
DistillHash: Unsupervised Deep Hashing by Distilling Data Pairs

Erkun Yang1,2, Tongliang Liu2, Cheng Deng1∗, Wei Liu3∗, Dacheng Tao2

1 School of Electronic Engineering, Xidian University, Xian 710071, China
2 UBTECH Sydney AI Centre, School of Computer Science, FEIT, University of Sydney,

Darlington, NSW 2008, Australia, 3 Tencent AI Lab, Shenzhen, China

ekyang@stu.xidian.edu.cn, tongliang.liu@sydney.edu.au, chdeng.xd@gmail.com,

wl2223@columbia.edu, dacheng.tao@sydney.edu.au

Abstract

Due to the high storage and search efficiency, hashing

has become prevalent for large-scale similarity search. Par-

ticularly, deep hashing methods have greatly improved the

search performance under supervised scenarios. In con-

trast, unsupervised deep hashing models can hardly achieve

satisfactory performance due to the lack of reliable super-

visory similarity signals. To address this issue, we propose

a novel deep unsupervised hashing model, dubbed Distill-

Hash, which can learn a distilled data set consisted of data

pairs, which have confidence similarity signals. Specif-

ically, we investigate the relationship between the initial

noisy similarity signals learned from local structures and

the semantic similarity labels assigned by a Bayes optimal

classifier. We show that under a mild assumption, some

data pairs, of which labels are consistent with those as-

signed by the Bayes optimal classifier, can be potentially

distilled. Inspired by this fact, we design a simple yet effec-

tive strategy to distill data pairs automatically and further

adopt a Bayesian learning framework to learn hash func-

tions from the distilled data set. Extensive experimental re-

sults on three widely used benchmark datasets show that the

proposed DistillHash consistently accomplishes the state-

of-the-art search performance.

1. Introduction

The explosive growth of visual data (e.g., photos and

videos) has led to renewed interest in efficient indexing

and searching algorithms [6, 9,19, 44, 48, 53, 57, 58, 65–67],

among which, hashing-based approximate nearest neighbor

(ANN) searching, which balances retrieval quality and com-

putational cost, has attracted increasing attention.

Generally, hashing methods can be divided into super-

vised and unsupervised models. The supervised hashing

∗Corresponding author

models [7, 35, 40, 62], which aim to learn hash functions

with semantic labels, have shown remarkable performance.

However, existing supervised hashing methods, especially

deep hashing rely on massive labeled data examples to train

their models. Thus, when there exist no enough training

examples, their performance may be dramatically degraded

caused by over-fitting to those training examples.

To address this challenge, unsupervised hashing meth-

ods usually adopt learning frameworks without requiring

any supervised information. Traditional unsupervised hash-

ing methods [3,21,25,39] with hand-crafted features cannot

well preserve the similarities of real-world data samples due

to the low model capacity and the separated representation

and binary codes optimization processes. To take advan-

tages of the recent progress of deep learning [31,56,68], un-

supervised deep hashing methods [11,15,17,30,36], which

adopt neural networks as hash functions, have also been

proposed. These deep hashing models are usually trained by

minimizing either the quantization loss or data reconstruc-

tion loss. However, since these objectives fail to exploit the

semantic similarities between data points, they can hardly

achieve satisfactory results.

In this paper, we propose a novel unsupervised deep

hashing model, dubbed DistillHash, which addresses the

absence of supervisory signals by distilling data pairs with

confident semantic similarity relationships. In particular,

we first exploit the local structure of training data points

to assign an initial similarity label for each data pair. If

we treat the semantic similarity labels as true labels, these

initial similarity labels then contain label- and instance-

dependent label noise, because many of them fail to rep-

resent semantic similarities. By assuming that we know the

probability of a semantic similarity label given a pair of the

data points, the Bayes optimal classifier will assign the se-

mantic similarity label to the data pair which has a higher

probability (or has a probability greater than 0.5). Based on

these results, we give strict analysis on the relationship be-

tween the noisy labels and the labels assigned by the Bayes

12946

optimal classifier. Inspired by the framework of [8], we

show that, under a mild assumption, data pairs with con-

fident semantic labels can be potentially distilled. Further-

more, we theoretically give the criteria to select distilled

data pairs and also provide a simple but effective method to

collect distilled data pairs automatically. Finally, given the

distilled data pair set, we design a deep neural network and

adopt a Bayesian learning framework to perform the repre-

sentation and hash code learning simultaneously.

Our main contributions can be summarized as follows:

• By considering signals learned from deep features as

noisy pairwise labels, we successfully apply noisy la-

bel learning techniques to our method. This shows that

data pairs, of which labels are consistent with those

assigned by the Bayes optimal classifier, can be poten-

tially distilled.

• We theoretically give the criteria to select distilled data

pairs for hash learning and further provide a simple but

effective method to collect distilled data pairs automat-

ically.

• Experiments on three popular benchmark datasets

show that our method can outperform current state-of-

the-art unsupervised hashing methods.

The rest of this paper is organized as follows. We review

the relevant literature in Section 2. We present our novel

DistillHash in Section 3. Section 4 details the experiments,

after which concluding remarks are presented in Section 5.

2. Related Work

Recently, the amount of literatures have grown up con-

siderably around the theme of hashing [12,13,32,33,42,42,

43]. According to whether supervised information are in-

volved in the learning phase, existing hashing models can

be divided into two categories: supervised hashing methods

and unsupervised hashing methods.

Supervised hashing methods [5, 14, 22, 35, 40, 49, 55, 61,

64] aim to learn hash functions that can map data points

to Hamming space where the semantic similarity can be

preserved. Kernel-based supervised hashing (KSH) [40]

uses inner products to approximate the Hamming distance

and learns hash functions by perserving semantic similar-

ities in Hamming space. Fast supervised discrete hashing

(FSDH) [22] uses a simple yet effective regression from the

class labels of training data points to the corresponding hash

code to accelerate the learning process. Convolutional neu-

ral networks-based hashing (CNNH) [61] decomposes the

hash function learning into two stages. Firstly, a pairwise

similarity matrix is constructed and decomposed into the

product of approximate hash codes. Secondly, CNNH si-

multaneously learns representations and hash functions by

training the model to predict the learned hash codes as well

as the discrete image class labels. Deep Cauchy hashing

(DCH) [5] adopts Cauchy distribution to continue to opti-

mize data pairs in a relatively small Hamming ball.

