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Abstract

Automated Machine Learning (AutoML) is an active
area on the design of deep neural networks for specific tasks
and datasets. Given the complexity of discovering new net-
work designs, methods for speeding up the search proce-
dure are becoming important. This paper presents a so-
called transferable AutoML approach that leverages previ-
ously trained models to speed up the search process for new
tasks and datasets. Our approach involves a novel meta-
feature extraction technique based on the performance of
benchmark models, and a dynamic dataset clustering algo-
rithm based on Markov process and statistical hypothesis
test. As such multiple models can share a common struc-
ture while with different learned parameters. The transfer-
able AutoML can either be applied to search from scratch,
search from predefined models, or transfer from basic cells
according to the difficulties of the given datasets. The
experimental results on image classification show notable
speedup in overall search time for multiple datasets with
negligible loss in accuracy.

1. Introduction and Related Work

With the wide adoption of deep networks, identifying
proper network architectures tailored to specific task and
dataset is attractive while it still mainly relies on human
expertise. This has motivated rapidly growing research on
automatically discovering the tailored network models' for
training in a fully automatic fashion without human inter-
vention, which is referred to as AutoML.

There has been considerable literature on AutoML us-
ing methods based on genetic algorithms, random search,
Bayesian optimization, reinforcement learning and con-
tinuous differentiable methods. Genetic algorithm based
method [33] is introduced in the last century to find both
architectures and weights. However, they fail to match

IFor deep learning, the meaning of ‘model” in this paper includes both
the network architecture and learning related hyper-parameters.

the performance of handcrafted networks. [32] proposes
an evolutionary searching methods for generating architec-
tures. The accuracy approaches those of handcrafted mod-
els in some cases [14, 41, 15]. Similarly, random search
has been explored to choose hyper-parameters. [6] shows
empirically and theoretically that random search is more ef-
ficient than grid search for hyper-parameter optimization.
In particular, the method Hyperband [22] speeds up random
search using an early-stopping strategy to allocate resources
adaptively. Bayesian optimization [5, 34, 16, 12, 7] also
provides a sound foundation for AutoML. One choice for
Bayesian optimization is to model the generalization per-
formance as a sample from a Gaussian process (GP) [34],
which can reach expert-level optimization performance for
many machine learning algorithms. The work in [3] devel-
ops a Q-learning agent to pick the modules of the layers in
a neural network architecture. A Neural architecture search
(NAS) method proposed by [42] employs a policy gradient
method to learn networks from a recurrent network and has
achieved good results in tasks in both vision and language.
Recently, the continuous domain differentiable method has
gained interests for AutoML. Unlike evolution or reinforce-
ment learning that is over a discrete search space, DARTS
[25] uses a continuous relaxation of the architecture repre-
sentation and search the architecture by gradient descent.

However, most existing AutoML approaches require
considerable overhead for model searching. To improve
efficiency, one idea is to share information across differ-
ent trials. Multi-task Bayesian optimization and Gaussian
processes (GP) are proposed in [35, 8, 4]. In these meth-
ods, different datasets are regarded as different tasks, and
the covariances between hyper-parameter and task pairs are
defined. The multi-task Bayesian optimization and Gaus-
sian process show some success with established theoretical
foundation. Meanwhile warm-starting of sequential model-
based algorithm configuration is introduced by [24, 26, 30].
In [24], it exploits one trial’s performance to warm-start its
model configuration on the new job type. The work [26]
uses meta-learning for initializing the Bayesian optimizer
and automated ensemble construction from configurations
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evaluated during optimization. The work [30] learns model
similarity by building a shared (multi-task) representation
for the hyper-parameter space. While these multi-task and
warm-starting methods are based on GP or Bayesian op-
timization, Wong et al. [37] focus on sharing knowledge
across tasks in deep RL architecture. Net2Net [10] ac-
celerates the search process by transferring the knowledge
from a previous network to a new deeper or wider one, and
ENAS [31] shares weights for all child models to build a
one-shot model and thus it speeds up the convergence pro-
cess, which is similar to what DARTS [25] does. In [43] the
authors show the basic cell searched on CIFAR-10 can be
transferred to ImageNet classification without much modi-
fication. However, the interpretation of the effectiveness of
sharing model among different datasets is still not clear.

