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Abstract

We present a deep learning framework, called DuLa-Net,

to predict Manhattan-world 3D room layouts from a sin-

gle RGB panorama. To achieve better prediction accuracy,

our method leverages two projections of the panorama at

once, namely the equirectangular panorama-view and the

perspective ceiling-view, that each contains different clues

about the room layouts. Our network architecture con-

sists of two encoder-decoder branches for analyzing each

of the two views. In addition, a novel feature fusion struc-

ture is proposed to connect the two branches, which are

then jointly trained to predict the 2D floor plans and lay-

out heights. To learn more complex room layouts, we in-

troduce the Realtor360 dataset that contains panoramas

of Manhattan-world room layouts with different numbers

of corners. Experimental results show that our work out-

performs recent state-of-the-art in prediction accuracy and

performance, especially in the rooms with non-cuboid lay-

outs.

1. Introduction

Inferring high-quality 3D room layouts from indoor

panoramic images plays a crucial role in indoor scene un-

derstanding and can be beneficial to various applications,

including virtual/augmented reality and robotics. To that

end, recent methods recover 3D room layouts by using deep

learning to predict the room corners and boundaries on the

input panorama. For example, LayoutNet [33] achieved

impressive reconstruction accuracy for Manhattan world-

constrained rooms. However, the clutter in the room, e.g.

furniture, poses a challenge to extract critical corners and

edges that are occluded in the input panorama. In addition,

estimating 3D layouts from 2D corner and edge maps is an

ill-posed problem and thus imposing extra constraints in the

Figure 1. 3D room layouts with different complexity are estimated

from a single RGB panorama using our system. (Left to right)

Room layout with a floor plan of 6 corners, 8 corners, and 10 cor-

ners. The checkerboard patterns on the walls indicate the missing

textures due to occlusion.

optimization. Therefore, it remains challenging to process

complex room layouts.

In this work, we present a novel end-to-end framework

to estimate a 3D room layout from a single RGB panorama.

By the intuition that a neural network may extract differ-

ent kinds of features given the same panorama but in dif-

ferent projections, we propose to predict the room lay-

outs from two distinct views of the panoramas, namely the

equirectangular panorama-view and the perspective ceiling-

view. The network architecture follows the encoder-decoder

scheme and consists of two branches, the panorama-branch

and the ceiling-branch, for respectively analyzing images

of the panorama-view and the ceiling-view. The outputs

of panorama-branch include a floor-ceiling probability map

and a layout height, while the ceiling-branch outputs a

floor plan probability map. To share information between
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branches, we employ a feature fusion scheme to connect the

first few layers of decoders through a E2P conversion that

transforms intermediate feature maps from equirectangular

projection to perspective ceiling-view. We find that better

prediction performance is achieved by jointly training the

two connected branches. The final 2D floor plan is then

obtained by fitting an axis-aligned polygon to a fused floor

plan probability map (see Figure 3 for details) and then ex-

truded by the estimated layout height.

To learn from panoramas with complex layouts, we need

a proper dataset for network training and testing. How-

ever, existing public datasets, such as PanoContext [30]

dataset, provide mostly labeled 3D layouts with simple

cuboid shapes. To learn more complex layouts, we intro-

duce a new dataset, Realtor360, which includes a subset of

SUN360 [24] dataset (593 living rooms and bedrooms) and

1980 panoramas collected from a real estate database. We

annotated the whole dataset with a custom-made interactive

tool to obtain the ground-truth 3D layouts.

A key feature of our dataset is that it contains rooms with

more complex shapes in terms of the numbers of the cor-

ners. The experimental results demonstrate that our method

outperforms the current state-of-the-art method ([33]) in

prediction accuracy, especially with rooms with more than

four corners. Our method also takes much less time to com-

pute the final room layouts. Fig. 1 shows some room lay-

outs estimated by our method. Our contributions are sum-

marized as follows:

• We propose a novel network architecture that con-

tains two encoder-decoder branches to analyze the in-

put panorama in two different projections. These two

branches are further connected through a feature fu-

sion scheme. This dual-projection architecture can in-

fer room layouts with more complex shapes beyond

cuboids and L-shapes.

