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Abstract

We present a deep learning system to infer the posterior

distribution of a dense depth map associated with an im-

age, by exploiting sparse range measurements, for instance

from a lidar. While the lidar may provide a depth value for

a small percentage of the pixels, we exploit regularities re-

flected in the training set to complete the map so as to have

a probability over depth for each pixel in the image. We

exploit a Conditional Prior Network, that allows associat-

ing a probability to each depth value given an image, and

combine it with a likelihood term that uses the sparse mea-

surements. Optionally we can also exploit the availability of

stereo during training, but in any case only require a single

image and a sparse point cloud at run-time. We test our ap-

proach on both unsupervised and supervised depth comple-

tion using the KITTI benchmark, and improve the state-of-

the-art in both. Code is available at: https://github.

com/YanchaoYang/Dense-Depth-Posterior

1. Introduction

There are many dense depth maps that are compatible

with a given image and a sparse point cloud. Any point-

estimate, therefore, depends critically on the prior assump-

tions made. Ideally, one would compute the entire posterior

distribution of depth maps, rather than a point-estimate. The

posterior affords to reason about confidence, integrating ev-

idence over time, and in general, is a (Bayesian) sufficient

representation that accounts for all the information in the

data.

Motivating application. In autonomous navigation, a

sparse point cloud from lidar may be insufficient to make

planning decisions: Is the surface of the road in Fig. 1 (mid-

dle, better viewed when enlarged) littered with pot-holes,

or is it a smooth surface? Points that are nearby in image

topology, projecting onto adjacent pixels, may be arbitrar-

ily far in the scene. For instance, pixels that straddle an

occluding boundary correspond to large depth gaps in the

scene. While the lidar may not measure every pixel, if we

know it projects onto a tree, trees tend to stand out from

the ground, which informs the topology of the scene. On

the other hand, pixels that straddle illumination boundaries,

like shadows cast by trees, seldom correspond to large depth

discontinuities.

Depth completion is the process of assigning a depth

value to each pixel. While there are several deep learning-

based methods to do so, we wish to have the entire posterior

estimate over depths. Sparse range measurements serve to

ground the posterior estimate in a metric space. This could

then be used by a decision and control engine downstream.

Figure 1. An image (top) is insufficient to determine the geometry

of the scene; a point cloud alone (middle) is similarly ambiguous.

Lidar returns are shown as colored points, but black regions are

uninformative: Are the black regions holes in the road surface,

or due to radiometric absorption? Combining a single image, the

lidar point cloud, and previously seen scenes allows inferring a

dense depth map (bottom) with high confidence. Color bar from

left to right: zero to infinity.

Side information. If the dense depth map is obtained by

processing the given image and sparse point cloud alone,

the quality of the resulting decision or control action could
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Figure 2. (A): the architecture of the Conditional Prior Network

(CPN) to learn the conditional of the dense depth given a single

image. (B): Our proposed Depth Completion Network (DCN) for

learning the mapping from a sparse depth map and an image to a

dense depth map. Connections within each encoder/decoder block

are omitted for simplicity.

be no better than if the raw data was fed downstream (Data

Processing Inequality). However, if depth completion can

exploit a prior or aggregate experience from previously seen

images and corresponding dense depth maps, then it is pos-

sible for the resulting dense depth map to improve the qual-

ity of the decision or action, assuming that the training set

is representative. To analyze a depth completion algorithm,

it is important to understand what prior assumptions, hy-

potheses or side information is being exploited.

Goal. We seek methods to estimate the geometry and

topology of the scene given an image, a sparse depth map,

and a body of training data consisting of images and the

associated dense depth maps. Our assumption is that the

distribution of seen images and corresponding depth maps

is representative of the present data (image and sparse point

cloud) once restricted to a sparse domain.

