-

timization, Wong et al. [37] focus on sharing knowledge

across tasks in deep RL architecture. Net2Net [10] ac-

celerates the search process by transferring the knowledge

from a previous network to a new deeper or wider one, and

ENAS [31] shares weights for all child models to build a

one-shot model and thus it speeds up the convergence pro-

cess, which is similar to what DARTS [25] does. In [43] the

authors show the basic cell searched on CIFAR-10 can be

transferred to ImageNet classification without much modi-

fication. However, the interpretation of the effectiveness of

sharing model among different datasets is still not clear.

This paper addresses this important setting that more

than one datasets are combined to share one common struc-

ture of network due to their inherent correlation, while the

parameters are different and individually learned to fit with

each dataset. Such a mechanism can be used to achieve

a tradeoff between search time and model accuracy. Un-

der this setting, we propose a novel approach that involves

a meta-feature extraction technique and a dynamic dataset

clustering algorithm to reuse the appropriate model (archi-

tecture + hyper-parameters) for multiple datasets with a re-

duction in search time. Our method enjoys some flexibili-

ties against existing methods in three folds:

i) Search algorithms. Unlike multi-task solutions [35,

8, 4] designed for Bayesian optimization, or transfer learn-

ing with AutoML [37] based on reinforcement learning, our

approach can be easily combined with most existing Au-

toML techniques in an out-of-box fashion. Examples in-

clude genetic methods [32], reinforcement learning [3, 42],

Hyperband [22] and DARTS [25]. This is because our

method focuses on dataset clustering which is orthogonal

with the specific model search algorithm.

ii) Search mechanisms. Our transferable AutoML can

be applied to different search schemes: search from scratch;

search from predefined models (e.g. reuse GoogleNet archi-

tecture and weights of bottom layers to search an architec-

ture for higher layers) and transfer from basic cells (trans-

fer the searched normal/reduction cell [25, 31] of source

datasets to target datasets). This feature makes it more flex-

ible to handle datasets under limited time budget.

iii) Online setting. Our method can be used to the on-

line setting whereby the datasets come sequentially and one

need to search model for the new arrival datasets efficiently.

Specifically we develop techniques for dataset clustering

and model sharing among clustered datasets which has not

been well studied in literature to our best knowledge. The

main contributions and novelties of the paper are:

i) Meta-features extracting. To enable effective model

search and sharing, we propose a new meta learning method

for dataset feature representation using their evaluation re-

sults on a suite of benchmark models.

ii) Dataset clustering. The extracting meta-features

is then coupled with Markov process and hypothesis test

mechanism for dataset clustering. These two components

can handle Type II error and Type I error for dataset group-

ing (incorrectly accepting grouping and incorrectly reject-

ing grouping), respectively.

Now we present the overview of our approach. We first

represent a dataset dn with a benchmark model-specific

representation (see more details in Sec. 2.1) xn in the

dataset feature space. The basic idea is to leverage such a

meta-learning representation to measure the similarity over

datasets such that certain datasets can be grouped for model

search and sharing. Since the grouping need be performed

online, we adopt the Markov analysis for sequential clus-

tering using the above representation which also involves

the concept of cluster sets in the dataset feature space for

Bayesian inference. Such a clustering step can handle Type

II error. To control the Type I error, we further impose a

hypothesis test to inhibit the unwanted grouping.

As such, as the datasets continue to come, either a new

model will be searched for the new dataset by using some

AutoML methods, or the new dataset will be assigned to a

cluster set with existing datasets, to share with a common

model (including both hyper-parameters and architecture or

basic cell), though their weights are different.

2. Shared Model Search by Grouping Datasets

We first justify the motivation of our benchmark based

meta-learning method for dataset feature representation.

Then we adopt Markov analysis of sequential clustering and

statistical hypothesis tests to group datasets such that the

searched model can be reused within each group.

2.1. Dataset Feature Extraction

We introduce a meta learning method to express a dataset

d in a dataset feature space Ωd. To prove this representa-

tion can work well for AutoML, we consider the AutoML

problem first. The basic idea for AutoML is to identify the

model m from a given dataset d:

m∗ = argmax
m

p(m|d) (1)

It is reasonable to share m∗ among the datasets that above
posterior distributions conditioned on are closely approxi-
mated. To compare the posterior distributions over models
between two different datasets, p(m|d1) and p(m|d2), we
use Kullback-Leibler (KL) divergence:

KL (p(m|d1)||p(m|d2)) (2)

=

∫

p(m|d1) ln

{

p(m|d1)

p(m|d2)

}

dm

≈
∑

bi

p(bi)p(d1|bi)
∑

bj
p(bj)p(d1|bj)

ln

(

p(d1|bi)

p(d2|bi)

∑

bj
p(bj)p(d2|bj)

∑

bj
p(bj)p(d1|bj)

)

9003

The discretization approximation is close to the contin-

uous KL divergence when the benchmark model set {bi}
expands the whole model space. It is well known that the

relative entropy satisfies KL(p||q) ≥ 0 with equality if

and only if p(x) = q(x). Therefore, given some bench-

mark models sampled from the feasible model space, and if

the model evidences p(d|b) are similar over all benchmark

models between two datasets, the KL divergence in Eq. 2

is then approximated by 0. This leads to the feasibility for

sharing one model over multiple datasets which also lies

foundation for this paper.