• Our neural network is an important step towards build-

ing an end-to-end architecture. Our network directly

outputs a probability map of the 2D floor plan. This

output requires significantly less post-processing to

obtain the final 3D room layout than the output of the

current state of the art.

• We introduce a new data set, called Realtor360, that

contains 2573 panoramas depicting rooms with 4 to 12

corners. To the best of our knowledge, this is largest

data set of indoor images with room layout annotations

currently available.

2. Related Work

There are multiple papers that propose a solution to esti-

mate room layouts from a single image taken in an indoor

environment. They mainly differ in three aspects: 1) the as-

sumptions of the room layouts, 2) the types of the input im-

ages, and 3) the methods. In terms of room layout assump-

tions, a popular choice is the ”Manhattan world” assump-

tion [4], meaning that all walls are aligned with a global

coordinate system [4, 23]. To make the problem easier to

solve, a more restrictive assumption is that the room is a

cuboid [8, 5, 13], i.e., there exist exactly four room corners.

Our method adopts the Manhattan world assumption but al-

lows for arbitrary numbers of corners.

In terms of types of input images, the images may differ

in the FoV (field of view) - ranging from being monocu-

lar (i.e., taken from a standard camera) to 360◦ panoramas,

and whether depth information is provided. The methods

then largely depend on the input image types. The problem

is probably most difficult to solve when only a monocu-

lar RGB image is given. Typically, geometric (e.g., lines

and corners) [14, 8, 22] and/or semantic (e.g., segmentation

into different regions [9, 10] and volumetric reasoning [7])

”cues” are extracted from the input image, a set of room

layout hypotheses is generated, and then an optimization or

voting process is taken to rank and select one among the

hypotheses. Recently, neural network-based methods took

stride in tackling this problem. A trend is that the neural

networks generate higher and higher levels of information

- starting from line segments [17, 31], surface labels [5], to

room types [13] and room boundaries and corners [33], to

make the final layout generation process increasingly eas-

ier to solve. Our method pushes this trend one step further

by using neural networks to directly predict a 2D floor plan

probability map that requires only a 2D polygon fitting pro-

cess to produce the final 2D room layout.

If depth information is provided, there exist methods that

estimate scene annotations including room layouts [28, 15,

29]. A deeper discussion is beyond the scope of this paper.

Closely related problems include depth estimation from

a given image [32, 21] and scene reconstructions from point

clouds [19, 18, 16]. Note that neither estimated depths nor

reconstructed 3D scenes necessarily equate a clean room

layout as such inputs may contain clutters.

360◦ panorama: The seminal work by Zhang et al. [30]

advocates the use of 360◦ panoramas for indoor scene un-

derstanding for the reason that the FOV of 360◦ panoramas

is much more expansive. Work in this direction flourished,

including methods based on optimization approaches over

geometric [6, 21, 26] and/or semantic cues [25, 27] and

later based on neural networks [13, 33]. Except for Lay-

outNet [33], most methods rely on leveraging existing tech-

niques for single perspective images on samples taken from

the input panorama. We believe that this is a major reason

of LayoutNet’s superior performance since it performs pre-

dictions on the panorama as a whole, thus extracting more

global information that the input panorama might contain.
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Figure 2. Our network architecture follows the encoder-decoder scheme and consists of two branches. Given a panorama in equirectan-

gular projection, we additionally create a perspective ceiling-view image through a equirectangular-to-perspective (E2P) conversion. The

panorama and the ceiling-view images are then fed to the panorama-view (upper) and ceiling-view (lower) branches. A E2P-based feature

fusion scheme is employed to connect the two branches, which are jointly trained by the network to predict: 1) probability maps of the

floor and ceiling in panorama view, 2) a floor plan in ceiling view, and 3) a layout height. Then, our system estimates a 2D floor plan

by fitting a Manhattan-world aligned polygon to a weighted average of the three floor plans, which is further extruded using the predicted

layout height to obtain the final 3D room layout.