Our method yields the full posterior over depth maps,

which is much more powerful than any point estimate. For

instance, it allows reasoning about confidence intervals. We

elect the simplest point estimate possible, which is the max-

imum, to evaluate the accuracy of the posterior. It should

be noted, however, that when there are multiple hypotheses

with similar posterior, the point estimate could jump from

one mode to another, and yet the posterior being an accu-

rate representation of the unknown variable. More sophis-

ticated point estimators, for instance, taking into account

memory, or spatial distribution, non-maximum suppression,

etc. could be considered, but here we limit ourselves to the

simplest one.

Key idea. While an image alone is insufficient to de-

termine a depth map, certain depth maps are more prob-

able than others given the image and a previously seen

dataset. The key to our approach is a conditional prior

model P (d|I,D) that scores the compatibility of each dense

depth map d with the given image I based on the previously

observed dataset D. This is computed using a Conditional

Prior Network (CPN) [36] in conjunction with a model of

the likelihood of the observed sparse point cloud z under

the hypothesized depth map d, to yield the posterior proba-

bility and, from it, a maximum a-posteriori (MAP) estimate

of the depth map for benchmark evaluation:

d̂ = argmax
d

P (d|I, z) ∝ P (z|d)PD(d|I). (1)

Let D ⊂ R
2 be the image domain, sampled on a regu-

lar lattice of dimension N × M , I : D → R
3 is a color

image, with the range quantized to a finite set of colors,

d : D → R+ is the dense depth map defined on the lattice

D, which we represent with an abuse of notation as a vec-

tor of dimension MN : d ∈ R
NM
+ . Ω ⊂ D is a sparse

subset of the image domain, with cardinality K = |Ω|,
where the function d takes values d(Ω) = z ∈ R

K
+ . Fi-

nally, D = {dj , Ij}
n
j=1 is a dataset of images Ij and their

corresponding dense depth maps dj ∈ R
NM
+ . Since we do

not treat D as a random variable but a given set of data, we

write it as a subscript. In some cases, we may have addi-

tional data available during training, for instance stereo im-

agery, in which case we include it in the dataset, and discuss

in detail how to exploit it in Sect. 3.3.

Results. We train a deep neural network model to pro-

duce an estimate of the posterior distribution of dense depth

maps given an image and a sparse point cloud (sparse range

map), that leverages a Conditional Prior Network to re-

strict the hypothesis space, weighted by a classical likeli-

hood term. We use a simple maximum a-posteriori (MAP)

estimate to evaluate our approach on benchmark datasets,

including the KITTI-unsupervised, where the dense depth

map is predicted given an image and a point cloud with 5%

pixel coverage, and the KITTI-supervised, where a point

cloud with 30% coverage is given for training. We achieve

top performance in both. We also validate on additional data

in the Supplementary Materials [37].

2. Related Work

Semi-Dense Depth Completion. Structured light sen-

sors typically provide dense depth measurements with about

20% missing values; At this density, the problem is akin

to inpainting [2, 20, 27] that use morphological operations

[18, 24]. The regime we are interested in involves far

sparser point clouds (> 90% missing values).

Supervised Depth Completion. Given a single RGB

image and its associated sparse depth measurements along

with dense ground truth, learning-based methods [7, 15,

25, 29, 38] minimize the corresponding loss between pre-

diction and ground truth depth. [29] trains a deep net-

work to regress depth using a sparse convolutional layer

that discounts the invalid depth measurements in the input

while [15] proposes a sparsity-invariant upsampling layer,

sparsity-invariant summation, and joint sparsity-invariant

concatenation and convolution. [7] treats the binary valid-

ity map as a confidence map and adapts normalized convo-
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lution for confidence propagation through layers. [5] im-

plements an approximation of morphological operators us-

ing the contra-harmonic mean (CHM) filter [23] and in-

corporates it as a layer in a U-Net architecture for depth

completion. [4] proposes a deep recurrent auto-encoder to

mimic the optimization procedure of compressive sensing

for depth completion, where the dictionary is embedded

in the neural network. [38] predicts surface normals and

occlusion boundaries from the RGB image, which gives a

coarse representation of the scene structure. The predicted

surface normals and occlusion boundaries are incorporated

as constraints in a global optimization framework guided by

sparse depth.