This paper addresses this important setting that more
than one datasets are combined to share one common struc-
ture of network due to their inherent correlation, while the
parameters are different and individually learned to fit with
each dataset. Such a mechanism can be used to achieve
a tradeoff between search time and model accuracy. Un-
der this setting, we propose a novel approach that involves
a meta-feature extraction technique and a dynamic dataset
clustering algorithm to reuse the appropriate model (archi-
tecture + hyper-parameters) for multiple datasets with a re-
duction in search time. Our method enjoys some flexibili-
ties against existing methods in three folds:

i) Search algorithms. Unlike multi-task solutions [35,

, 4] designed for Bayesian optimization, or transfer learn-
ing with AutoML [37] based on reinforcement learning, our
approach can be easily combined with most existing Au-
toML techniques in an out-of-box fashion. Examples in-
clude genetic methods [32], reinforcement learning [3, 42],
Hyperband [22] and DARTS [25]. This is because our
method focuses on dataset clustering which is orthogonal
with the specific model search algorithm.

ii) Search mechanisms. Our transferable AutoML can
be applied to different search schemes: search from scratch;
search from predefined models (e.g. reuse GoogleNet archi-
tecture and weights of bottom layers to search an architec-
ture for higher layers) and transfer from basic cells (trans-
fer the searched normal/reduction cell [25, 31] of source
datasets to target datasets). This feature makes it more flex-
ible to handle datasets under limited time budget.

iii) Online setting. Our method can be used to the on-
line setting whereby the datasets come sequentially and one
need to search model for the new arrival datasets efficiently.

Specifically we develop techniques for dataset clustering
and model sharing among clustered datasets which has not
been well studied in literature to our best knowledge. The
main contributions and novelties of the paper are:

i) Meta-features extracting. To enable effective model
search and sharing, we propose a new meta learning method

for dataset feature representation using their evaluation re-
sults on a suite of benchmark models.

ii) Dataset clustering. The extracting meta-features
is then coupled with Markov process and hypothesis test
mechanism for dataset clustering. These two components
can handle Type II error and Type I error for dataset group-
ing (incorrectly accepting grouping and incorrectly reject-
ing grouping), respectively.

Now we present the overview of our approach. We first
represent a dataset d,, with a benchmark model-specific
representation (see more details in Sec. 2.1) x,, in the
dataset feature space. The basic idea is to leverage such a
meta-learning representation to measure the similarity over
datasets such that certain datasets can be grouped for model
search and sharing. Since the grouping need be performed
online, we adopt the Markov analysis for sequential clus-
tering using the above representation which also involves
the concept of cluster sets in the dataset feature space for
Bayesian inference. Such a clustering step can handle Type
II error. To control the Type I error, we further impose a
hypothesis test to inhibit the unwanted grouping.

As such, as the datasets continue to come, either a new
model will be searched for the new dataset by using some
AutoML methods, or the new dataset will be assigned to a
cluster set with existing datasets, to share with a common
model (including both hyper-parameters and architecture or
basic cell), though their weights are different.

2. Shared Model Search by Grouping Datasets

We first justify the motivation of our benchmark based
meta-learning method for dataset feature representation.
Then we adopt Markov analysis of sequential clustering and
statistical hypothesis tests to group datasets such that the
searched model can be reused within each group.

2.1. Dataset Feature Extraction

We introduce a meta learning method to express a dataset
d in a dataset feature space €)y. To prove this representa-
tion can work well for AutoML, we consider the AutoML
problem first. The basic idea for AutoML is to identify the
model m from a given dataset d:

m* = arg max p(m|d) ()

It is reasonable to share m* among the datasets that above
posterior distributions conditioned on are closely approxi-
mated. To compare the posterior distributions over models
between two different datasets, p(m|d;) and p(m|ds), we
use Kullback-Leibler (KL) divergence:

KL (p(m|dy)]|p(m]|dz)) @)
=[omarn (g o
zz p(bi)p(dibs) In <p(d1|bi) ij p(bj)p(d2|bj)>
o 2b, P(o)p(di]bs) — \ p(d2|bi) 304, p(bj)p(da]b))
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The discretization approximation is close to the contin-
uous KL divergence when the benchmark model set {b;}
expands the whole model space. It is well known that the
relative entropy satisfies K L(p||lq) > 0 with equality if
and only if p(z) = ¢(z). Therefore, given some bench-
mark models sampled from the feasible model space, and if
the model evidences p(d|b) are similar over all benchmark
models between two datasets, the KL divergence in Eq. 2
is then approximated by 0. This leads to the feasibility for
sharing one model over multiple datasets which also lies
foundation for this paper.