A further step in this direction can be found in [21], in which

the input panorama is projected to a 2D ”floor” view in

which the camera position is mapped to the center of the

image and the vertical lines in the panorama become radial

lines emanated from the image center. An advantage of this

approach is that the room layout becomes a 2D closed loop

that can be extracted more easily. We derived our ”ceiling”

view idea here - instead of looking downward toward the

floor in which all the clutter in the room is included, we

look upward toward the ceiling and got a more clutter-free

view of the room layout.

3. Overview

Fig. 2 illustrates the overview of our framework. Given

the input as an equirectangular panoramic image, we follow

the same pre-processing step used in PanoContext [30] to

align the panoramic image with a global coordinate system,

i.e. we make a Manhattan world assumption. Then, we

transform the panoramic image into a perspective ceiling-

view image through an equirectangular to perspective (E2P)

conversion (Sec. 4). The panorama-view and ceiling-view

images are then fed to a network consisting of two encoder-

decoder branches. These two branches are connected via

a E2P-based feature fusion scheme and jointly trained to

predict a floor plan probability map, a floor-ceiling proba-

bility map, and the layout height (Sec. 5). Two intermediate

probability maps are derived from the floor-ceiling proba-

bility map using E2P conversion and combined with floor

plan probability map to obtain a fused floor plan probabil-

ity map. The final 3D Manhattan layout is determined by

extruding a 2D Manhattan floor plan estimated on the fused

floor plan probability map using the predicted layout height

(Sec. 6).

4. E2P conversion

In this section, we explain the formulation of E2P con-

version that transforms an equirectangular panorama to a

perspective image. We assume the perspective image is

square with dimension w × w. For every pixel in the per-

spective image at position (px, py), we derive the position

of the corresponding pixel in the equirectangular panorama,

(p′x, p
′

y), −1 ≤ p′x ≤ 1,−1 ≤ p′y ≤ 1, as follows. First,

we define the field of view of the pinhole camera of the

perspective image as FoV . Then, the focal length can be

derived as:

f = 0.5 ∗ w ∗ cot(0.5 ∗ FoV) .

(px, py, f), the 3D position of the pixel in the perspec-

tive image in the camera space, is then rotated by 90◦ or

-90◦ along the x-axis (counter-clockwise) if the camera is

looking upward (looking at the ceiling) or downward (look-

ing at the floor), respectively.

Next, we project the rotated 3D position to the equirect-

angular space. To do so, we first project it onto a unit sphere

by vector normalization, (sx, sy, sz), and apply the follow-

ing formula:

(p′x, p
′

y) = (
arctan2(

sx
sz
)

π
,
arcsin(sy)

0.5π
), (1)
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to project (sx, sy, sz), the 3D position on the unit sphere,

back to (p′x, p
′

y), the corresponding 2D position in the

equirectangular panorama. Finally, we use (p′x, p
′

y) to in-

terpolate a pixel value from the panorama. We note that this

process is differentiable so it can be used in conjunction

with backpropagation.

5. Network architecture

Our network architecture is illustrated in Fig. 2. It con-

sists of two encoder-decoder branches, for the panorama-

view and the ceiling-view input images. We denote the

panorama-view branch as BP and the ceiling-view branch

as BC . The encoder and decoder of BP are denoted as

EBP
and DBP

and for BC they are denoted as EBC
and

DBC
. A key concept is that our network predicts the floor

plan and the layout height. With these two predictions, we

can reconstruct a 3D room layout in a post-process (Sec. 6).

5.1. Encoder

We use ResNet-18 as the architecture for both EBP
and

EBC
. The input dimension of EBP

is 512× 1024× 3 (the

dimension of the input panorama) and the output dimension

is 16×32×512. For EBC
, the input and output dimensions

are 512× 512× 3 and 16× 16× 512. Note that the input of

EBC
is a perspective ceiling-view image generated by ap-

plying E2P conversion to the input panorama with FoV set

to 160◦ and w set to 512. We also tried other more computa-

tionally expensive network architectures such as ResNet-50

for the encoders. However, we find no improvements in ac-

curacy so we chose to work with ResNet-18 for simplicity.