Unsupervised Depth Completion. In this problem set-

ting, dense ground truth depth is not available as supervi-

sion, so a strong prior is key. [21] proposes minimizing the

photometric consistency loss among a sequence of images

with a second-order smoothness prior based on a similar

formulation in single image depth prediction [22, 30, 39].

Instead of having a separate pose network or using direct

visual odometry methods, [21] uses Perspective-n-Point

(PnP) [19] and Random Sample Consensus (RANSAC) [9]

to obtain pose. We exploit recently introduced method to

learn the conditional prior [36] to take into account scene

semantics rather than using a local smoothness assumption.

Stereo as Supervision. Recent works in view synthesis

[10, 33] and unsupervised single image depth prediction,

[8, 12, 13, 32] propose using view synthesis to hallucinate

a novel view image by reconstruction loss. In the case of

stereo pairs, [12, 13, 32] propose training networks to pre-

dict the disparities of an input image by reconstructing the

unseen right view of a stereo pair given the left. In addition

to the photometric reconstruction loss, local smoothness is

assumed; [13] additionally proposed edge-aware smooth-

ness and left-right consistency. Although during inference,

we assume only one image is given, at training time we

may have stereo imagery available, which we exploit as in

Sect. 3.3. In this work, we incorporate only the stereo pho-

tometric reconstruction term. Despite our network predict-

ing depths and the network [12, 13, 32] predicting dispari-

ties, we are able to incorporate this training scheme seam-

lessly into our approach.

Exploiting Semantics and Contextual Cues. While

methods [7, 15, 21, 25, 29, 38] learn a representation for

the depth completion task through ground truth supervi-

sion, they do not have any explicit modeling of the seman-

tics of the scene. Recently, [26] explored this direction by

predicting object boundary and semantic labels through a

deep network and using them to construct locally planar el-

ements that serve as input to a global energy minimization

for depth completion. [3] proposes to complete the depth by

anisotropic diffusion with a recurrent convolution network,

where the affinity matrix is computed locally from an im-

age. [16] also trains a U-Net for joint depth completion and

semantic segmentation in the form of multitask learning in

an effort to incorporate semantics in the learning process.

To address contextual cues and scene semantics, [36] in-

troduces a Conditional Prior Network (CPN) in the context

of optical flow, which serves as a learning scheme for in-

ferring the distribution of optical flow vectors given a sin-

gle image. We leverage this technique and formulate depth

completion as a maximum a-posteriori problem by factoriz-

ing it into a likelihood term and a conditional prior term,

making it possible to explicitly model the semantics in-

duced regularity of a single image. Even though our method

could be applied to sparse-to-dense interpolation for opti-

cal flow, where the sparse matches can be obtained using

[35, 34], here we focus our test on depth completion task.

3. Method

In order to exploit a previously observed dataset D, we

use a Conditional Prior Network (CPN) [36] in our frame-

work. Conditional Prior Networks infer the probability

of an optical flow given a single image. During train-

ing, ground truth optical flow is encoded (upper branch in

Fig. 2-A), concatenated with the encoder of an image (lower

branch), and then decoded into a reconstruction of the input

optical flow.

In our implementation, the upper branch encodes dense

depth, concatenated with the encoding of the image, to pro-

duce a dense reconstruction of depth at the decoder, together

with a normalized likelihood that can serve as a posterior

score. We consider a CPN as a function that, given an image

(lower branch input) maps any sample putative depth map

(upper branch input) to a positive real number, which rep-

resents the conditional probability/prior of the input dense

depth map given the image.

We denote the ensemble of parameters in the CPN as

wCPN ; with abuse of notation, we denote the decoded

depth with d′ = wCPN (d, I). When trained with a bot-

tleneck imposed on the encoder (upper branch), the recon-

struction error is proportional to the conditional distribu-

tion:

Q(d, I;wCPN ) = e−‖wCPN (d,I)−d‖η

∝ PD(d|I) (2)

where η indicates the specific norm used for calculating Q.