Now we discuss how to use the benchmark models to
express a given dataset. Formally, assume there are B
benchmark (deep network) models in the model space:
b1,bs,...,bp. The configuration of benchmark models
spreads over different neural networks, w.r.t. the number
of hidden layers, the number of hidden unit, the kernel size,
the stride, the skip pattern, the number of nodes in a cell,
etc., as well as different hyper-parameters like learning rate,
weight decay, momentum, batch size etc.. Without loss of
generality, in this paper the benchmark model set is formed
by Monte Carlo sampling over the feasible region from uni-
form or log-uniform distribution. We leave more effective
construction for future work.

Then the dataset d can be represented by a feature vector
x, = f(d,by,...,bp) € Qq in the derived dataset feature
space €4. In particular the value at dimension i is set by:
x, (i) = g(d,,b;) where g(d,b) returns the evaluation re-
sult (e.g. accuracy) for dataset d using benchmark model b°.
Based on such a normalized representation, in the following
we will show how dataset grouping can be performed online
to reduce the overall model search overhead by model shar-
ing within the dataset group (see the comparison with the
peer method [26] in Table 2).

It is worth noting that there are alternative meta-learning
approaches [24, 26, 17] for dataset feature representations.
But our proposed method above is based on the benchmark
models’ performance probing to datasets. The hope is that
the similarity between datasets can be measured by their
closeness in terms of the model performance rather than
other criteria.

2.2. Markov Analysis for Sequential Clustering

To group the streaming datasets dy, ds, . . . , d,, over time,
as a common practice in dynamic clustering, we introduce
K surplus clusters V1, V2, ... VX for initialization (K is
very large and it is pruned out finally). Each cluster takes
a randomly sampled value in the dataset feature space ()4
and in general each dataset is assigned to a certain cluster

ZNote to obtain a more reliable performance estimation, multiple ran-
domly initialized trials are performed for each model, and here a,, denotes
the mean of these trials for a model on the validation set.

and the feature value of that cluster will be updated accord-
ingly. In the beginning when no dataset arrives, each cluster
is empty with no assigned dataset. There are enumerable
states to encode the assignment of existing datasets into the
clusters. In this paper, we denote each state by s,, = ¢ where
1 denotes a certain datasets vs. clusters assignment.

Consider the following Markov chain for assignment de-
cision modeling from state s,,_1 t0 Sy:

Pls, =i|lx1,...,&n_1,Ty] 3)

= ZP[STL = 7,|.’13n, Sn—1 = j]P[Sn—l = j|mla SERE) mn—l]
J

:P[Sn = Z.|:Bna Sp—1 = i/]P[Sn—l = 7:/|$1a R wn—l]

The equation shows that there is only one state that the
current state transitioned from. The first part of the product
in Eq. 3 can be computed by Bayes’ rule:

Plsy, = i|®n, 8p_1 = 7]
plEn|sn =1, 8p—1 = '|P[sp = i|sn_1 = 7]

= “)

p[$n|8n—1 = 71/]

For dataset grouping, the hope is that the grouped
datasets assigned to the same cluster shall have similar fea-
ture representation x € 24, and we further assume x with
the same cluster obey a Gaussian distribution (recall the di-
mension of space €1 is B). In fact, the assumption of Gaus-
sian distribution for validation error (accuracy) is widely
used in hyper-parameter tuning [5, 35]. By denoting the
state s, = ¢ as the updated state when d,, is assigned to
cluster V* while s,,_1 = i/, we have:

plTn|sn =i, 8,_1 =]
=pln|d, — VE, s, 1 = 1]
=N (z|u", =)
_exp (=5 —p)"(Z) (@ — ph)
(2m)B/2[Sk[1/2

®)

where u* € RP is the mean and X% € RE*E is the co-
variance matrix.

Now we go back to the right part of the numerator in Eq.
4. This part can be viewed as class priors:

Pls, =ilsy_1 = '] =P[dp — V¥|sp_1 =] (6)
s k
- { am VD
1 k_
1—w) =, V"=0
where | - | denotes the cardinality of the set. Similar to the

expectation maximization for mixture of Gaussian cluster-
ing, the prior probability of one cluster is assumed to be