5.2. Decoder

Both DBP
and DBC

consist of six convolutional layers.

The first five layers are 3 × 3 resize convolutions [1] with

ReLU activations. The last layer is a regular 3 × 3 convo-

lution with sigmoid activation. The numbers of channels

of the six layers are 256, 128, 64, 32, 16, and 1. To infer

the layout height, we add three fully connected layers to the

middlemost feature of BP . The dimensions of the three

layers are 256, 64, and 1. To make the regression of the

layout height more robust, we add dropout layers after the

first two layers. To take the middlemost feature as input, we

first apply global average pooling along both x and y dimen-

sions, which produces an 1-D feature with 512 dimension,

and take it as the input of the fully connected layers.

The output of BP is a probability map of the floor and

the ceiling in the equirectangular projection, denoted as the

floor-ceiling probability map (MFC). For BC , the output

is a probability map of the floor plan in the ceiling view,

denoted as the floor plan probability map (MFP ). Note that

BP also outputs a predicted layout height (H).

5.3. Feature fusion

We find that applying fusion techniques to merge the fea-

tures in both BP and BC increases the prediction accuracy.

We conjecture a reason as follows. In a ceiling-view im-

age, the areas near the image boundary (where some useful

visual clues such as shadows and furniture arrangements ex-

ist) are more distorted, which can have a detrimental effect

for the ceiling-view branch to infer room structures. By

fusing features from the panorama-view branch (in which

distortion is less severe), performance of the ceiling-view

branch can be improved.

We apply fusions before each of the first five layers of

DBP
and DBC

. For each fusion connection, a E2P con-

version (Sec. 4) with FoV set to 160◦ is taken to project the

features in DBP
, which are originally in the equirectangu-

lar view, to the perspective ceiling view. Each fusion works

as follows:

f∗

BC
= fBC

+
α

βi
× fBP

, i ∈ {0, 1, 2, 3, 4}, (2)

where fBC
is the feature from BC and fBP

is the feature

from BP after applying the E2P conversion. α and β are

the decay coefficients. i is the index of the layer. After each

fusion, the merged feature, f∗

BC
, is sent into the next layer

of DBC
. The performance improvement of this technique

is discussed in Sec. 8.

5.4. Loss function

For MFC and MFP , we apply binary cross entropy loss:

Eb(x, x
∗) = −

∑

i

x∗

i log(xi) + (1− x∗

i ) log(1− xi).

(3)

For H (layout height), we use L1-loss:

EL1(x, x
∗) =

∑

i

|xi − x∗

i |. (4)

The overall loss function is:

L = Eb(MFC ,M
∗

FC) + Eb(MFP ,M
∗

FP ) + γEL1(H,H∗),
(5)

where M∗

FC , M∗

FP and H∗ are the ground truth of MFC ,

MFP , and H .

5.5. Training details

We implement our method with PyTorch[20]. We use the

Adam[11] optimizer with β1 = 0.9 and β2 = 0.999. The

learning rate is 0.0003 and batch size is 4. Our training loss

converges after about 120 epochs. For each training itera-

tion we augment the input panorama with random flipping

and horizontal rotatations by 0◦, 90◦, 180◦, and 270◦. For
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Figure 3. 2D floor plan fitting. (a) The probability maps that our

network outputs are fused to a floor plan probability map M
fuse
FP .

(b) We apply image thresholding to M
fuse
FP and fit a polygon shape

to the floor plan region. (c) The polygon edges are regressed and

clustered into two sets of horizontal lines (red) and vertical lines

(green). (d) The final floor plane shape is defined by grids in (c)

where the ratio of floor plan area is greater than 0.5.

fusion, we set α and β in Eqn. 2 to be 0.6 and 3. We set the

γ in Eqn. 5 to be 0.5. Because we estimate the floor plan

probability map in the ceiling view, we assume the distance

between the camera and the ceiling to be 1.6 meters, and

use this constant to normalize the ground truth.