In Sect. 4.2 and Sect. 5, we show the training details of

CPN, and also quantitatively show the effect of different

choices of the norm η. In the following, we assume wCPN

is trained, and Q will be used as the conditional prior. For

the proof that Q computed by CPN represents the condi-

tional prior as in Eq. (2), please refer to [36].

In order to obtain a posterior estimate of depth, the CPN

needs to be coupled with a likelihood term.

3355



3.1. Supervised Single Image Depth Completion

Supervised learning of dense depth assumes the avail-

ability of ground truth dense depth maps. In the KITTI

depth completion benchmark [29], these are generated by

accumulating the neighboring sparse lidar measurements.

Even though it is called ground truth, the density is only

∼ 30% of the image domain, whereas the density of the

unsupervised benchmark is ∼ 5%. The training loss in the

supervised modality is just the prediction error:

L(w) =

N∑

j=1

‖φ(zj , Ij ;w)− dj‖
γ (3)

where φ is the map from sparse depth z and image I to

dense depth, realized by a deep neural network with param-

eters w, and γ = 1 fixed in the supervised training.

Our network structure for φ is detailed in Fig. 2-B, which

has a symmetric two-branch structure, each encoding dif-

ferent types of input: one sparse depth, the other an image;

skip connections are enabled for two branches. Note that

our network structure is unique among all the top perform-

ing ones on the KITTI depth completion benchmark: We do

not use specifically-designed layers for sparse inputs, such

as sparsity invariant layers [15, 29]. Instead of early fusion

of sparse depth and image, our depth defers fusion to de-

coding, which entails fewer learnable parameters, detailed

in [37]. A related idea is proposed in [16]; instead of a more

sophisticated NASNet block [40], we use the more com-

mon ResNet block [14]. Although simpler than competing

methods, our network achieves state-of-the-art performance

(Sect. 5).

3.2. Unsupervised Single Image Depth Completion

Supervised learning requires ground truth dense depth,

which is hard to come by. Even the “ground truth” provided

in the KITTI benchmark is only 30% dense and interpo-

lated from even sparser maps. When only sparse indepen-

dent measurements of depth are available, for instance from

lidar, with less than 10% coverage (e.g. 5% for KITTI),

we call depth completion unsupervised as the only input are

sensory data, from images and a range measurement device,

with no annotation or pre-processing of the data.

The key to our approach is the use of a CPN to score

the compatibility of each dense depth map d with the given

image I based on the previously observed data D. In some

cases, we may have additional sensory data available during

training, for instance, a second image taken with a camera

with a known relative pose, such as stereo. In this case, we

include the reading from the second camera in the training

set D, as described in Sect. 3.3. When only a single image

is given, the CPN Eq. (2) is combined with a model of the

likelihood of the observed sparse point cloud z under the

hypothesized depth map d:

P (z|d) ∝ e−‖z−d(Ω)‖γ

(4)

which is simply a Gaussian around the hypothesized depth,

restricted to the sparse subset Ω, when γ = 2. The overall

loss is:

Lu(w) = −
N∑

j=1

logP (dj |Ij , zj ,D)

=
N∑

j=1

‖zj − dj(Ω)‖
γ+α

N∑

j=1

‖wCPN (dj , Ij)− dj‖
η

=
N∑

j=1

‖zj − φ(zj , Ij ;w)(Ω)‖
γ+

α
N∑

j=1

‖wCPN (φ(zj , Ij ;w), Ij)− φ(zj , Ij ;w)‖
η (5)

Note that γ, η control the actual norm used during train-

ing, as well as the modeling of the likelihood and condi-

tional distribution. We experiment with these parameters in

Sect. 5.1, and show our quantitative analysis there.