Now we discuss how to use the benchmark models to

express a given dataset. Formally, assume there are B
benchmark (deep network) models in the model space:

b1, b2, . . . , bB . The configuration of benchmark models

spreads over different neural networks, w.r.t. the number

of hidden layers, the number of hidden unit, the kernel size,

the stride, the skip pattern, the number of nodes in a cell,

etc., as well as different hyper-parameters like learning rate,

weight decay, momentum, batch size etc.. Without loss of

generality, in this paper the benchmark model set is formed

by Monte Carlo sampling over the feasible region from uni-

form or log-uniform distribution. We leave more effective

construction for future work.

Then the dataset d can be represented by a feature vector

xn = f(d, b1, ..., bB) ∈ Ωd in the derived dataset feature

space Ωd. In particular the value at dimension i is set by:

xn(i) = g(dn, bi) where g(d, b) returns the evaluation re-

sult (e.g. accuracy) for dataset d using benchmark model b2.

Based on such a normalized representation, in the following

we will show how dataset grouping can be performed online

to reduce the overall model search overhead by model shar-

ing within the dataset group (see the comparison with the

peer method [26] in Table 2).

It is worth noting that there are alternative meta-learning

approaches [24, 26, 17] for dataset feature representations.

But our proposed method above is based on the benchmark

models’ performance probing to datasets. The hope is that

the similarity between datasets can be measured by their

closeness in terms of the model performance rather than

other criteria.

2.2. Markov Analysis for Sequential Clustering

To group the streaming datasets d1, d2, . . . , dn over time,

as a common practice in dynamic clustering, we introduce

K surplus clusters V 1, V 2, . . . , V K for initialization (K is

very large and it is pruned out finally). Each cluster takes

a randomly sampled value in the dataset feature space Ωd

and in general each dataset is assigned to a certain cluster

2Note to obtain a more reliable performance estimation, multiple ran-

domly initialized trials are performed for each model, and here xn denotes

the mean of these trials for a model on the validation set.

and the feature value of that cluster will be updated accord-

ingly. In the beginning when no dataset arrives, each cluster

is empty with no assigned dataset. There are enumerable

states to encode the assignment of existing datasets into the

clusters. In this paper, we denote each state by sn = i where

i denotes a certain datasets vs. clusters assignment.

Consider the following Markov chain for assignment de-

cision modeling from state sn−1 to sn:

P [sn = i|x1, . . . ,xn−1,xn] (3)

=
∑

j

P [sn = i|xn, sn−1 = j]P [sn−1 = j|x1, . . . ,xn−1]

=P [sn = i|xn, sn−1 = i′]P [sn−1 = i′|x1, . . . ,xn−1]

The equation shows that there is only one state that the

current state transitioned from. The first part of the product

in Eq. 3 can be computed by Bayes’ rule:

P [sn = i|xn, sn−1 = i′]

=
p[xn|sn = i, sn−1 = i′]P [sn = i|sn−1 = i′]

p[xn|sn−1 = i′]
(4)

For dataset grouping, the hope is that the grouped

datasets assigned to the same cluster shall have similar fea-

ture representation x ∈ Ωd, and we further assume x with

the same cluster obey a Gaussian distribution (recall the di-

mension of space Ωd is B). In fact, the assumption of Gaus-

sian distribution for validation error (accuracy) is widely

used in hyper-parameter tuning [5, 35]. By denoting the

state sn = i as the updated state when dn is assigned to

cluster V k while sn−1 = i′, we have:

p[xn|sn = i, sn−1 = i′]

=p[xn|dn → V k, sn−1 = i′]

=N(x|µk,Σk)

=
exp

(

− 1

2
(x− µ

k)⊤(Σk)−1(x− µ
k)
)

(2π)B/2|Σk|1/2
(5)

where µ
k ∈ RB is the mean and Σ

k ∈ RB×B is the co-

variance matrix3.

Now we go back to the right part of the numerator in Eq.

4. This part can be viewed as class priors:

P [sn = i|sn−1 = i′] =P [dn → V k|sn−1 = i′] (6)

=

{

w · |V k|
n−1

, V k 6= ∅

(1− w) · 1

K−|Ik|
, V k = ∅

where | · | denotes the cardinality of the set. Similar to the

expectation maximization for mixture of Gaussian cluster-

ing, the prior probability of one cluster is assumed to be

3In this paper we slightly abuse the notation for cluster: V k is a set with

additional value attributes in the dataset feature space. While we treat it

as a standard set in formulas: when it is empty we denote V k = ∅ and use

V k
⋃

{dn} for a set union operation.