3In this paper we slightly abuse the notation for cluster: V'* is a set with
additional value attributes in the dataset feature space. While we treat it
as a standard set in formulas: when it is empty we denote V* = () and use
V¥ (J{dy} for a set union operation.
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proportional to the number of assigned datasets. For empty
clusters, their prior probabilities are supposed to be equal.
Hence we use the piecewise function in Eq. 6, where the
set of nonempty clusters is defined as: I* = {k|VF +#
0,k = 1,...,K}. In addition, w is the prior probability
of a dataset belonging to the nonempty clusters (V* # (),
which increases as the number of nonempty clusters grows.
Hence the following function is devised to model w:

w=1-exp(—|I*|-7) 7

where 7y is a hyper-parameter, and its value can be chosen
by using grid search across its sensitive range that is shown
in supplementary material. Finally, considering the denomi-
nator of Eq. 4, it can be marginalized over all preset clusters
in the dataset feature space:

p[mn|5n—1 == Z,]

= Z wTLVJN(uk,Z’“) + Z (1 7w)w

-1 K — |I¥]

kelk kg Ik
3

The initial conditions are as follows:
P[s; = 1]|z1] =1 )
p =pg (10)

27

»k — k=90 1
0 K% ( )

where pf can be sampled randomly from uniform distri-
bution when the bound of range is known or is sampled
from a Gaussian distribution when the mean and variance
are known. Here 3} is set as a diagonal matrix given un-
known correlation in the beginning, and 2 can be roughly
set around the estimation of the variance of separate trials,
whose scale is inversely proportional to K T as more pre-
set clusters can lead to less variance. These parameters can
be easily updated by likelihood maximization, the detailed
update criteria are shown as follows:

h {vk Uldan}, dn— V¥

, 12
vk, dy — VF K £k (12)

The update for u* and =¥ are as follows:

Z?ievk z; d k k
S A=V AVE£D
Hn =9 g, dy > VEAVE =0 (13)
pE_ de o VE R A EANVE A0
Zf"evk(mruk)(Wer)T k k
== (= —a‘:vf(lw,t —xn) S ‘k/ /\‘k/ i~
n si@nze)@aen) g R ATVE =)

SE L da o VE K #EEAVE£D

(14)

where 7' is the number of trials by random initialization
for one benchmark model. Recall x,, is the mean vector
over the T trials. The update criteria are easy to under-
stand: the parameters in the nonempty cluster that the cur-
rent dataset is assigned to are updated by max-likelihood,
and the parameters in other nonempty clusters remain un-
changed. While the parameters in the empty cluster that
the current dataset is assigned to are set to the estimation of
itself, as the current dataset is the only one in the cluster.
As a consequence, the probability for next cluster assign-
ment in Eq. 3 can be calculated with Eq. 4-14. Accordingly
the best cluster can be found with the highest probability
such that the datasets associated with that cluster can share
the same model to avoid model search for new datasets.
However, due to the high demands of computation and
memory requirements, computing Eq. 3 directly is often un-
feasible as the state number is a Bell number [2] and grows
exponentially with the number of datasets, even considering
the simplification of states by reducing the empty clusters.
To improve the efficiency, one solution is to model the prob-
lem as a shortest path problem and preserve only the most
effective path. However the dynamic programming models
like the Viterbi algorithm cannot improve performance in
this case because the current state is transitioned from only
one state. To obtain an approximately optimal solution, we
make an assumption that the determinant of |X¥| is small
enough, which is also found empirically. Then it is easy to
show that the state with the highest posterior probability Eq.
4 at dataset d,, will be transitioned from that with the high-
est one at dataset d,,_;. Therefore, we can only take the
state with the highest posterior probability Eq. 4 along the
iteration process to get an approximately optimal solution.
As described above, our method can be viewed as a
hard decision scheme. There are also soft decision sequen-
tial clustering methods like online EM algorithms [9, 23].
While grouping the datasets into clusters by hard decision
is more direct because it neither need inefficient iterations
nor requires a predefined accurate number of clusters. Since
k-means is the well known hard decision cluster method, as
well as its sequential version [13, 20], we will compare with
k-means and sequential k-means in the experiments.

2.3. Statistical Hypothesis Test

The above Markov grouping procedure can control the
Type Il error. Now we introduce a hypothesis test technique
to handle the Type I error. Statistical test was involved in
k-means by [13], whereby the test is performed to detect
whether the data assigned to a cluster is sampled from one
Gaussian distribution. Since hypothesis test for fitting dis-
tributions requires a large number of samples [1] which is
not suited in our model search setting, we turn to consider
a test to detect whether two Gaussian distributions have the
same mean. Specifically the alternative hypotheses are:
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e [: the mean of the assigned datasets in the cluster is the
same as the mean of the going-to assigned dataset;

e [;: the mean of the assigned datasets in the cluster is not
the same as the mean of the going-to assigned dataset;

For the feature vector of a new dataset, as mentioned ear-
lier it consists of 7" raw versions from 7" random trials to ob-
tain the mean value: X = {@1, xa, ..., &} where T is the
number of trials. Similarly for datasets assigned in cluster
VE, wehave Y = {y1,y2,...,yr} where y; is the average
over the features of datasets in that cluster for trial £.