6. 3D layout estimation

Given the probability maps (MFC and MFP ) and the

layout height (H) predicted by the network, we reconstruct

the final 3D layout in the following two steps:

1. Estimating a 2D Manhattan floor plan shape using the

probability maps.

2. Extruding the floor plan shape along its normal accord-

ing to the layout height.

For step 1, two intermediate maps, denoted as MC
FC and

MF
FC , are derived from ceiling pixels and floor pixels of

the floor-ceiling probability map using the E2P conversion.

We further use a scaling factor, 1.6/(H − 1.6), to register

the MF
FC with MC

FC , where the constant 1.6 is the distance

between the camera and the ceiling. Finally, a fused floor

plan probability map is computed as follows:

Mfuse
FP = 0.5 ∗MFP + 0.25 ∗MC

FC + 0.25 ∗MF
FC . (6)

Fig. 3 (a) illustrates the above process. The probability map

Mfuse
FP is binarized using a threshold of 0.5. A bounding

rectangle of the largest connected component is computed

for later use. Next, we convert the binary image to a densely

sampled piece-wise linear closed loop and simplify it using

the Douglas-Peucker algorithm (see Fig. 3 (b)). We run a

regression analysis on the edges and cluster them into sets

of axis-aligned horizontal and vertical lines. These lines

Table 1. Statistics of the Realtor360 dataset.

4 corners 6 corners 8 corners 10+ corners Total

1246 950 316 61 2573

divide the bounding rectangle into several disjoint grid cells

(see Fig. 3 (c)). We define the shape of the 2D floor plan as

the union of grid cells where the ratio of floor plan area is

greater than 0.5 (see Fig. 3 (d)).

Figure 4. Few example panoramas in Realtor360. The annotated

3D room layouts are drawn as blue wireframes.

7. Realtor360 dataset

A dataset that contains a sufficient number of 3D room

layouts with different numbers of corners is crucial for

training as well as testing our network. Unfortunately,

existing public domain datasets, such as the PanoCon-

text [30] dataset and the Stanford 2D-3D dataset labeled by

Zou et al. [33], contain mostly layouts with a simple cuboid

shape. To prove that our framework is flexible enough to

deal with rooms with an arbitrary number of corners, we in-

troduce a new dataset, named Realtor360, that contains over

2500 indoor panoramas and annotated 3D room layouts. We

classify each room according to its layout complexity mea-

sured by the number of corners in the floor plan. Table 1

shows the statistics of the dataset and a few visual examples

can be found in Fig. 4. The source panoramic images in

the Realtor360 dataset are collected from two sources. The

first one is a subset of the SUN360 dataset [24], which con-

tains 593 living rooms and bedrooms panoramas. The other

source is a real estate database with 1980 indoor panora-

mas acquired from a real-estate company. We annotate the

3D layouts of these indoor panoramas using a custom-made

interactive tool as explained below.

Annotation tool. To annotate the 2D indoor panoramas

with high-quality 3D room layouts, we developed an in-

teractive tool to facilitate the labeling process. The tool

first leverages existing automatic methods to extract a depth

map [12] and line segments [30] from the input panorama.
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Method
Average 4 corners 6 corners 8 corners 10+ corners

2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%)

LayoutNet [33] 65.84 62.77 80.41 76.6 60.5 57.87 41.16 38.61 22.35 21.52

ours (fc-only) 75.2 72.02 76.75 73.27 76.04 73.06 70.8 67.89 56.42 54.2

ours (fp-only) 75.75 72.18 79.66 75.54 75.42 72.23 70.51 67.39 51.03 48.57

ours (w/o fusion) 78.52 74.8 81.77 77.57 78.5 75.1 73.61 70.37 57.01 54.12

ours (full) 80.53 77.2 82.63 78.91 80.72 77.79 78.12 74.86 63.1 59.72

Table 2. Quantitative evaluation on the Realtor360 dataset. We compare our method with the LayoutNet [33], and conduct an ablation

study using different configurations of our method. Bold numbers indicate the best performance.