3.3. Disparity Supervision

Some datasets come with stereo imagery. We want to

be able to exploit it, but without having to require its avail-

ability at inference time. We exploit the strong relation be-

tween depth and disparity. In addition to the sparse depth z
and the image I , we are given a second image I ′ as part of

a stereo pair, which is rectified (standard pre-processing),

to first-order we assume that there exists a displacement

s = s(x), x ∈ D such that

I(x) ≈ I ′(x+ s) (6)

which is the intensity constancy constraint. We model,

again simplistically, disparity s as s = FB/d, where F
is the focal length and B is the baseline (distance between

the optical centers) of the cameras. Hence, we can synthe-

size disparity s from the predicted dense depth d, thus to

constrain the recovery of 3-d scene geometry. More specif-

ically, we model the likelihood of seeing I ′ given I, d as:

P (I ′|I, d) ∝ e
−

∑
x‖I(x)− I ′(x+ s(d(x)))‖

δ2 (7)

However, the validity of the intensity constancy assump-

tion is affected by complex phenomena such as translu-

cency, transparency, inter-reflection, etc. In order to mit-

igate the error in the assumption, we could also employ

a perceptual metric of structural similarity (SSIM) [31].

SSIM scores corresponding 3 × 3 patches p(x), p′(x) ∈
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Method iRMSE iMAE RMSE MAE Rank

Dimitrievski [6] 3.84 1.57 1045.45 310.49 13.0

Cheng [3] 2.93 1.15 1019.64 279.46 7.5

Huang [15] 2.73 1.13 841.78 253.47 6.0

Ma [21] 2.80 1.21 814.73 249.95 5.5

Eldesokey [7] 2.60 1.03 829.98 233.26 4.75

Jaritz [16] 2.17 0.95 917.64 234.81 3.0

Ours 2.12 0.86 836.00 205.40 1.5

Table 1. Quantitative results on the supervised KITTI depth com-

pletion benchmark. Our method achieves state of the art perfor-

mance in three metrics, iRMSE, iMAE, and MAE. [21] performs

better than us by 2.6% on the RMSE metric; however, we out-

perform [21] on all other metrics by 24.3%, 28.9% and 17.8% on

the iRMSE, iMAE and MAE, respectively. The last column is the

average rank over ranks on all the four metrics.

R
3×3
+ centered at x in I and I ′, respectively, to measure

their local structural similarity. Higher scores denote more

similarity; hence we can subtract the scores from 1 to form

a robust version of Eq. (7). We use Praw(I
′|I, d) and

Pssim(I ′|I, d) to represent the probability of I ′ given I, d
measured in raw photometric value and SSIM score respec-

tively. When the stereo pair is available, we can form the

conditional prior as follows by applying conditional inde-

pendence:

P (d|I, I ′,D) ∝ P (I ′|I, d,D)P (d|I,D)

= P (I ′|I, d)PD(d|I) (8)

Similar to the training loss Eq. (5) for the unsupervised sin-

gle image depth completion setting, we can derive the loss

for the stereo setting as follows:

Ls(w) = −

N∑

j=1

logP (dj |Ij , I
′
j , zj ,D)

= Lu(w) + β
∑

j,x

‖Ij(x)− I ′j(x+ s(dj(x)))‖ (9)

where dj = φ(zj , Ij ;w) and Lu is the loss defined in

Eq. (5). Note that, the above summation term is the instan-

tiation for Praw(I
′|I, d), which can also be replaced by the

SSIM counterpart. Rather than choosing one or the other,

we compose the two with tunable parameters βc and βs,

our final loss for stereo setting depth completion is:

Ls(w) = Lu(w) + βcψc + βsψs (10)

with ψc represents the raw intensity summation term in

Eq. (9), and ψs for the SSIM counterpart. Next, we elab-

orate our implementation details and evaluate the perfor-

mance of our proposed method in different depth comple-

tion settings.