Unlike the Markov analysis for sequential clustering in
the above section that the mean and covariance matrix
are calculated by the max-likelihood estimation, in this
hypothesis test, these parameters are assumed unknown.
Specifically, the elements in X and ) are supposed to be
Gaussian distributions: N (u!, 3') and N (u?, $2), respec-
tively. The goal is to detect whether u' = p?. Here,
Behrens-Fisher solution [18] is introduced, consider an-
othersetfort =1,2...,T":

T T|VE
> 1 Yt/T —yi _ t:‘I | Yi }

Z = {Z,’|Zi =x; +

VIV TIVH|
(15)
The test statistics [1] can be represented as:
1 T
F =2 T(T - B> (zi—-2)(zi—2) "'z (16)
i=1

Where B is the number of benchmark models described
above, Z = 22=1%  Given the standard statistical signifi-
cance level a, the rejecting region is {F' > F,,(B,T — B)}.

The significance level « is the desired probability of
making a Type I error (i.e. incorrectly rejecting Hp). Usu-
ally, decreasing its value will cause lower Type I error, but
higher Type II error (i.e. incorrectly accepting Hy). In our
method, the Markov analysis for sequential clustering can
be viewed as a method to control Type II error, so the a can
be chosen only to consider the Type I error. Different values
of o will be evaluated in the experiments.

2.4. Approach Summary and Discussion

We term the proposed approach Transferable AutoML
(Tr-AutoML) using benchmarks’ performance based meta-
features as well as Markov analysis and hypothesis test
(MH) whose details are depicted in Algorithm 1. The term
Tr-AutoML reflects the meta-features extracting method
and the framework proposed in the paper; while MH em-
phasizes the techniques as described above.

3. Experiments

The experiments consider three settings: i) search
model from scratch; ii) search model from a predefined

Algorithm 1 Transferable AutoML with Markov analysis
and hypothesis test — abbr. Tr-AutoML (MH)

Input:

1: Set significance level «, v and the max cluster number K;

2: Initialize the state with Eq. 9 10 11 for Markov clustering;

3: Setup the K empty clusters {Vj"}7_, in the dataset feature
space 2p with random initialization (some of them will be
updated according to the assigned datasets).

Output:

4: The J searched models m? for nonempty cluster V7 # (§ in
stream. Note that 1) datasets may share the same model with
different weights; 2) benchmark models are only for dataset
feature computing rather than used as searched models.

5: for dataset d,,, n=1,2,... do

6:  For d,, compute its benchmark model specific feature vec-

tor &, = f(dn,b1,...,bB) € Qq;
: Find V,¥ and assign d,, — V,* viaEq. 56 7;
8: if V;¥ = (i.e. the found cluster is empty then
: /lcan be coupled by standalone model search methods
10: Perform standalone model search method e.g. Hyper-

band, MetaQNN to search tailored model m,, for dy;
11: Assign d, to V.F: set V*°s searched model m* = m,;
12:  elseif V¥ # () then
13: Perform hypothesis test via Eq. 16.
14: if hypothesis is not accepted then
15: Search model m., for dy;
16: Randomly choose an empty cluster V,f/ and assign d,,

’ ’ ’
to V,¥'; set V¥ ’s searched model m* = my;
17: else

18: Set m® as d,,’s searched model for sharing;//model
reused
19: end if
20:  endif
21:  Update the parameters with maximum-likelihood estima-
tion via Eq. 12 13 14.
22: end for

model e.g. GoogleNet to leverage existing architectures;
iii) transfer from basic cells. We will first list the com-
pared baselines and then introduce the general settings in
terms of evaluation metrics, model search algorithms, test-
ing dataset sequence generation and platform etc.