9004

proportional to the number of assigned datasets. For empty

clusters, their prior probabilities are supposed to be equal.

Hence we use the piecewise function in Eq. 6, where the

set of nonempty clusters is defined as: Ik = {k|V k 6=
∅, k = 1, . . . ,K}. In addition, w is the prior probability

of a dataset belonging to the nonempty clusters (V k 6= ∅),

which increases as the number of nonempty clusters grows.

Hence the following function is devised to model w:

w = 1− exp(−|Ik| · γ) (7)

where γ is a hyper-parameter, and its value can be chosen

by using grid search across its sensitive range that is shown

in supplementary material. Finally, considering the denomi-

nator of Eq. 4, it can be marginalized over all preset clusters

in the dataset feature space:

p[xn|sn−1 = i′]

=
∑

k∈Ik

w
|V k|

n− 1
N(µk,Σk) +

∑

k/∈Ik

(1− w)
N(µk,Σk)

K − |Ik|

(8)

The initial conditions are as follows:

P [s1 = 1|x1] =1 (9)

µ
k =µ

k
0

(10)

Σ
k = Σ

k
0
=
σ2

0
I

K
1

B

(11)

where µ
k
0

can be sampled randomly from uniform distri-

bution when the bound of range is known or is sampled

from a Gaussian distribution when the mean and variance

are known. Here Σ
k
0

is set as a diagonal matrix given un-

known correlation in the beginning, and σ2

0
can be roughly

set around the estimation of the variance of separate trials,

whose scale is inversely proportional to K
1

B as more pre-

set clusters can lead to less variance. These parameters can

be easily updated by likelihood maximization, the detailed

update criteria are shown as follows:

V k =

{

V k
⋃

{dn}, dn → V k

V k, dn → V k′

, k′ 6= k
(12)

The update for µk
n and Σ

k
n are as follows:

µ
k
n =















∑di∈V k

i
xi

|V k|
, dn → V k

∧

V k 6= ∅

xn, dn → V k
∧

V k = ∅

µ
k
n−1, dn → V k′

, k′ 6= k
∧

V k 6= ∅

(13)

Σ
k
n =















∑di∈V k

i
(xi−µ

k)(xi−µ
k)⊤

|V k|
, dn → V k

∧

V k 6= ∅
∑T

t=1
(xt

n−xn)(xt
n−xn)⊤

T
, dn → V k

∧

V k = ∅

Σ
k
n−1, dn → V k′

, k′ 6= k
∧

V k 6= ∅

(14)

where T is the number of trials by random initialization

for one benchmark model. Recall xn is the mean vector

over the T trials. The update criteria are easy to under-

stand: the parameters in the nonempty cluster that the cur-

rent dataset is assigned to are updated by max-likelihood,

and the parameters in other nonempty clusters remain un-

changed. While the parameters in the empty cluster that

the current dataset is assigned to are set to the estimation of

itself, as the current dataset is the only one in the cluster.

As a consequence, the probability for next cluster assign-

ment in Eq. 3 can be calculated with Eq. 4-14. Accordingly

the best cluster can be found with the highest probability

such that the datasets associated with that cluster can share

the same model to avoid model search for new datasets.

However, due to the high demands of computation and

memory requirements, computing Eq. 3 directly is often un-

feasible as the state number is a Bell number [2] and grows

exponentially with the number of datasets, even considering

the simplification of states by reducing the empty clusters.

To improve the efficiency, one solution is to model the prob-

lem as a shortest path problem and preserve only the most

effective path. However the dynamic programming models

like the Viterbi algorithm cannot improve performance in

this case because the current state is transitioned from only

one state. To obtain an approximately optimal solution, we

make an assumption that the determinant of |Σk| is small

enough, which is also found empirically. Then it is easy to

show that the state with the highest posterior probability Eq.

4 at dataset dn will be transitioned from that with the high-

est one at dataset dn−1. Therefore, we can only take the

state with the highest posterior probability Eq. 4 along the

iteration process to get an approximately optimal solution.

As described above, our method can be viewed as a

hard decision scheme. There are also soft decision sequen-

tial clustering methods like online EM algorithms [9, 23].

While grouping the datasets into clusters by hard decision

is more direct because it neither need inefficient iterations

nor requires a predefined accurate number of clusters. Since

k-means is the well known hard decision cluster method, as

well as its sequential version [13, 20], we will compare with

k-means and sequential k-means in the experiments.