Unsupervised hashing methods [3, 21, 25, 39, 41] try to

encode original data into binary codes by training with un-

labeled data points. Iterative quantization (ITQ) [21] first

uses principal component analysis (PCA) to map the data

to a low dimensional space and then exploits an alternating

minimization scheme to find a rotation matrix, which maps

the data to binary codes with minimum quantization error.

Discrete graph hashing (DGH) [39] casts the graph hashing

problem into a discrete optimization framework and explic-

itly deals with the discrete constraints, so it can directly out-

put binary codes. Spherical hashing (SpH) [25] minimizes

the spherical distance between the original real-valued fea-

tures and the learned binary codes. Anchor graph hashing

(AGH) [41] utilizes anchor graphs to obtain tractable low-

rank adjacency matrices and approximate the data structure.

Though current traditional unsupervised hashing methods

have made great progress, they usually depend on pre-

defined features and cannot simultaneously optimize the

feature and hash code learning processes, thus missing an

opportunity to learn more effective hash codes.

Unsupervised deep hashing methods [11, 17, 30, 36, 37,

52, 63] adopt deep architectures to extract features and per-

form hash mapping. Semantic hashing [52] uses pre-trained

restricted Boltzmann machines (RBMs) [46] to construct an

auto-encoder network, which is then used to generate effi-

cient hash codes and reconstruct the original inputs. Deep

binary descriptors (DeepBit) [36] considers original im-

ages and the corresponding rotated images as similar pairs

and tries to learn hash codes to preserve this similarity.

Stochastic generative hashing (SGH) [11] utilizes a gener-

ative mechanism to learn hash functions through the mini-

mum description length principle. The hash codes are op-

timized to maximally compress the dataset as well as to re-

generate the inputs. Semantic structure-based unsupervised

deep hashing (SSDH) [63] takes advantage of the seman-

tic information in deep features and learns semantic struc-

tures based on the pairwise distances and a Gaussian esti-

mation. The semantic structure is then used to guide the

hash code learning process. By integrating the feature and

hash code learning processes, deep unsupervised hashing

methods usually produce better results.

Training classifiers from noisy labels is also a closely re-

lated task. We refer the noisy labels to the setting where

the labels of data points are corrupted [4, 23, 24, 69]. Since

in many situations, it is both expensive and difficult to

obtain reliable labels, a growing body of literature has

been devoted to learning with noisy labels. Those meth-

ods can be organized into two major groups: label noise-

tolerant classification [2,45] and label noise cleansing meth-

2947

ods [8, 38, 47, 50]. The former adopts the strategies like de-

cision trees or boosting-based ensemble techniques, while

the latter tries to filter the label noise by exploiting the prior

information from training samples. For a comprehensive

understanding, we recommend readers to read [20]. By

treating the initial similarity relationship as noisy labels, our

method can explicitly model the relationship between noisy

labels and labels assigned by the Bayes optimal classifiers,

which then enables us to extract data pairs with confident

similarity signals.

3. Approach

Let X = {xi}
N

i=1 denote the training set with N in-

stances, deep hashing aims to learn nonlinear hash func-

tions h : x 7→ b ∈ {−1, 1}
K

, which can encode original

data points x to compact K-bit hash codes.

Traditional supervised deep hashing methods usually

accept data pairs {(xi,xj), Sij} as inputs, where Sij ∈
{+1,−1} is a binary label to indicate whether xi and xj

are similar or not. However, due to the laborious labeling

process and the need of requisite domain knowledge, it’s

not feasible to directly acquire labels in many tasks. Thus,

in this paper, we study the hashing problem under unsuper-

vised settings.

Inspired by the Bayesian classifier theory [18], reliable

labels for data pairs can be confidently assigned by an Bayes

optimal classifier, i.e.,

Sij =

{

1, if η(xi,xj) ≥ 0.5,

−1, if η(xi,xj) < 0.5,
(1)

where η(xi,xj) = P (Sij = +1|xi,xj). This Bayes op-

timal classifier implies that if we have access to η(xi,xj),
we can infer the true data labels with Eq. 1. However, under

unsupervised settings, we cannot access η(xi,xj).
For unsupervised learning, some recent works [34, 51,

63] demonstrate that local structures learned from original

features can help to capture the similarity relationship be-

tween points. Motivated by this, we can roughly label the

training data pairs based on their local structures and con-

struct a similarity matrix S̃ as

S̃ij =

{

1, if d(i, j) ≤ t1,

−1, if d(i, j) > t2,
(2)

where d(i, j) denotes the distance of extracted features for

xi and xj , t1 and t2 are the thresholds for the distance.

However, since S̃ is only constructed from local structures,

they are unreliable and may contain label noise.

Note that, based on S̃ we can learn an estimation of the

conditional probability η̃(xi,xj) = P (S̃ij = +1|xi,xj).
And, there exists a relationship between η̃(xi,xj) and

η(xi,xj) as

η̃(xi,xj) = P (S̃ij = +1|xi,xj)

= P (S̃ij = +1|xi,xj , Sij = +1)P (Sij = +1|xi,xj)

+ P (S̃ij = +1|xi,xj , Sij = −1)P (Sij = −1|xi,xj)

= (1− ρ+1(xi,xj))η(xi,xj)

+ ρ
−1(xi,xj)(1− η(xi,xj)),

(3)

where ρSij
(xi,xj) = P (S̃ij = −Sij |xi,xj , Sij) denotes

the flip rate between true labels and noisy labels on given

data pair (xi,xj) and their label Sij . If we know the values

of ρSij
(xi,xj) and η̃(xi,xj), the values of η(xi,xj) can

be easily inferred. However, the values of ρSij
(xi,xj) are

unknown. From Eq. 3 we can further get that, when the flip

rates ρ+1(xi,xj) and ρ
−1(xi,xj) are relatively small, if

η̃(xi,xj) is large, η(xi,xj) should also be large, and vice

versa. In the following subsection, we show that it is possi-

ble to infer whether η(xi,xj) is smaller or larger than 0.5
based on some weak information1 of ρSij

(xi,xj), which

means we may potentially achieve the reliable labels for

some data pairs. We define those data pairs of which re-

liable labels can be recovered from S̃ as distilled data pairs.