3.1. General Settings
3.1.1 Compared Methods

We consider these baselines to compare with Tr-AutoML:

i) Our meta-features extraction method for AutoML is
based on benchmark models’ performance. We will em-
pirically show its advantage over traditional statistical and
categorized meta-feature generating approaches [26].

ii) The proposed model sharing approach is agnostic to
specific strategies for dataset grouping. Apart from the de-
vised Markov analysis and hypothesis test (MH) methods,
some simple baselines e.g. random grouping, k-means, se-
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quential k-means [13] can also be combined. In the exper-
iments, we will show the advantage of our MH technique
over these baselines under the Tr-AutoML framework.

iii) The proposed Tr-AutoML framework can be viewed
as collaborative AutoML that leverage the knowledge of
previous datasets. In the experiments, we will compare
other collaborative AutoML—warmstart algorithm [24]-to
see the advantage of our Tr-AutoML.

iv) Our Tr-AutoML framework with the MH techniques
can incorporate existing standalone AutoML methods e.g.
Hyperband [22], Bayesian optimization [34], MetaQNN
[3], NAS [42], Net2Net [10], ENAS [31] and DARTS [25]
in an out-of-box fashion, as specified by the step at line 10
in Algorithm 1. In our experiments, we will also show the
performance when different AutoML algorithms are used.

3.1.2 Evaluation Protocols

To mimic online setting, datasets are sequentially processed
with random order for 30 times, and the reported results in
the experiments are the average ones. For each dataset, tai-
lored model (including architecture and hyper-parameters)
is searched. The architecture involves numbers of layers,
convolutional kernel size, output channel size, pool kernel
size and stride etc. while hyper-parameters involve initial
learning rate, initial weight standard deviation etc.
Experiment runs on two Tesla K80 each with 12G mem-
ory. We set the hyper-parameters of our Tr-AutoML method
a = 0.005, v = 0.2, the maximum cluster number K =
1000, and 0 = 3e — 4. We set the number of benchmarks
B = 6 and number of random trials 7' = 8 to obtain per-
formance mean x. For evaluation we use search wall clock
time and total classification relative errors (TRE) defined as:

*

: a7

€, — €
*
i

1
TRE:NE; -

where e}, and e, stand for the test set error of dataset n using
the model generated by standalone search method and com-
bined one, respectively. N is the total number of datasets.

3.1.3 Benchmark Models

Our method is based on feature representation of the dataset
by benchmark model evaluation. Here six benchmark mod-
els combining hyper-parameter and structure of neural net-
works are chosen from Monte Carlo sampling over the fea-
sible region from uniform or log-uniform distribution. It is
important to note that the benchmark models are only used
for computing dataset d,,’s performance vector «,,. The fi-
nal searched model is tailored for the specific dataset.

3.2. Search from Scratch

To verify the generality, here the search is performed
without any prior knowledge about the model and tested

Table 1: Dataset grouping examples by Tr-AutoML. Groups
are formed for each trial: in model search from scratch.

1) mnist_1.0, mnist_0.5, svhn_0.1, svhn_0.5, fashion-mnist_0.1, fashion-mnist_0.5

2) st110.0.5, st110_1.0

3) mnist-background-images_0.5, mnist-background-images_1.0, mnist-rotated_0.5, mnist-rotated 1.0
4) cifar10_1.0, cifar10_0.5

1) mnist_1.0, mnist_0.5, fashion-mnist_0.5

2) stl10_1.0, cifar10.0.5, cifar10_1.0

3) mnist-rotated_0.5, mnist-background-images_1.0, mnist-background-images_0.5, mnist-rotated_1.0
4) svhn_1.0, svhn_0.5, fashion-mnist_0.1

5) stl10-0.5

dataset. Seven datasets are used for evaluation including
MNIST, CIFAR-10, FASHION-MNIST, SVHN, STL-10,
MNIST-BACKGROUND-IMAGES, MNIST-ROTATED
[19, 27, 11, 21, 38]. Each dataset has further another
derived version with sampling ratio 50% of raw datasets.
Splitting dataset into sub-dataset is widely used in multi-
task learning and transfer learning [26, 35]. Hence in total
there are 14 datasets for online model search. The datasets
are processed with random orders for 30 trials.

We empirically find that in most trials, the MNIST-
BACKGROUND-IMAGES and MNIST-ROTATED are au-
tomatically grouped by the Tr-AutoML approach. In a few
cases, STL-10 and CIFAR-10, FASHION-MNIST/MNIST
and SVHN also tend to be grouped together. Table 1 shows
the dataset grouping results of two of these trials whereby
similar datasets are grouped.