2.3. Statistical Hypothesis Test

The above Markov grouping procedure can control the

Type II error. Now we introduce a hypothesis test technique

to handle the Type I error. Statistical test was involved in

k-means by [13], whereby the test is performed to detect

whether the data assigned to a cluster is sampled from one

Gaussian distribution. Since hypothesis test for fitting dis-

tributions requires a large number of samples [1] which is

not suited in our model search setting, we turn to consider

a test to detect whether two Gaussian distributions have the

same mean. Specifically the alternative hypotheses are:

9005

• H0: the mean of the assigned datasets in the cluster is the

same as the mean of the going-to assigned dataset;

• H1: the mean of the assigned datasets in the cluster is not

the same as the mean of the going-to assigned dataset;

For the feature vector of a new dataset, as mentioned ear-

lier it consists of T raw versions from T random trials to ob-

tain the mean value: X = {x1,x2, . . . ,xT } where T is the

number of trials. Similarly for datasets assigned in cluster

V k, we have Y = {y1,y2, . . . ,yT } where yt is the average

over the features of datasets in that cluster for trial t.
Unlike the Markov analysis for sequential clustering in

the above section that the mean and covariance matrix

are calculated by the max-likelihood estimation, in this

hypothesis test, these parameters are assumed unknown.

Specifically, the elements in X and Y are supposed to be

Gaussian distributions: N(µ1,Σ1) and N(µ2,Σ2), respec-

tively. The goal is to detect whether µ
1 = µ

2. Here,

Behrens-Fisher solution [18] is introduced, consider an-

other set for t = 1, 2 . . . , T :

Z =

{

zi|zi = xi +

∑T
t=1

yt/T − yi
√

|V k|
−

∑T |V k|
t=1

yt

T |V k|

}

(15)

The test statistics [1] can be represented as:

F =
1

B
· T (T −B)z⊤[

T
∑

i=1

(zi − z)(zi − z)⊤]−1
z (16)

Where B is the number of benchmark models described

above, z =
∑T

i=1
zi

T . Given the standard statistical signifi-

cance level α, the rejecting region is {F > Fα(B, T −B)}.

The significance level α is the desired probability of

making a Type I error (i.e. incorrectly rejecting H0). Usu-

ally, decreasing its value will cause lower Type I error, but

higher Type II error (i.e. incorrectly accepting H0). In our

method, the Markov analysis for sequential clustering can

be viewed as a method to control Type II error, so the α can

be chosen only to consider the Type I error. Different values

of α will be evaluated in the experiments.

2.4. Approach Summary and Discussion

We term the proposed approach Transferable AutoML

(Tr-AutoML) using benchmarks’ performance based meta-

features as well as Markov analysis and hypothesis test

(MH) whose details are depicted in Algorithm 1. The term

Tr-AutoML reflects the meta-features extracting method

and the framework proposed in the paper; while MH em-

phasizes the techniques as described above.

3. Experiments

The experiments consider three settings: i) search

model from scratch; ii) search model from a predefined

Algorithm 1 Transferable AutoML with Markov analysis

and hypothesis test – abbr. Tr-AutoML (MH)

Input:

1: Set significance level α, γ and the max cluster number K;

2: Initialize the state with Eq. 9 10 11 for Markov clustering;

3: Setup the K empty clusters {V k
0 }Kk=1 in the dataset feature

space ΩD with random initialization (some of them will be

updated according to the assigned datasets).

Output:

4: The J searched models mj for nonempty cluster V j 6= ∅ in

stream. Note that 1) datasets may share the same model with

different weights; 2) benchmark models are only for dataset

feature computing rather than used as searched models.

5: for dataset dn, n=1,2,... do

6: For dn, compute its benchmark model specific feature vec-

tor xn = f(dn, b1, ..., bB) ∈ Ωd;

7: Find V k
n and assign dn → V k

n via Eq. 5 6 7;

8: if V k
n = ∅ i.e. the found cluster is empty then

9: //can be coupled by standalone model search methods

10: Perform standalone model search method e.g. Hyper-

band, MetaQNN to search tailored model mn for dn;

11: Assign dn to V k
n ; set V k

n ’s searched model mk
n = mn;

12: else if V k
n 6= ∅ then

13: Perform hypothesis test via Eq. 16.

14: if hypothesis is not accepted then

15: Search model mn for dn;

16: Randomly choose an empty cluster V k′

n and assign dn

to V k′

n ; set V k′

n ’s searched model mk′

n = mn;

17: else

18: Set mk
n as dn’s searched model for sharing;//model

reused

19: end if

20: end if

21: Update the parameters with maximum-likelihood estima-

tion via Eq. 12 13 14.

22: end for

model e.g. GoogleNet to leverage existing architectures;

iii) transfer from basic cells. We will first list the com-

pared baselines and then introduce the general settings in

terms of evaluation metrics, model search algorithms, test-

ing dataset sequence generation and platform etc.

3.1. General Settings

3.1.1 Compared Methods

We consider these baselines to compare with Tr-AutoML:

i) Our meta-features extraction method for AutoML is

based on benchmark models’ performance. We will em-

pirically show its advantage over traditional statistical and

categorized meta-feature generating approaches [26].

ii) The proposed model sharing approach is agnostic to

specific strategies for dataset grouping. Apart from the de-

vised Markov analysis and hypothesis test (MH) methods,

some simple baselines e.g. random grouping, k-means, se-

9006

quential k-means [13] can also be combined. In the exper-

iments, we will show the advantage of our MH technique

over these baselines under the Tr-AutoML framework.

iii) The proposed Tr-AutoML framework can be viewed

as collaborative AutoML that leverage the knowledge of

previous datasets. In the experiments, we will compare

other collaborative AutoML–warmstart algorithm [24]–to

see the advantage of our Tr-AutoML.

iv) Our Tr-AutoML framework with the MH techniques

can incorporate existing standalone AutoML methods e.g.