Validation Set Test Set

Loss RMSE MAE iRMSE iMAE RMSE MAE

Ma [21] 1384.85 358.92 4.07 1.57 1299.85 350.32

Lu 1325.79 355.86 3.69 1.37 1285.14 353.16

Ls(ψc) 1320.26 353.24 3.63 1.34 1274.65 349.88

Ls(ψc, ψs) 1310.03 347.17 3.58 1.32 1263.19 343.46

Table 2. Quantitative results on the unsupervised KITTI depth

completion benchmark. Our baseline approach using CPN as a

regularizer outperforms [21] on the iRMSE, iMAE and RMSE

metrics on the test set, whereas [21] marginally performs better

than us on MAE by 0.8%. We note that [21] achieves this perfor-

mance using photometric supervision. When including our pho-

tometric term (Eq. (10)), we outperform [21] on every metric and

achieve state-of-the-art performance.

4. Implementation Details

4.1. Network architecture

We modify the public implementation of CPN [36] by re-

placing the input of the encoding branch with a dense depth

map. Fusion of the two branches is simply a concatenation

of the encodings. The encoders have only convolutional

layers, while the decoder is made of transposed convolu-

tional layers for upsampling.

Our proposed network, unlike the base CPN, as seen in

Fig. 2-A, contains skip connections between the layers of

the depth encoder and the corresponding decoder layers,

which makes the network symmetric. We also use ResNet

blocks [14] in the encoders instead of pure convolutions. A

stride of 2 is used for downsampling in the encoder and the

number of channels in the feature map after each encoding

layer is [64 ∗ k, 128 ∗ k, 256 ∗ k, 512 ∗ k, 512 ∗ k]. In all

our experiments, we use k = 0.25 for the depth branch, and

k = 0.75 for the image branch, taking into consideration

that an RGB image has three channels while depth map only

has one channel. Our network has fewer parameters than

those based on early fusion (e.g. [21] used ≈27.8M param-

eters in total; where as we only use ≈18.8M). We provide

an example comparing our network architecture and that of

[21] in the Supplementary Materials [37].

4.2. Training Procedure

We begin by detailing the training procedure for CPN.

Once learned, we apply CPN as part of our training loss

and do not need it during inference. In order to learn the

conditional prior of the dense depth maps given an image,

we require a dataset with images and corresponding dense

depth maps. We are unaware of any real-world dataset for

outdoor scenes that meets our criterion. Therefore, we train

the CPN using the Virtual KITTI dataset [11]. It contains

50 high-resolution monocular videos with a total of 21, 260
frames, together with ground truth dense depth maps, gener-

ated from five different virtual worlds under different light-

ing and weather conditions. The original Virtual KITTI im-
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Figure 3. This plot shows the empirical study on the choice of

norms γ, η in the likelihood term and the conditional prior term

respectively. Each curve is generated by varying α in Eq. (5) with

fixed γ, η. And the performance is measured in RMSE.

age has a large resolution of 1242× 375, which is too large

to feed into a normal commercial GPU. So we crop it to

768× 320 and use a batch size of 4 for training. The initial

learning rate is set to 1e−4, and is halved every 50,000 steps

300,000 steps in total.

We implement our approach using TensorFlow [1]. We

use Adam [17] to optimize our network with the same batch

size and learning rate schedule as the training of CPN. We

apply histogram equalization and also randomly crop the

image to 768× 320. We additionally apply random flipping

both vertical and horizontal to prevent overfitting. In the

case of unsupervised training, we also perform a random

shift within a 3× 3 neighborhood to the sparse depth input

and the corresponding validity map. We use α = 0.045,

β = 1.20 for Eq. (9), and the same α is applied with βc =
0.15, βs = 0.425 for Eq. (10). We choose γ = 1 and η = 2,

but as one may notice in Eq. (2), the actual conditional prior

also depends on the choice of the norm η. To show the

reasoning behind our choice, we will present as an empirical

study in Fig. 3 to show the effects of the different pairing of

norms with a varying α by evaluating each model on the

RMSE metric.

In the next section, we report representative experiments

in both the supervised and unsupervised benchmarks.