To compare our proposed Tr-AutoML with standalone
model search schemes, we combine Tr-AutoML with Hy-
perband [22], MetaQNN [3] and ENAS [31]. Also, to
demonstrate the efficiency of our proposed meta-features
extracting method, we compare Tr-AutoML with [26] that
uses its statistical meta-features (such as statistics about
the number of data points, features, and classes, as well
as data skewness, and the entropy of the targets) as meta-
learning for dataset feature representations. To show the
performance of our proposed Markov analysis and hypoth-
esis test (MH) method, grouping baselines by k-means, se-
quential k-means and random clustering are evaluated. Fur-
thermore, to compare the collaborative way for AutoML,
we compare Tr-AutoML with a warmstart method: [24]
by using the three AutoML methods as its user-specified
default initialization. Table 2 shows the results, where the
total search time already includes the overhead of running
benchmark models listed in the last column. Comparing
to the standalone model search methods, the combined one
Tr-AutoML (MH) can reduce the search time by 3 to 4
times on average while maintaining a low level extra error
almost the same as k-means (k is selected as the number
of raw datasets), which is much less than Warmstart, Meta-
learning and random clustering based methods. Tr-AutoML
(MH) is more efficient than k-means (save about 40%-70%
search time) because it can find the reusable models among
the datasets even from different raw datasets.

The total relative error for combination with Hyperband
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Table 2: Total search time (in days, including the over-
head of running benchmark models), total classification rel-
ative errors (TRE) and benchmark overhead on 7 dataset: in
model search from scratch setting.

Techniques combination Total search time TRE  Overhead

Hyperband [22] 10.40 0 0
Warmstart [24] + Hyperband 6.23 0412 0
Meta-learning [26] + Hyperband 3.85 0.118 0
Tr-AutoML(Random) + Hyperband 2.96 1.653 0
Tr-AutoML(Kmeans) + Hyperband 5.44 0.059 0.2
Tr-AutoML(Seq. Kmeans [13]) + Hyperband = 4.48 0.061 0.2
Tr-AutoML(MH) + Hyperband 3.17 0.062 0.2
MetaQNN [3] 16.29 0 0
Warmstart [24] + MetaQNN 7.19 0276 0
Meta-learning [26] + MetaQNN 5.46 0.075 0
Tr-AutoML(Random) + MetaQNN 4.68 1.149 0
Tr-AutoML(Kmeans) + MetaQNN 7.87 0.036 0.2
Tr-AutoML(Seq. Kmeans [13]) + MetaQNN ~ 6.32 0.041 0.2
Tr-AutoML(MH) + MetaQNN 4.85 0.039 0.2
ENAS [31] 12.22 0 0
Warmstart [24] + ENAS 5.10 0.132 0
Meta-learning [26] + ENAS 4.82 0.044 0
Tr-AutoML(Random) + ENAS 4.02 0471 0
Tr-AutoML(Kmeans) + ENAS 6.17 0.017 0.2
Tr-AutoML(Seq. Kmeans [13]) + ENAS 5.04 0.019 0.2
Tr-AutoML(MH) + ENAS 422 0.019 02

is higher than the other two methods. We conjecture this is
because in Hyperband, besides the architecture, the hyper-
parameters like learning rate, initial weight standard devia-
tion are also auto-tuned simultaneously, making the shared
model more sensitive to different datasets. The MetaQNN
implemented in our experiments underperforms its original
report in [3] as we set a time budget on it. But the com-
parison of standalone MetaQNN and combined MetaQNN
scheme is not affected since we focus on the relative per-
formance in the paper. Moreover, the overheads of running
benchmarks are similar among three AutoML schemes be-
cause the benchmark models are the same among them.

Figure 1 shows the test accuracy over wall clock time
on six raw datasets (due to space constraints, we report re-
sults for only six datasets). Hyperband is used to demon-
strated the standalone AutoML, other AutoML schemes are
similar. From the average searching time point of view,
the accuracy grows quickly in transferable AutoML (Tr-
AutoML); regarding with limited performance, pure stan-
dalone AutoML performs slightly better than Tr-AutoML.
This is because Tr-AutoML reuses the model directly and
makes no feedback action.

Figure 2 shows the effect of different benchmark num-
bers and different significance levels in hypothesis test.
Large significance levels will force the dataset groups to
shrink to smaller one, so it usually provides low error but
a long search time. However, when the benchmark number
is too small to capture the divergence of different datasets,
both errors and search time are poor. In our experiments,
selecting 4 to 6 benchmark models is good enough for Tr-
AutoML when considering model search from scratch.

Table 3: Two examples of dataset grouping generated by
running two trials of Tr-AutoML: in predefined setting.