In the following subsection, we theoretically prove that

distilled data pairs can be extracted under a mild assump-

tion. And we further provide a method to collect distilled

data pairs automatically.

3.1. Collecting Distilled Data Pairs Automatically

To collect distilled data pairs, we first give the following

assumption.

Assumption 1. For any data pairs {(xi,xj), i, j =
1, ...N}, we have

0 ≤ ρ+1(xi,xj) + ρ
−1(xi,xj) ≤ 1. (4)

This assumption implies that label noise is not too heavy.

Note that, if the number of correctly labeled data pairs is

considered larger than that of mislabeled data pairs, the flip

rate ρSij
(xi,xj) will be bounded by 0.5. We can see that

Assumption 1 is much weaker than the above assumption.

It is hard to prove that the noisy labels constructed by

exploiting local structures satisfy Assumption 1. However,

the experimental results on three widely used benchmark

datasets empirically verify that the assumption applies well

to the constructed noisy labels. In the rest of this paper, we

always suppose Assumption 1 holds.

We then extend the noisy label learning techniques in [8]

to pairwise labels and present the following key theorem,

which gives the basic criteria to collect distilled data pairs.

1As many of the labels in S̃ are correct, we show later that upper bounds

for ρSij
(xi,xj) can be easily obtained.

2948

Theorem 1. For any data pairs {(xi,xj), i, j = 1, ...N},

we have

if η̃(xi,xj) <
1−ρ+1(xi,xj)

2 , then {(xi,xj), sij = −1}
is a distilled data pair;

if η̃(xi,xj) >
1+ρ

−1(xi,xj)
2 , then {(xi,xj), sij = +1}

is a distilled data pair.

Proof. According to Eq. 3, for any data pair

{(xi,xj)|η(xi,xj) ≥ 0.5, i, j = 1, ..., N}, we have

η̃(xi,xj) = (1− ρ+1(xi,xj))η(xi,xj)

+ ρ
−1(xi,xj)(1− η(xi,xj))

= η(xi,xj)(1− ρ+1(xi,xj)− ρ
−1(xi,xj))

+ ρ
−1(xi,xj)

≥
1− ρ+1(xi,xj) + ρ

−1(xi,xj)

2

≥
1− ρ+1(xi,xj)

2
.

(5)

The first inequality holds since η(xi,xj) ≥ 0.5 and

ρ+1(xi,xj) + ρ
−1(xi,xj) ≤ 1. Based on Eq. 5, we have

η(xi,xj) ≥ 0.5 ⇒ η̃(xi,xj) ≥
1− ρ+1(xi,xj)

2
,

which implies that

η̃(xi,xj) <
1− ρ+1(xi,xj)

2
⇒ η(xi,xj) < 0.5.

Combining this result with Eq. 1, we can label data pair

(xi,xj) with Sij = −1, if η̃(xi,xj) <
1−ρ+1(xi,xj)

2 .

Similarly, we can prove that data pairs (xi,xj) with

η̃(xi,xj) >
1+ρ

−1(xi,xj)
2 can be labeled with Sij =

+1.

The trade-off for selecting distilled data pairs is the need

of estimating the conditional probability η̃ and the flip rate

ρSij
(xi,xj). To estimate η̃, we adopt a probabilistic classi-

fication method. Specifically, we design a deep network to

map data pairs to probabilities. Since this objective is sim-

ilar to the hash code learning, we explore the same archi-

tecture for the estimation of η̃ and hash code learning. The

detailed description of this deep network will be presented

in the next subsection.

For the estimation of the flip rate ρSij
(xi,xj), most

existing works [38, 50] assume the noise to be label- and

instance-independent or instance-independent. While in

our method, the flip rate should be label- and instance-

dependent, so most existing methods are not suitable for

the current problem. Considering the difficulty to directly

estimate the flip rate, we alternatively propose a method to

obtain an upper bound. Formally, we give the following

proposition.

Proposition 1. Given the conditional probability η̃(xi,xj),
the following inequations holds

ρ
−1(xi,xj) ≤ η̃(xi,xj),

ρ+1(xi,xj) ≤ 1− η̃(xi,xj).
(6)

Proof. According to Eq. 3, we can get

η̃(xi,xj) = (1− ρ+1(xi,xj))η(xi,xj)

+ ρ
−1(xi,xj)(1− η(xi,xj))

= η(xi,xj)(1− ρ+1(xi,xj)− ρ
−1(xi,xj))

+ ρ
−1(xi,xj) ≥ ρ

−1(xi,xj).

(7)

The inequality holds because ρ+1(xi,xj)+ρ
−1(xi,xj) ≤

1. Similarly, it gives ρ+1(xi,xj) ≤ 1− η̃(xi,xj).

However, if we directly combine Proposition 1 and The-

orem 1, no distilled data pairs can be selected. So, here we

further assume the flip rate to be local invariant, and thus

obtain the flip rate upper bounds as

ρ
−1max(xi,xj)

= min{η̃(xk,xl)|,xk ∈ nno(xi),xl ∈ nno(xj)},

ρ+1max(xi,xj)

= min{(1− η̃(xk,xl))|,xk ∈ nno(xi),xl ∈ nno(xj)},
(8)

where nno(xi) indicates the set of top o nearest neighbors

for xi.

With the flip rate upper bounds ρ+1max(xi,xj) and

ρ
−1max(xi,xj), we have

1− ρ+max(xi,xj)

2
≤

1− ρ+1(xi,xj)

2
1 + ρ

−max(xi,xj)

2
≥

1 + ρ
−1(xi,xj)

2
.

(9)

The conditional probability η̃(xi,xj) can be estimated by

the adopted deep networks, and the noisy rate upper bound

can be acquired with Eq. 8. Combining these results with

Eq. 9 and Theorem 1, we can find that the distilled data

pairs can be successfully collected by picking out every

pairs (xi,xj) that satisfy η̃(xi,xj) >
1+ρ

−1max(xi,xj)
2 and

assigning label Sij = +1, and picking out every pairs

(xi,xj) that satisfy η̃(xi,xj) <
1−ρ+1max(xi,xj)

2 and as-

signing label Sij = −1. The distilled data pair set can be

represented as {(xi,xj , Sij), i, j = 1, ...m}, where m is

the number of distilled data pairs.