5. Experiments

We evaluate our approach on the KITTI depth comple-

tion benchmark [29]. The dataset provides ∼ 80k raw

image frames and corresponding sparse depth maps. The

sparse depth maps are the raw output from the Velodyne li-

dar sensor, each with a density of about 5%. The ground

truth depth map is created by accumulating the neighboring

11 raw lidar scans, with roughly 30% pixels annotated. We

use the officially selected 1,000 samples for validation and

we apply our method to 1,000 testing samples, with which

we submit to the official KITTI website for evaluation. We

additionally perform an ablation study on the effects of the

sparsity of the input depth measurements on the NYUv2 in-

door dataset [28] in the Supplementary Materials [37].

5.1. Norm Selection

As seen in Eq. (5), γ, η control the actual norms (penalty

functions) applied to the likelihood term and conditional

prior term respectively, which in turn determine how we

model the distributions. General options are from the bi-

nary set {1, 2}. i.e. {L1,L2}, however, there is currently

no agreement on which one is better suited for the depth

completion task. [21] shows γ = 2 gives significant im-

provement for their network, while both [29, 16] claim to

have better performance when γ = 1 is applied. In our ap-

proximation of the posterior in Eq. (5), the choice of the

norms gets more complex as the modeling (norm) of the

conditional prior will also depend on the likelihood model.

Currently, there is no clear guidance on how to make the

best choice, as it may also depend on the network structure.

Here we try to explore the characteristic of different norms,

at least for our network structure, by conducting an empir-

ical study on a simple version (channel number of features

reduced) of our depth completion network using different

combinations of γ and η. As shown in Fig. 3, the perfor-

mance on the KITTI depth completion validation set varies

in a wide range with different γ, η. Clearly for our depth

completion network, L1 is always better than L2 on the like-

lihood term. And the lowest RMSE is achieved when a L2

is also applied on the conditional prior term. Thus the best

coupling is γ = 1, η = 2 for Eq. (5).

5.2. Supervised Depth Completion

We evaluate the proposed Depth Completion Network

described in Sect. 3.1 on the KITTI depth completion

benchmark. We show a quantitative comparison between

our approach and the top performers on the benchmark in

Tab. 1. Our approach achieves the state-of-the-art in three

metrics by outperforming [7, 16], who each held the state-

of-the-art in different metrics on the benchmark. We im-

prove over [16] in iRMSE and iMAE by 2.3% and 9.5%,

respectively, and [7] in MAE by 11.9%. [21] performs bet-

ter on the RMSE metric by 2.6%; however, we outperform

[21] by 24.3%, 28.9% and 17.8% on the iRMSE, iMAE

and MAE metrics, respectively. Note in the online table

of KITTI depth completion benchmark1, all methods are

solely ranked by the RMSE metric, which may not fully

reflect the performance of each method. Thus we propose

to rank all methods by averaging over the rank numbers on

each metric, and the overall ranking is shown in the last

column of Tab. 1. Not surprisingly, our depth completion

network gets the smallest rank number due to its generally

good performance on all metrics.

Fig. 4 shows a qualitative comparison of our method to

the top performing method on the test set of the KITTI

benchmark. We see that our method produces depths that

1http://www.cvlibs.net/datasets/kitti/eval_

depth.php?benchmark=depth_completion
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Figure 4. Qualitative comparison to Ma et al. [21] on KITTI depth completion test set in the supervised setting. Image and validity map of

the sparse measurements (1st column), dense depth results and corresponding error map of [21] (2nd column) and our results and error map

(3rd column). Warmer color in the error map denotes higher error. The yellow rectangles highlight the regions for detailed comparison.

Note that our network consistently performs better on fine and far structures and our completed dense depth maps have less visual artifacts.

are more consistent with the scene with fewer artifacts (e.g.

grid-like structures [21], holes in objects [7]). Also, our net-

work performs consistently better on fine and far structures,

which may be traffic signs and poles on the roadside that

provide critical information for safe driving as shown in the

second row in Fig. 4. More in the Supplementary [37].