Hyperband [22], Bayesian optimization [34], MetaQNN

[3], NAS [42], Net2Net [10], ENAS [31] and DARTS [25]

in an out-of-box fashion, as specified by the step at line 10

in Algorithm 1. In our experiments, we will also show the

performance when different AutoML algorithms are used.

3.1.2 Evaluation Protocols

To mimic online setting, datasets are sequentially processed

with random order for 30 times, and the reported results in

the experiments are the average ones. For each dataset, tai-

lored model (including architecture and hyper-parameters)

is searched. The architecture involves numbers of layers,

convolutional kernel size, output channel size, pool kernel

size and stride etc. while hyper-parameters involve initial

learning rate, initial weight standard deviation etc.

Experiment runs on two Tesla K80 each with 12G mem-

ory. We set the hyper-parameters of our Tr-AutoML method

α = 0.005, γ = 0.2, the maximum cluster number K =
1000, and σ2

0
= 3e − 4. We set the number of benchmarks

B = 6 and number of random trials T = 8 to obtain per-

formance mean x. For evaluation we use search wall clock

time and total classification relative errors (TRE) defined as:

TRE =
1

N

∑

i

ei − e∗i
e∗i

(17)

where e∗n and en stand for the test set error of dataset n using

the model generated by standalone search method and com-

bined one, respectively. N is the total number of datasets.

3.1.3 Benchmark Models

Our method is based on feature representation of the dataset

by benchmark model evaluation. Here six benchmark mod-

els combining hyper-parameter and structure of neural net-

works are chosen from Monte Carlo sampling over the fea-

sible region from uniform or log-uniform distribution. It is

important to note that the benchmark models are only used

for computing dataset dn’s performance vector xn. The fi-

nal searched model is tailored for the specific dataset.

3.2. Search from Scratch

To verify the generality, here the search is performed

without any prior knowledge about the model and tested

Table 1: Dataset grouping examples by Tr-AutoML. Groups

are formed for each trial: in model search from scratch.
1) mnist 1.0, mnist 0.5, svhn 0.1, svhn 0.5, fashion-mnist 0.1, fashion-mnist 0.5

2) stl10 0.5, stl10 1.0

3) mnist-background-images 0.5, mnist-background-images 1.0, mnist-rotated 0.5, mnist-rotated 1.0

4) cifar10 1.0, cifar10 0.5

1) mnist 1.0, mnist 0.5, fashion-mnist 0.5

2) stl10 1.0, cifar10 0.5, cifar10 1.0

3) mnist-rotated 0.5, mnist-background-images 1.0, mnist-background-images 0.5, mnist-rotated 1.0

4) svhn 1.0, svhn 0.5, fashion-mnist 0.1

5) stl10 0.5

dataset. Seven datasets are used for evaluation including

MNIST, CIFAR-10, FASHION-MNIST, SVHN, STL-10,

MNIST-BACKGROUND-IMAGES, MNIST-ROTATED

[19, 27, 11, 21, 38]. Each dataset has further another

derived version with sampling ratio 50% of raw datasets.

Splitting dataset into sub-dataset is widely used in multi-

task learning and transfer learning [26, 35]. Hence in total

there are 14 datasets for online model search. The datasets

are processed with random orders for 30 trials.

We empirically find that in most trials, the MNIST-

BACKGROUND-IMAGES and MNIST-ROTATED are au-

tomatically grouped by the Tr-AutoML approach. In a few

cases, STL-10 and CIFAR-10, FASHION-MNIST/MNIST

and SVHN also tend to be grouped together. Table 1 shows

the dataset grouping results of two of these trials whereby

similar datasets are grouped.

To compare our proposed Tr-AutoML with standalone

model search schemes, we combine Tr-AutoML with Hy-

perband [22], MetaQNN [3] and ENAS [31]. Also, to

demonstrate the efficiency of our proposed meta-features

extracting method, we compare Tr-AutoML with [26] that

uses its statistical meta-features (such as statistics about

the number of data points, features, and classes, as well

as data skewness, and the entropy of the targets) as meta-

learning for dataset feature representations. To show the

performance of our proposed Markov analysis and hypoth-

esis test (MH) method, grouping baselines by k-means, se-

quential k-means and random clustering are evaluated. Fur-

thermore, to compare the collaborative way for AutoML,

we compare Tr-AutoML with a warmstart method: [24]

by using the three AutoML methods as its user-specified

default initialization. Table 2 shows the results, where the

total search time already includes the overhead of running

benchmark models listed in the last column. Comparing

to the standalone model search methods, the combined one

Tr-AutoML (MH) can reduce the search time by 3 to 4

times on average while maintaining a low level extra error

almost the same as k-means (k is selected as the number

of raw datasets), which is much less than Warmstart, Meta-

learning and random clustering based methods. Tr-AutoML

(MH) is more efficient than k-means (save about 40%-70%

search time) because it can find the reusable models among

the datasets even from different raw datasets.