After obtaining the distilled data pair set, we can perform

hash code learning, which is similar to the learning process

for supervised hashing. Specifically, we adopt a Bayesian

learning framework, which is elaborated in the following

subsection.

2949

3.2. Bayesian Learning Framework

In this subsection, we propose a Bayesian learning

framework to perform deep hashing learning and also es-

timate the conditional probability η̃(xi,xj). We first intro-

duce the framework for hash code learning and then show

how to apply it for the estimation of η̃(xi,xj).
By representing the hash codes for distilled data as B =

[b1, ..., bm], the Maximum Likelihood (ML) estimation of

the hash codes can be defined as:

logP (S|B) =
1

m2

m
∑

i=1

m
∑

j=1

logP (Sij |bi, bj), (10)

where P (Sij |bi, bj) is the conditional probability of simi-

larity label Sij given the hash codes bi and bj , which can

be naturally approximated by a pairwise logistic function

logP (Sij |bi, bj) =

{

σ(〈bi, bj〉) Sij = 1,

1− σ(〈bi, bj〉) Sij = −1,
(11)

where σ(x) = 1
1+e−x is the sigmoid function and 〈bi, bj〉

denotes the inner product of the hash codes bi and bj .

Here, we adopt the inner product, since as indicated in [40],

the Hamming distance distH(·, ·) of hash codes can be in-

ferred from the inner product 〈·, ·〉 as: distH(bi, bj) =
1
2 (K − 〈bi, bj〉). Hence, the inner product can well reflect

the Hamming distance for binary hash codes.

Similar to logistic regression, we can find that the smaller

the Hamming distance distH(bi, bj) is, the larger the in-

ner product results 〈bi, bj〉 and the conditional probability

P (1|bi, bj) will be. Otherwise, the larger the conditional

probability P (−1|bi, bj) will be. These results imply that

similar data points will be enforced to have small Hamming

distance and dissimilar data points will be enforced to have

large Hamming distance, which are expected for Hamming

space similarity search. So, learning with Eq. 10, effective

hash codes can be obtained.

After training the model, given a data point, we can

obtain its hash codes by directly forward propagating it

through the adopted network, and obtain the final binary

codes by the following sign function

sign(x) =

{

1 if x ≥ 0,

−1 if x < 0.
(12)

The whole learning algorithm is summarized in Algo-

rithm 1.

Since this framework maps data pairs to similarity prob-

abilities, we can also use it to estimate the conditional prob-

ability. The main difference lies in that, for hash code learn-

ing we use distilled data pairs as inputs, while for con-

ditional probability estimation, we use the data pairs con-

structed from local structures as inputs.

Algorithm 1: DistillHash

Training Stage

Input: Training images X, code length K, mini-batch

size t, hyper-parameters o and p.

Procedure:

1. Construct initial noisy similarity labels with Eq. (2).

2. Estimate the conditional noisy label probability

η̃(·, ·) for all training data pairs.

3. Estimate the flip rate upper bounds for all training

data pairs with Eq. (8).

4. Distill data pairs with Theorem 1.

repeat
3.1 Randomly sample t data pairs from the

distilled data pair set as inputs.

3.2 Calculate the outputs by forward-propagation

through the adopted networks.

3.3 Update parameters of the network by

minimizing Eq. (10).

until convergence;

Testing Stage

Input: Image query qi, parameters for the adopted

network.

Procedure:

1. Calculate the output of the neural network by

directly forward-propagating the input images.

2. Obtain hash codes with the sign function.

4. Experiments

We evaluate our method on three popular benchmark

datasets, FLICKR25K, NUSWIDE, and CIFAR10, and

provide extensive evaluations to demonstrate its perfor-

mance. In this section, we first introduce the datasets and

then present our experimental results.

4.1. Datasets

FLICKR25K [26] contains 25,000 images collected

from the Flickr website. Each image is manually annotated

with at least one of the 24 unique labels provided. We ran-

domly select 2,000 images as a test set; the remaining im-

ages are used as a retrieval set, from which we randomly

select 5,000 images as a training set. NUSWIDE [10] con-

tains 269,648 images, each of the images is annotated with

multiple labels referring to 81 concepts. The subset con-

taining the 10 most popular concepts is used here. We ran-

domly select 5,000 images as a test set; the remaining im-

ages are used as a retrieval set, and 10,500 images are ran-

domly selected from the retrieval set as the training set. CI-

FAR10 [29] is a popular image dataset containing 60,000

images in 10 classes. For each class, we randomly select

1,000 images as queries and 500 as training images, result-

2950

ing in a query set containing 10,000 images and a training

set made up of 5,000 images. All images except for the

query set are used as the retrieval set.

4.2. Baseline Methods

The proposed method is compared with six state-of-

the-art traditional unsupervised hashing methods (LSH [3],

SH [60], ITQ [21], PCAH [59], DSH [28], and SpH [25])

and three recently proposed deep unsupervised hashing

methods (DeeBit [36], SGH [11], and SSDH [63]). All

the codes for these methods have been kindly provided by

the authors. LSH, SH, ITQ, PCAH, DSH, and SpH are

implemented with MATLAB, SGH and SSDH are imple-

mented with TensorFlow [1], and DeepBit is implemented

with Caffe [27]. We use TensorFlow when write our code,

and run the algorithm in a machine with one Titan X Pascal

GPU.

4.3. Evaluation.

To evaluate the performance of our proposed method, we

adopt three evaluation criteria: mean of average precision

(MAP), topN-precision, and precision-recall. The first two

criteria are based on Hamming ranking, which ranks data

points based on their Hamming distances to the query; for

its part, precision-recall is based on hash lookup. More de-

tailed introductions are given as follows.

MAP is one of the most widely-used criteria for evaluat-

ing retrieval accuracy. Given a query and a list of R ranked

retrieval results, the average precision (AP) for this query

can be computed. MAP is then defined as the average of

APs for all queries. For all three datasets, we set R as the

number of the retrieval set. TopN-precision is defined as

the average ratio of similar instances among the top N re-

trieved instances for all queries in terms of Hamming dis-

tance. In our experiments, N is set to 1,000. Precision-

recall reveals the precisions at different recall levels and

is a good indicator of overall performance. Typically, the

area under the precision-recall curve is computed. A larger

Precision-recall value always indicates better performance.