1) scene_1.0, scene_0.5, flower_1.0, flower_0.5
2) action_1.0, action_0.5
3) sun_1.0, sun_0.5

1) scene_1.0, scene_0.5, flower_1.0, flower_0.5, action_1.0
2) action_0.5
3) sun_1.0, sun_0.5

Table 4: Searching time (in days) and total classification
relative errors on four datasets: in model search from pre-
defined model setting.

Algorithm Time TRE

MetaQNN 8 0
Tr-AutoML(Random) + MetaQNN 2.8 1.78
Tr-AutoML(Kmeans) + MetaQNN 4.5 0.069
Tr-AutoML(MH) + MetaQNN 3.0 0.074

3.3. Search from Predefined Model

In real-world applications, the image classification tasks
are far more difficult than MNIST or CIFAR-10. Shallow
networks are too weak to capture the high-level informa-
tions but training several deep networks on those tasks are
time-consuming. In this case, our Tr-AutoML can also per-
form well on search from the predefined model or trans-
ferring from basic cells (in Sec.3.4). In this section, Tr-
AutoML from a predefined model is evaluated. We involve
four complicated datasets of large image size: FLOWER-
102 [28], ACTION-40 [40], SCENE-15 [29], SUN-397 [39]
along with their subsets of 0.5 sample rate version. The
difference from the previous experiment is that we reuse
GoogleNet [36] architecture and weights from bottom to in-
ception (4e) layer, while search a chain-structure for higher
layers. The dataset grouping results is shown in Table 3.
One can find the SCENE-15 and FLOWER-102 datasets
can be automatically combined due to their similarity. The
performance comparison is shown in Table 4 whereby one
can see our approach achieves a reasonable tradeoff for ef-
ficiency and efficacy.

3.4. Transfer from Basic Cells

Searching model based on basic cells are widely used
[31, 25], which can be viewed as a layered search strategy.
AutoML algorithms focus on searching the nodes and their
connections in the cells (normal cell and reduction cell), and
then concatenate them to be a neural network. In [43] the
authors show the basic cell searched on CIFAR-10 can be
transferred to ImageNet classification without much modifi-
cation. By adopting our proposed Tr-AutoML, it is intrinsic
to share the basic cells within a dataset group. In this sec-
tion, we evaluate three transferable cases: 1) source datasets
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Figure 1: Test Accuracy over wall clock time (searching hours) on six raw datasets: in model search from scratch setting.
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Figure 2: Different significance levels a by different num-
bers of benchmarks: in model search from scratch setting.

are MNIST, CIFAR10, STL10 and SVHN, target dataset
is FASHION-MNIST. 2) source datasets are MNIST, CI-
FAR10, FASHION-MNIST and SVHN, target dataset is
STL10. 3) source datasets are MNIST, CIFAR10, STL10,
SVHN and FASHION-MNIST, target dataset is ImageNet.
We set @ — 0 and v — oo in order to force Tr-AutoML
to share models. From the Table 5, it is shown that for both
easy datasets and complicated datasets, Tr-AutoML identify
which datasets can share the best basic cell stably and effi-
ciently. This is because the proposed dataset feature repre-
sentations are based directly on model shared performance
rather than other statistical or categorized features.

4. Conclusion

This paper explores the transferable AutoML for model
search and sharing over sequentially arriving datasets. We

Table 5: Search time (in days, including overhead). Test
accuracy: in transfer from basic cells setting.

Target dataset Techniques Search time  Accuracy
FASHION-MNIST Hyperband [22] 1.67 0.942
Meta-learning [26] 0.001 0.939
Tr-AutoML(Random) 0 0.936
Tr-AutoML(MH) 0.013 0.939
STL10 ENAS [31] 1.08 0.734
Meta-learning [26] 0.001 0.680
Tr-AutoML(Random) 0 0.692
Tr-AutoML(MH) 0.017 0.725
ImageNet NASNet-A [43] 1800 0.740
Meta-learning [26] 2.56 0.717
Tr-AutoML(Random) 2.54 0.712
Tr-AutoML(MH) 2.81 0.734

propose a novel meta-learning approach by adaptively
grouping the new dataset into previous ones, and reuse the
previously discovered models to the model search for new
data. Meanwhile, our framework is orthogonal to, and can
be coupled with many existing AutoML techniques in an
out-of-box fashion. On the image classification task, our
method achieves notable overall speedup for model search-
ing at negligible accuracy loss. It also works well on differ-
ent search mechanisms and datasets.
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