The total relative error for combination with Hyperband

9007

Table 2: Total search time (in days, including the over-

head of running benchmark models), total classification rel-

ative errors (TRE) and benchmark overhead on 7 dataset: in

model search from scratch setting.

Techniques combination Total search time TRE Overhead

Hyperband [22] 10.40 0 0

Warmstart [24] + Hyperband 6.23 0.412 0

Meta-learning [26] + Hyperband 3.85 0.118 0

Tr-AutoML(Random) + Hyperband 2.96 1.653 0

Tr-AutoML(Kmeans) + Hyperband 5.44 0.059 0.2

Tr-AutoML(Seq. Kmeans [13]) + Hyperband 4.48 0.061 0.2

Tr-AutoML(MH) + Hyperband 3.17 0.062 0.2

MetaQNN [3] 16.29 0 0

Warmstart [24] + MetaQNN 7.19 0.276 0

Meta-learning [26] + MetaQNN 5.46 0.075 0

Tr-AutoML(Random) + MetaQNN 4.68 1.149 0

Tr-AutoML(Kmeans) + MetaQNN 7.87 0.036 0.2

Tr-AutoML(Seq. Kmeans [13]) + MetaQNN 6.32 0.041 0.2

Tr-AutoML(MH) + MetaQNN 4.85 0.039 0.2

ENAS [31] 12.22 0 0

Warmstart [24] + ENAS 5.10 0.132 0

Meta-learning [26] + ENAS 4.82 0.044 0

Tr-AutoML(Random) + ENAS 4.02 0.471 0

Tr-AutoML(Kmeans) + ENAS 6.17 0.017 0.2

Tr-AutoML(Seq. Kmeans [13]) + ENAS 5.04 0.019 0.2

Tr-AutoML(MH) + ENAS 4.22 0.019 0.2

is higher than the other two methods. We conjecture this is

because in Hyperband, besides the architecture, the hyper-

parameters like learning rate, initial weight standard devia-

tion are also auto-tuned simultaneously, making the shared

model more sensitive to different datasets. The MetaQNN

implemented in our experiments underperforms its original

report in [3] as we set a time budget on it. But the com-

parison of standalone MetaQNN and combined MetaQNN

scheme is not affected since we focus on the relative per-

formance in the paper. Moreover, the overheads of running

benchmarks are similar among three AutoML schemes be-

cause the benchmark models are the same among them.

Figure 1 shows the test accuracy over wall clock time

on six raw datasets (due to space constraints, we report re-

sults for only six datasets). Hyperband is used to demon-

strated the standalone AutoML, other AutoML schemes are

similar. From the average searching time point of view,

the accuracy grows quickly in transferable AutoML (Tr-

AutoML); regarding with limited performance, pure stan-

dalone AutoML performs slightly better than Tr-AutoML.

This is because Tr-AutoML reuses the model directly and

makes no feedback action.

Figure 2 shows the effect of different benchmark num-

bers and different significance levels in hypothesis test.

Large significance levels will force the dataset groups to

shrink to smaller one, so it usually provides low error but

a long search time. However, when the benchmark number

is too small to capture the divergence of different datasets,

both errors and search time are poor. In our experiments,

selecting 4 to 6 benchmark models is good enough for Tr-

AutoML when considering model search from scratch.

Table 3: Two examples of dataset grouping generated by

running two trials of Tr-AutoML: in predefined setting.

1) scene 1.0, scene 0.5, flower 1.0, flower 0.5

2) action 1.0, action 0.5

3) sun 1.0, sun 0.5

1) scene 1.0, scene 0.5, flower 1.0, flower 0.5, action 1.0

2) action 0.5

3) sun 1.0, sun 0.5

Table 4: Searching time (in days) and total classification

relative errors on four datasets: in model search from pre-

defined model setting.

Algorithm Time TRE

MetaQNN 8 0

Tr-AutoML(Random) + MetaQNN 2.8 1.78

Tr-AutoML(Kmeans) + MetaQNN 4.5 0.069

Tr-AutoML(MH) + MetaQNN 3.0 0.074

3.3. Search from Predefined Model

In real-world applications, the image classification tasks

are far more difficult than MNIST or CIFAR-10. Shallow

networks are too weak to capture the high-level informa-

tions but training several deep networks on those tasks are

time-consuming. In this case, our Tr-AutoML can also per-

form well on search from the predefined model or trans-

ferring from basic cells (in Sec.3.4). In this section, Tr-

AutoML from a predefined model is evaluated. We involve

four complicated datasets of large image size: FLOWER-

102 [28], ACTION-40 [40], SCENE-15 [29], SUN-397 [39]

along with their subsets of 0.5 sample rate version. The

difference from the previous experiment is that we reuse

GoogleNet [36] architecture and weights from bottom to in-

ception (4e) layer, while search a chain-structure for higher

layers. The dataset grouping results is shown in Table 3.