4.4. Implementation Details

To initialize the noisy similarity matrix in Eq. (2), we se-

lect the cosine distance as the distance to measure the lo-

cal structure of training examples. The threshold t1 and

t2 are selected as indicated in [63]. For the adopted deep

networks, we use the VGG16 architecture [54] and replace

the last fully-connected layer with a new fully-connected

layer with K units for hash code learning. For the estima-

tion of the conditional probability η̃, we set the dimensions

of the last fully-connected layer as p, which is 48 in our

experiments. To obtain the upper bound of the flip rate,

we set o as 4. The parameter sensitivity of our algorithm

with regard to o and p are analyzed in Subsection 4.6. Pa-

rameters for the new fully connected layer are learned from

scratch, while parameters for the preceding layers are fine-

tuned from the model pre-trained on ImageNet [16]. We

employ the standard stochastic gradient descent algorithm

with 0.9 momentum for optimization, min-batch size is set

to 64, and the learning rate is fixed to 10−3. Two data points

are considered neighbors if they share the same label (for

CIFAR10) or share at least one common label (for the multi-

label datasets FLICKR25K and NUSWIDE).

For a fair comparison, we adopt the deep features

extracted from the last fully-connected layer from the

VGG16 network pre-trained on ImageNet for all shallow

architecture-based baseline methods. These deep features

are also used for the construction of S̃. Since VGG16 ac-

cepts images of size 224 × 224 as inputs, we resize all im-

ages to be 224×224 before inputting them into the VGG16

network. Random rotation and flipping are also used for

data augmentation.

4.5. Results and Discussion

We first present the MAP values for all methods with

different hash bit lengths, then draw precision-recall and

TopN-precision curves for all methods with 32 and 64 hash

code lengths to give a more comprehensive comparison.

Table 1 presents the MAP results for DistillHash and

all baseline methods on FLICKR25K, NUSWIDE, and CI-

FAR10, with hash code numbers varying from 16 to 128.

By comparing the data-independent method LSH with other

data-dependent methods, we can see that data-dependent

hashing methods outperform the data-independent hashing

method in most cases. This may be because that data-

dependent methods learn hash functions from data, so can

better capture the used data structures. By comparing deep

hashing methods and no-deep hashing methods, we find that

no-deep hashing methods can surpass deep hashing meth-

ods DeepBit and SGH in some cases. This may be be-

cause that, without proper supervisory signals, deep hash-

ing methods cannot fully exploit the representation ability

of deep networks, and may achieve unsatisfactory perfor-

mance by over-fitting to bad local minima. While, by ex-

ploiting local structures, deep hashing methods (SSDH and

DistillHash) achieve more promising results.

Concretely, from the MAP results, we can see that Dis-

tillHash consistently obtains the best results across dif-

ferent hash bit lengths for all three datasets. Specif-

ically, compared to one of the best non-deep hashing

methods, i.e, ITQ, we achieve absolute improvements of

6.89%, 13.97%, and 7.73% in the average MAP for dif-

ferent bits on FLICKR25K, NUSWIDE, and CIFAR10 re-

spectively. Compared to the state-of-the-art deep hash-

ing method SSDH, we achieve absolute improvements of

3.08%, 4.01%, and 2.86% in average MAP for different

bits on the three datasets respectively. Note that DeepBit,

2951

Table 1. Comparison with baselines in terms of MAP. The best accuracy is shown in boldface.

method
FLICKR25K NUSWIDE CIFAR10

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

LSH [3] 0.5831 0.5885 0.5933 0.6014 0.4324 0.4411 0.4433 0.4816 0.1319 0.1580 0.1673 0.1794

SH [60] 0.5919 0.5923 0.6016 0.6213 0.4458 0.4537 0.4926 0.5000 0.1605 0.1583 0.1509 0.1538

ITQ [21] 0.6192 0.6318 0.6346 0.6477 0.5283 0.5323 0.5319 0.5424 0.1942 0.2086 0.2151 0.2188

PCAH [59] 0.6091 0.6105 0.6033 0.6071 0.4625 0.4531 0.4635 0.4923 0.1432 0.1589 0.1730 0.1835

DSH [28] 0.6074 0.6121 0.6118 0.6154 0.5200 0.5227 0.5345 0.5370 0.1616 0.1876 0.1918 0.2055

SpH [25] 0.6108 0.6029 0.6339 0.6251 0.4532 0.4597 0.4958 0.5127 0.1439 0.1665 0.1783 0.1840

DeepBit [36] 0.5934 0.5933 0.6199 0.6349 0.4542 0.4625 0.47616 0.4923 0.2204 0.2410 0.2521 0.2530

SGH [11] 0.6162 0.6283 0.6253 0.6206 0.4936 0.4829 0.4865 0.4975 0.1795 0.1827 0.1889 0.1904

SSDH [63] 0.6621 0.6733 0.6732 0.6771 0.6231 0.6294 0.6321 0.6485 0.2568 0.2560 0.2587 0.2601

DistillHash 0.6964 0.7056 0.7075 0.6995 0.6667 0.6752 0.6769 0.6747 0.2844 0.2853 0.2867 0.2895

0 200 400 600 800 1000
Number of top ranked samples

0.60

0.65

0.70

0.75

0.80

Pr
ec

isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(a) TopN-precision with 16bits

0 200 400 600 800 1000
Number of top ranked samples

0.65

0.70

0.75

0.80

0.85

Pr
ec

isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(b) TopN-precision with 32bits

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.6

0.7

0.8

0.9

Pr
ec
isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(c) Precision-recall with 16bits

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.6

0.7

0.8

0.9

1.0

Pr
ec
isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(d) Precision-recall with 32bits

Figure 1. TopN-precision and precision-recall curves on FLICKR25K with 16 and 32 hash bits.

0 200 400 600 800 1000
Number of top ranked samples

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Pr
ec

isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(a) TopN-precision with 16bits

0 200 400 600 800 1000
Number of top ranked samples

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pr
ec

isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(b) TopN-precision with 32bits

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ec
isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(c) Precision-recall with 16bits

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec
isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(d) Precision-recall with 32bits

Figure 2. TopN-precision and precision-recall curves on NUSWIDE with 16 and 32 hash bits.