5.3. Unsupervised Depth Completion

We show that our network can also be applied to un-

supervised setting using only the training loss Eq. (5) to

achieve the state-of-the-art results as well. We note that the

simplest way for the network to minimize the data term is to

directly copy the sparse input to the output, which will make

the learning inefficient. To facilitate the training, we change

the stride of the first layer from 1 to 2 and replace the final

layer of the decoder with a nearest neighbor upsampling.

We show a quantitative comparison (Tab. 2) between our

method and that of [21] along with an ablation study on our

loss function. We note that the results of [21] are achieved

using their full model, which includes their multi-view pho-

tometric term. Our approach using just Eq. (5) is able to

outperform [21] in every metric with the exception of MAE

where [21] marginally beats us by 0.8%. By applying our

reconstruction loss Eq. (9), we outperform [21] in every

metric. Moreover, our full model Eq. (10) further improves

over all other variants and is state-of-the-art in unsupervised

depth completion. We present a qualitative comparison be-

tween our approach and that of [21] in Fig. 5. Visually, we

observe the results of [21] still contain the artifacts as seen

before. The artifacts, i.e. circles, as detailed in Fig. 5, are

signs that their network is probably overfitted to the input

sparse depth, due to the lack of semantic regularity. Our

approach, however, does not suffer from these artifacts; in-

stead, our predictions are globally correct and consistent

with the scene geometry.
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Figure 5. Qualitative comparison to Ma et al. [21] on the KITTI depth completion test set in the unsupervised setting. Image and validity

map of the sparse measurements (1st column), dense depth results and corresponding error map of [21] (2nd column) and ours (3rd

column). Warmer color in the error map denotes higher error. Yellow rectangles highlight the regions for detailed comparison. Note again

that our network consistently performs better on fine and far structures and our completed dense depth maps have less visual artifacts (this

includes the circle in the center of their prediction, row 1, column 2).

6. Discussion

In this work, we have described a system to infer a poste-

rior probability over the depth of points in the scene corre-

sponding to each pixel, given an image and a sparse aligned

point cloud. Our method leverages a Conditional Prior Net-

work, that allows the association of a probability to each

depth value based on a single image, and combines it with a

likelihood term for sparse depth measurements. Moreover,

we exploit the availability of stereo imagery in constructing

a photometric reconstruction term that further constrains the

predicted depth to adhere to the scene geometry.

We have tested the approach both in a supervised and

unsupervised setting. It should be noted that the difference

between “supervised” and “unsupervised” in the KITTI

benchmark is more quantitative than qualitative: the for-

mer has about 30% coverage in depth measurements, the

latter about 5%. We show in Tab. 1 and 2 that our method

achieves state-of-the-art performance in both supervised

and unsupervised depth completion on the KITTI bench-

mark. Although we outperform other methods on score

metrics that measures the deviation from the ground truth,

we want to emphasize that our method does not simply pro-

duce a point estimate of depth, but provides a confidence

measure, that can be used for more downstream processing,

for instance for planning, control and decision making.

We have explored the effect of various hyperparameters,

and are in the process of expanding the testing to real-

world environments, where there could be additional er-

rors and uncertainty due to possible time-varying misalign-

ment between the range sensor and the camera, or between

the two cameras when stereo is available, faulty intrinsic

camera calibration, and other nuisance variability inevitably

present on the field that is carefully weeded out in evalua-

tion benchmarks such as KITTI. This experimentation is a

matter of years, and well beyond the scope of this paper.

Here we have shown that a suitably modified Conditional

Prior Network can successfully transfer knowledge from

prior data, including synthetic ones, to provide context to

input range values for inferring missing data. This is im-

portant for downstream processing as the context can, for

instance, help differentiate whether gaps in the point cloud

are free space or photometrically homogeneous obstacles,

as discussed in our motivating example in Fig. 1.
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