One can find the SCENE-15 and FLOWER-102 datasets

can be automatically combined due to their similarity. The

performance comparison is shown in Table 4 whereby one

can see our approach achieves a reasonable tradeoff for ef-

ficiency and efficacy.

3.4. Transfer from Basic Cells

Searching model based on basic cells are widely used

[31, 25], which can be viewed as a layered search strategy.

AutoML algorithms focus on searching the nodes and their

connections in the cells (normal cell and reduction cell), and

then concatenate them to be a neural network. In [43] the

authors show the basic cell searched on CIFAR-10 can be

transferred to ImageNet classification without much modifi-

cation. By adopting our proposed Tr-AutoML, it is intrinsic

to share the basic cells within a dataset group. In this sec-

tion, we evaluate three transferable cases: 1) source datasets

9008

(a) MNIST (b) CIFAR-10 (c) SVHN

(d) FASHION-MNIST (e) MNIST-ROTATED (f) STL-10

Figure 1: Test Accuracy over wall clock time (searching hours) on six raw datasets: in model search from scratch setting.

(a) Total relative error (b) Searching time

Figure 2: Different significance levels α by different num-

bers of benchmarks: in model search from scratch setting.

are MNIST, CIFAR10, STL10 and SVHN, target dataset

is FASHION-MNIST. 2) source datasets are MNIST, CI-

FAR10, FASHION-MNIST and SVHN, target dataset is

STL10. 3) source datasets are MNIST, CIFAR10, STL10,

SVHN and FASHION-MNIST, target dataset is ImageNet.

We set α → 0 and γ → ∞ in order to force Tr-AutoML

to share models. From the Table 5, it is shown that for both

easy datasets and complicated datasets, Tr-AutoML identify

which datasets can share the best basic cell stably and effi-

ciently. This is because the proposed dataset feature repre-

sentations are based directly on model shared performance

rather than other statistical or categorized features.

4. Conclusion

This paper explores the transferable AutoML for model

search and sharing over sequentially arriving datasets. We

Table 5: Search time (in days, including overhead). Test

accuracy: in transfer from basic cells setting.

Target dataset Techniques Search time Accuracy

FASHION-MNIST Hyperband [22] 1.67 0.942

Meta-learning [26] 0.001 0.939

Tr-AutoML(Random) 0 0.936

Tr-AutoML(MH) 0.013 0.939

STL10 ENAS [31] 1.08 0.734

Meta-learning [26] 0.001 0.680

Tr-AutoML(Random) 0 0.692

Tr-AutoML(MH) 0.017 0.725

ImageNet NASNet-A [43] 1800 0.740

Meta-learning [26] 2.56 0.717

Tr-AutoML(Random) 2.54 0.712

Tr-AutoML(MH) 2.81 0.734

propose a novel meta-learning approach by adaptively

grouping the new dataset into previous ones, and reuse the

previously discovered models to the model search for new

data. Meanwhile, our framework is orthogonal to, and can

be coupled with many existing AutoML techniques in an

out-of-box fashion. On the image classification task, our

method achieves notable overall speedup for model search-

ing at negligible accuracy loss. It also works well on differ-

ent search mechanisms and datasets.

References

[1] T. Anderson. An introduction to multivariate statistical anal-

ysis, 3rd edition. 2003. 4, 5

9009

[2] N. Asai, I. Kubo, and H. Kuo. Bell numbers, log-concavity,

and log-convexity. Acta Applicandae Mathematica, 2000. 4

[3] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neu-

ral network architectures using reinforcement learning. In

ICLR, 2017. 1, 2, 6, 7

[4] R. Bardenet, M. Brendel, B. Kegl, and M. Sebag. Collabo-

rative hyperparameter tuning. In ICML, 2013. 1, 2

[5] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms

for hyper-parameter optimization. In NIPS, 2011. 1, 3

[6] J. Bergstra and Y. Bengio. Random search for hyper-

parameter optimization. Journal of Machine Learning Re-

search, 2012. 1

[7] J. Bergstra, D. Yamins, and D. Cox. Making a science of

model search: Hyper-parameter optimization in hundreds of

dimensions for vision architectures. In ICML, 2013. 1

[8] E. Bonilla, K. Chai, and C. Williams. Multi-task gaussian

process prediction. In NIPS, 2008. 1, 2

[9] O. Cappe and E. Moulines. Online em algorithm for latent

data models. arXiv preprint arXiv:0712.4273, 2007. 4

[10] T. Chen, I. Goodfellow, and J. Shlens. Net2net: Accelerating

learning via knowledge transfer. In ICLR, 2016. 2, 6

[11] A. Coates, H. Lee, and A. Ng. An analysis of single-layer

networks in unsupervised feature learning. In AISTATS,

2011. 6

[12] T. Domhan, J. Springenberg, and F. Hutter. Speeding up

automatic hyper-parameter optimization of deep neural net-

works by extrapolation of learning curves. In IJCAI, 2015.