0 200 400 600 800 1000
Number of top ranked samples

0.20

0.25

0.30

0.35

Pr
ec

isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(a) TopN-precision with 16bits

0 200 400 600 800 1000
Number of top ranked samples

0.25

0.30

0.35

0.40

0.45

Pr
ec

isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(b) TopN-precision with 32bits

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.1

0.2

0.3

0.4

0.5

Pr
ec
isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(c) Precision-recall with 16bits

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

Pr
ec
isi
on

LSH
SH
ITQ
PCAH
DSH

SpH
DeepBit
SGH
SSDH
DistillHash

(d) Precision-recall with 32bits

Figure 3. TopN-precision and precision-recall curves on CIFAR10 with 16 and 32 hash bits.

SGH, SSDH, and DistillHash are both deep hashing meth-

ods, only SSDH and DistillHash can exploit and preserve

the similarity of different data points, thus they can achieve

better performance than the other two. Moreover, Distill-

Hash learns more accurate similarity relationships by dis-

tilling some data pairs, so can obtain a further performance

improvement than SSDH.

The left two subfigures of Figure 1, 2, and 3 present

the TopN-precision curves for all methods on each of the

three datasets with hash bit lengths of 16 and 32. Consistent

with MAP results, we can observe that DistillHash achieves

the best results among all approaches. Since MAP val-

ues and TopN-precision curves are both Hamming ranking-

based metrics, an overview of the above analysis reveals

2952

Table 2. MAP results for DistillHash* and DistillHash. The best accuracy is shown in boldface.

method
FLICKR25K NUSWIDE CIFAR10

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

DistillHash* 0.6653 0.6633 0.6726 0.6784 0.6322 0.6357 0.6480 0.6451 0.2547 0.2538 0.2573 0.2583

DistillHash 0.6964 0.7056 0.7075 0.6995 0.6667 0.6752 0.6769 0.6747 0.2844 0.2853 0.2867 0.2895

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

Lo
ss

16bits
32bits
64bits
128bits

(a) FLICKR25K

0 250 500 750 1000
Iterations

0.2

0.4

0.6

Lo
ss

16bits
32bits
64bits
128bits

(b) NUSWIDE

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

Lo
ss

16bits
32bits
64bits
128bits

(c) CIFAR10

Figure 4. Losses of DistillHash through the training process.

that DistillHash can achieve superior performance for Ham-

ming ranking-based evaluations. Moreover, to illustrate the

hash lookup results, we plot the precision-recall curves for

all methods with hash bit lengths of 16 and 32 in the right

two subfigures of Figure 1, 2, and 3. From the results, we

can again observe that DistillHash consistently achieves the

best performance, which further demonstrates the superior-

ity of our proposed method.

To investigate the change of loss values through the train-

ing process, we display the loss values in Figure 4. The

results reveal that our methods can converge in all cases

within 1,000 iterations.

4.6. Parameter Sensitivity

We next investigate the sensitivity of hyper-parameters

o and p. Figure 5 shows the effect of these two hyper-

parameters on NUSWIDE dataset with hash code lengths

of 16, 32, 64, and 128. We first fix p to 48 and evaluate the

MAP by varying o between 2 and 20, the results are pre-

sented in Figure 5(a). The performance shows that the algo-

rithm is not sensitive to parameter o in the range of [2, 20],
and we can set o as any number in the range of [2, 20]. In

our experiments, we set o as 4. Figure 5(b) shows the MAP

by varying p between 16 and 128 with o fixed to 4. The

performance of DistillHash first increases and then keeps at

a relatively high level. The result is also not sensitive to p in

the range of [32, 128] . For other experiments in this paper,

we select p as 48.

4.7. Ablation Study

In this subsection, we go deeper to study the efficacy

of the proposed distilled data pair learning. More specifi-

cally, we investigate DistillHash*, a variant of DistillHash

with the same Bayesian learning framework but trained with

the initial similarity label S̃. The MAP results of Distill-

Hash* and DistillHash are shown in Table 2, from which we

can see that DistillHash consistently outperforms Distill-

Hash* by margins of 3.11%, 4.23%, 3.49% and 2.11% for

the FLICKR25K dataset, 3.45%, 3.95%, 2.89% and 2.96%

5 10 15 20
o

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

M
AP

16bits
32bits

64bits
128bits

(a) MAP w.r.t. different o.

25 50 75 100 125
p

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

M
AP

16bits
32bits

64bits
128bits

(b) MAP w.r.t. different p.

Figure 5. Parameter sensitive analysis for o and p on NUSWIDE.

for the NUSWIDE dataset, and 2.97%, 3.15%, 2.94% and

3.12% for the CIFAR10 dataset at hash bit lengths of 16, 32,

64, and 128 respectively. Note that the only difference be-

tween DistillHash and DistillHash* lies in that DistillHash

is trained with distilled data set and DistillHash* is trained

with the initial data set. The performance improvements

clearly demonstrate the superiority of the proposed distilled

data pair learning.

5. Conclusions

This work presented a new unsupervised deep hash-

ing approach for image search, namely DstilHash. Firstly,

we theoretically investigated the relationship between the

Bayes optimal classifier and noisy labels learned from local

structures, showing that distilled data pairs can be poten-

tially collected. Secondly, with the above understanding,

we provided a simple yet effective scheme to automatically

distill data pairs. Thirdly, leveraging a distilled data set,

we designed a deep hashing model and adopted a Bayesian

learning framework to perform the hash code learning. The

experimental results on three benchmark datasets demon-

strated that the proposed DistillHash surpasses other state-

of-the-art methods.

6. Acknowledgements

This work was also supported in part by the Na-
tional Natural Science Foundation of China under Grant
61572388 and 61703327, in part by the Key R&D
Program-The Key Industry Innovation Chain of Shaanxi
under Grant 2017ZDCXL-GY-05-04-02, 2017ZDCXL-
GY-05-02 and 2018ZDXM-GY-176, in part by the
National Key R&D Program of China under Grant
2017YFE0104100, and in part by the Australian Research
Council Projects DP-180103424, DE-1901014738, and FL-
170100117.

2953

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

a system for large-scale machine learning. In OSDI, vol-

ume 16, pages 265–283, 2016. 6

[2] Kamal M Ali and Michael J Pazzani. Error reduction

through learning multiple descriptions. Machine Learning,

24(3):173–202, 1996. 2

[3] Alexandr Andoni and Piotr Indyk. Near-optimal hashing al-

gorithms for approximate nearest neighbor in high dimen-

sions. In FOCS, pages 459–468, 2006. 1, 2, 6, 7

[4] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support

vector machines under adversarial label noise. In Asian Con-

ference on Machine Learning, pages 97–112, 2011. 2

[5] Yue Cao, Mingsheng Long, Bin Liu, Jianmin Wang, and

MOE KLiss. Deep cauchy hashing for hamming space re-

trieval. In CVPR, pages 1229–1237, 2018. 2

[6] Xinyuan Chen, Chang Xu, Xiaokang Yang, and Dacheng

Tao. Attention-gan for object transfiguration in wild images.

In ECCV, pages 164–180, 2018. 1

[7] Zhixiang Chen, Xin Yuan, Jiwen Lu, Qi Tian, and Jie Zhou.

Deep hashing via discrepancy minimization. In CVPR, June

2018. 1

[8] Jiacheng Cheng, Tongliang Liu, Kotagiri Ramamoha-

narao, and Dacheng Tao. Learning with bounded

instance-and label-dependent label noise. arXiv preprint

arXiv:1709.03768, 2017. 2, 3

[9] Lianhua Chi, Bin Li, Xingquan Zhu, Shirui Pan, and

Ling Chen. Hashing for adaptive real-time graph stream

classification with concept drifts. IEEE Trans. Cybern.,

48(5):1591–1604, 2018. 1

[10] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-

ing Luo, and Yantao Zheng. Nus-wide: a real-world web im-

age database from national university of singapore. In CIVR,

page 48, 2009. 5

[11] Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, and Le Song.

Stochastic generative hashing. In ICML, 2017. 1, 2, 6, 7

[12] Cheng Deng, Zhaojia Chen, Xianglong Liu, Xinbo Gao, and

Dacheng Tao. Triplet-based deep hashing network for cross-

modal retrieval. IEEE Trans. Image Process., 27(8):3893–

3903, 2018. 2

[13] Cheng Deng, Huiru Deng, Xianglong Liu, and Yuan Yuan.

Adaptive multi-bit quantization for hashing. Neurocomput-

ing, 151:319–326, 2015. 2

[14] Cheng Deng, Xu Tang, Junchi Yan, Wei Liu, and Xinbo Gao.

Discriminative dictionary learning with common label align-

ment for cross-modal retrieval. IEEE Trans. Multimedia,

18(2):208–218, 2016. 2

[15] Cheng Deng, Erkun Yang, Tongliang Liu, Wei Liu, Jie Li,

and Dacheng Tao. Unsupervised semantic-preserving adver-

sarial hashing for image search. IEEE Transactions on Image

Processing, 2019. 1

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255. Ieee, 2009. 6

[17] Kamran Ghasedi Dizaji, Feng Zheng, Najmeh Sadoughi

Nourabadi, Yanhua Yang, Cheng Deng, and Heng Huang.

Unsupervised deep generative adversarial hashing network.

In CVPR, 2018. 1, 2

[18] Pedro Domingos and Michael Pazzani. On the optimality of

the simple bayesian classifier under zero-one loss. Machine

learning, 29(2-3):103–130, 1997. 3

[19] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng

Tao. The expressive power of parameterized quantum cir-

cuits. arXiv preprint arXiv:1810.11922, 2018. 1

[20] Benoı̂t Frénay and Michel Verleysen. Classification in the

presence of label noise: a survey. IEEE Trans. Neural Netw.

Learn. Syst., 25(5):845–869, 2014. 3

[21] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and

Florent Perronnin. Iterative quantization: A procrustean

approach to learning binary codes for large-scale im-

age retrieval. IEEE Trans. Pattern Anal. Mach. Intell.,

35(12):2916–2929, 2013. 1, 2, 6, 7

[22] Jie Gui, Tongliang Liu, Zhenan Sun, Dacheng Tao, and Tie-

niu Tan. Fast supervised discrete hashing. IEEE Trans. Pat-

tern Anal. Mach. Intell., 40(2):490–496, 2018. 2

[23] Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor

Tsang, Ya Zhang, and Masashi Sugiyama. Masking: A new

perspective of noisy supervision. In Advances in Neural In-

formation Processing Systems, pages 5841–5851, 2018. 2

[24] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao

Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-

teaching: Robust training of deep neural networks with ex-

tremely noisy labels. In Advances in Neural Information

Processing Systems, pages 8536–8546, 2018. 2

[25] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang,

and Sung-Eui Yoon. Spherical hashing. In CVPR, pages

2957–2964, 2012. 1, 2, 6, 7

[26] Mark J. Huiskes and Michael S. Lew. The mir flickr retrieval

evaluation. In ICMR, 2008. 5

[27] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey

Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,

and Trevor Darrell. Caffe: Convolutional architecture for fast

feature embedding. In ACM Multimedia, pages 675–678,

2014. 6

[28] Zhongming Jin, Cheng Li, Yue Lin, and Deng Cai. Density

sensitive hashing. IEEE Trans. Cybern., 44(8):1362–1371,

2014. 6, 7

[29] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, 2009.

5

[30] Alex Krizhevsky and Geoffrey E Hinton. Using very deep

autoencoders for content-based image retrieval. In ESANN,

2011. 1, 2

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, pages 1097–1105, 2012. 1

[32] Chao Li, Cheng Deng, Ning Li, Wei Liu, Xinbo Gao, and

Dacheng Tao. Self-supervised adversarial hashing networks

for cross-modal retrieval. In CVPR, pages 4242–4251, 2018.

2

2954

[33] Ning Li, Chao Li, Cheng Deng, Xianglong Liu, and Xinbo

Gao. Deep joint semantic-embedding hashing. In IJCAI,

pages 2397–2403, 2018. 2

[34] Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi,

Qin Huang, and C-C Jay Kuo. Instance embedding transfer

to unsupervised video object segmentation. In CVPR, pages

6526–6535, 2018. 3

[35] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature

learning based deep supervised hashing with pairwise labels.