1

[13] G. Hamerly and C. Elkan. Learning the k in k-means. In

NIPS, 2003. 4, 6, 7

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1

[15] G. Huang, Z. Liu, L. Maaten, and K. Weinberger.

Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016. 1

[16] F. Hutter, H. Hoos, and K. Brown. Sequential model-based

optimization for general algorithm configuration. In LION,

2011. 1

[17] A. Kalousis. Algorithm selection via meta-learning. PhD

thesis, 2002. 3

[18] S. Kim and A. Cohen. On the behrens-fisher problem: A

review. Journal of Educational and Behavioral Statistics,

1998. 5

[19] A. Krizhevsky. Learning multiple layers of features from

tiny images. 2009. 6

[20] B. Kulis and M. I. Jordan. Revisiting k-means: New

algorithms via bayesian nonparametrics. arXiv preprint

arXiv:1111.0352, 2011. 4

[21] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and

Y. Bengio. An empirical evaluation of deep architectures

on problems with many factors of variation. In Proceedings

of the 24th international conference on Machine learning,

pages 473–480. ACM, 2007. 6

[22] L. Li, K. Jamieson, and G. DeSalvo. Hyperband: bandit-

based configuration evaluation for hyper-parameter opti-

mization. In ICLR, 2017. 1, 2, 6, 7, 8

[23] P. Liang and D. Klein. Online em for unsupervised models.

Proceedings of human language technologies, 2009. 4

[24] M. Lindauer and F. Hutter. Warmstarting of model-based

algorithm configuration. In AAAI, 2018. 1, 3, 6, 7

[25] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable

architecture search. arXiv preprint arXiv:1806.09055, 2018.

1, 2, 6, 7

[26] K. E. e. a. M. Feurer, A. Klein. Efficient and robust auto-

mated machine learning. In NIPS, 2015. 1, 3, 5, 6, 7, 8

[27] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. In NIPS workshop on deep learning and unsu-

pervised feature learning, volume 2011, page 5, 2011. 6

[28] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In Computer Vision,

Graphics & Image Processing, 2008. ICVGIP’08. Sixth In-

dian Conference on, pages 722–729. IEEE, 2008. 7

[29] A. Oliva and A. Torralba. Modeling the shape of the scene: A

holistic representation of the spatial envelope. International

journal of computer vision, 42(3):145–175, 2001. 7

[30] V. Perrone, R. Jenatton, M. Seeger, and C. Archambeau.

Multiple adaptive bayesian linear regression for scalable

bayesian optimization with warm start. arXiv preprint

arXiv:1712.02902, 2017. 1, 2

[31] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Effi-

cient neural architecture search via parameter sharing. arXiv

preprint arXiv:1802.03268, 2018. 2, 6, 7, 8

[32] E. Real, S. Moore, A. Selle, S. Saxena, Y. Suematsu, J. Tan,

Q. Le, and A. Kurakin. Large-scale evolution of image clas-

sifiers. In ICML, 2017. 1, 2

[33] D. Schaffer, D. Whitley, and L. Eshelman. Combinations

of genetic algorithms and neural networks: A survey of the

state of the art. In International Workshop on Combinations

of Genetic Algorithms and Neural Networks, 1992. 1

[34] J. Snoek, H. Larochelle, and R. Adams. Practical bayesian

optimization of machine learning algorithms. In NIPS, 2012.

1, 6

[35] K. Swersky and J. Snoek. Multi-task bayesian optimization.

In NIPS, 2013. 1, 2, 3, 6

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015. 7

[37] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo. Transfer au-

tomatic machine learning. arXiv preprint arXiv:1803.02780,

2018. 2

[38] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a

novel image dataset for benchmarking machine learning al-

gorithms. arXiv preprint arXiv:1708.07747, 2017. 6

[39] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.

Sun database: Large-scale scene recognition from abbey to

zoo. In Computer vision and pattern recognition (CVPR),

2010 IEEE conference on, pages 3485–3492. IEEE, 2010. 7

[40] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-

Fei. Human action recognition by learning bases of action

attributes and parts. In Computer Vision (ICCV), 2011 IEEE

9010

International Conference on, pages 1331–1338. IEEE, 2011.

7

[41] S. Zagoruyko and N. Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016. 1

[42] B. Zoph and Q. Le. Neural architecture search with rein-

forcement learning. In ICLR, 2017. 1, 2, 6

[43] B. Zoph, V. Vasudevan, J. Shlens, and Q. Le. Learning trans-

ferable architectures for scalable image recognition. arXiv

preprint arXiv:1707.07012, 2017. 2, 7, 8

9011