In IJCAI, pages 1711–1717, 2016. 1, 2

[36] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. Learn-

ing compact binary descriptors with unsupervised deep neu-

ral networks. In CVPR, pages 1183–1192, 2016. 1, 2, 6,

7

[37] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, Jie

Zhou, et al. Deep hashing for compact binary codes learning.

In CVPR, volume 1, page 3, 2015. 2

[38] Tongliang Liu and Dacheng Tao. Classification with noisy

labels by importance reweighting. IEEE Trans. Pattern Anal.

Mach. Intell., 38(3):447–461, 2016. 3, 4

[39] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Dis-

crete graph hashing. In NIPS, pages 3419–3427, 2014. 1,

2

[40] W. Liu, J. Wang, R. Ji, Y. Jiang, and S.-F. Chang. Supervised

hashing with kernels. In CVPR, pages 2074–2081, 2012. 1,

2, 5

[41] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang.

Hashing with graphs. In ICML, pages 1–8, 2011. 2

[42] Xianglong Liu, Cheng Deng, Bo Lang, Dacheng Tao, and

Xuelong Li. Query-adaptive reciprocal hash tables for near-

est neighbor search. IEEE Trans. Image Process., 25(2):907–

919, 2016. 2

[43] Xianglong Liu, Bowen Du, Cheng Deng, Ming Liu, and

Bo Lang. Structure sensitive hashing with adaptive prod-

uct quantization. IEEE Trans. Cybern., 46(10):2252–2264,

2016. 2

[44] Yu Liu, Jingkuan Song, Ke Zhou, Lingyu Yan, Li Liu, Fuhao

Zou, and Ling Shao. Deep self-taught hashing for image

retrieval. IEEE Trans. Cybern., 2018. 1

[45] Prem Melville, Nishit Shah, Lilyana Mihalkova, and Ray-

mond J Mooney. Experiments on ensembles with missing

and noisy data. In MCS Workshop, pages 293–302, 2004. 2

[46] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-

prove restricted boltzmann machines. In ICML, pages 807–

814, 2010. 2

[47] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Raviku-

mar, and Ambuj Tewari. Learning with noisy labels. In NIPS,

pages 1196–1204. 2013. 3

[48] Wing WY Ng, Xing Tian, Witold Pedrycz, Xizhao Wang,

and Daniel S Yeung. Incremental hash-bit learning for se-

mantic image retrieval in nonstationary environments. IEEE

Trans. Cybern., (99), 2018. 1

[49] M. Norouzi and D. M Blei. Minimal loss hashing for com-

pact binary codes. In ICML, pages 353–360, 2011. 2

[50] Curtis G Northcutt, Tailin Wu, and Isaac L Chuang. Learning

with confident examples: Rank pruning for robust classifica-

tion with noisy labels. In UAI, 2017. 3, 4

[51] Pedro O Pinheiro and AI Element. Unsupervised domain

adaptation with similarity learning. In CVPR, pages 8004–

8013, 2018. 3

[52] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hash-

ing. Int. J. Approx. Reasoning., 50(7):969–978, 2009. 2

[53] Yuming Shen, Li Liu, Fumin Shen, and Ling Shao. Zero-shot

sketch-image hashing. In CVPR, pages 3598–3607, 2018. 1

[54] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 6

[55] Jingkuan Song, Yi Yang, Xuelong Li, Zi Huang, and Yang

Yang. Robust hashing with local models for approximate

similarity search. IEEE Trans. Cybern., 44(7):1225–1236,

2014. 2

[56] Chaoyue Wang, Chang Xu, Xin Yao, and Dacheng Tao. Evo-

lutionary generative adversarial networks. IEEE Trans. Evol.

Comput., 2019. 1

[57] Hao Wang, Yanhua Yang, Erkun Yang, and Cheng Deng. Ex-

ploring hybrid spatio-temporal convolutional networks for

human action recognition. Multimedia Tools and Applica-

tions, 76(13):15065–15081, 2017. 1

[58] Shengnan Wang, Chunguang Li, and Hui-Liang Shen. Dis-

tributed graph hashing. IEEE Trans. Cybern., (99):1–13,

2018. 1

[59] Xin-Jing Wang, Lei Zhang, Feng Jing, and Wei-Ying Ma.

Annosearch: Image auto-annotation by search. In CVPR,

volume 2, pages 1483–1490, 2006. 6, 7

[60] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral

hashing. In NIPS, pages 1753–1760, 2009. 6, 7

[61] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and

Shuicheng Yan. Supervised hashing for image retrieval via

image representation learning. In AAAI, volume 1, page 2,

2014. 2

[62] Erkun Yang, Cheng Deng, Chao Li, Wei Liu, Jie Li, and

Dacheng Tao. Shared predictive cross-modal deep quantiza-

tion. IEEE Trans. Neural Netw. Learn. Syst., 2018. 1

[63] Erkun Yang, Cheng Deng, Tongliang Liu, Wei Liu, and

Dacheng Tao. Semantic structure-based unsupervised deep

hashing. In IJCAI, pages 1064–1070, 2018. 2, 3, 6, 7

[64] Erkun Yang, Cheng Deng, Wei Liu, Xianglong Liu, Dacheng

Tao, and Xinbo Gao. Pairwise relationship guided deep hash-

ing for cross-modal retrieval. In AAAI, pages 1618–1625,

2017. 2

[65] Erkun Yang, Tongliang Liu, Cheng Deng, and Dacheng Tao.

Adversarial examples for hamming space search. IEEE

Trans. Cybern., 2018. 1

[66] Xu Yang, Cheng Deng, Xianglong Liu, and Feiping Nie.

New l2, 1-norm relaxation of multi-way graph cut for clus-

tering. In AAAI, pages 4374–4381, 2018. 1

[67] Shan You, Chang Xu, Yunhe Wang, Chao Xu, and Dacheng

Tao. Privileged multi-label learning. In IJCAI, pages 3336–

3342, 2017. 1

[68] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. Learning

from multiple teacher networks. In ACM SIGKDD, pages

1285–1294. ACM, 2017. 1

[69] Xiyu Yu, Tongliang Liu, Mingming Gong, Kun Zhang, and

Dacheng Tao. Transfer learning with label noise. arXiv

preprint arXiv:1707.09724, 2017. 2

2955