Method
Average 4 corners 6 corners 8 corners 10+ corners

2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%) 2D IoU (%) 3D IoU (%)

LayoutNet [33] 71.31 67.91 80.69 76.82 68.95 65.83 50.31 47.23 44.53 42.51

Ours (full) 77.87 74.16 82.42 78.3 77.19 73.74 70.81 67.55 54.05 50.96

Table 3. Quantitative evaluation on the subset of Realtor360 dataset. We compare with LayoutNet [33] using a training set that contains

only rooms with cuboid layout (4 corners). Bold numbers indicate the best performance.

Then, an initial 3D Manhattan-world layout is created by

sampling the depth along the horizontal line in the middle

of the panorama. The tool allows the users to refine the ini-

tial 3D layout through a set of intuitive operations, including

(i) pushing/pulling a wall; (ii) merging multiple walls; and

(iii) splitting a wall. It also offers a handy function to snap

the layout edges to the estimated line segments during the

interactive editing to improve the accuracy.

8. Experiments

We compare our method to LayoutNet [33], a state-of-

the-art method in room layout estimation, through a se-

ries of quantitative and qualitative experiments on our Re-

altor360 dataset and the PanoContext [30] dataset. We also

conduct ablation study with several alternative configura-

tions of our method. We adopt 2D and 3D Intersection over

Union (IoU) to evaluate the accuracy of the estimated 2D

floor plans and 3D layouts, which is a standard metric in

similar tasks [3]. All the experiments used the same hyper-

parameter discussed in Sec. 5.5. Fig. 5 shows a few 3D

room layouts with different numbers of corners estimated

using our method. Please refer to the supplementary mate-

rials for more results in the following experiments.

Evaluation on the Realtor360 dataset. To train both

LayoutNet [33] and our DuLa-Net on the Realtor360

dataset, we randomly selected 2169 panoramas for training

and took the remaining 404 panoramas for testing. We fur-

ther classify the testing panoramas according to their num-

bers of corners. We run LayoutNet using the codes and de-

fault hyper-parameter released by the authors. The quan-

titative comparison with LayoutNet is shown in Table 2.

We observe that LayoutNet delivers good performance on

cuboid-shaped rooms (4 corners), similar to the numbers

reported in their paper. However, the accuracy drops signif-

icantly as the number of corners increases. In comparison,

Our DuLa-Net not only outperforms LayoutNet on cuboid-

shaped rooms by a small margin (around 2%), but also per-

forms well on rooms with larger numbers of corners. This

leads to an overall performance gain of ∼ 14% in both 2D

and 3D metrics when compared to LayoutNet.

Since the 3D layout optimization and the hyper-

parameter of LayoutNet were tuned on a dataset that con-

tains mostly cuboid-shaped rooms, we conducted another

experiment by training both networks on a revised training

set that excludes rooms of non-cuboid layouts, while keep-

ing the testing set untouched. Table 3 shows the quantitative

results. Note that while the performance of LayoutNet im-

proves, our method still outperforms on all kinds of rooms.

From the qualitative comparison shown in Fig. 6, we

can observe a strong tendency of LayoutNet to predict the

rooms to be cuboid-shaped, possibly due to the constraints

imposed in their 3D layout optimization. In comparison,

our method simplifies the problem by directly predicting a

Manhattan-world floor plan without any assumptions about

the numbers of corners. We conjecture that this is a main

reason why our method outperforms LayoutNet, especially

with rooms with more than four corners.

We also conducted an ablation study that evaluates the

performance of our method in different configurations as

follows: 1) ours(fc-only): only panorama-view branch, 2)

ours(fp-only): only ceiling-view branch, and 3) ours(w/o fu-

sion): our full model but without feature fusion. The quan-

titative results in Table 2 shows that jointly training both

branches leads to better performance than training only one

of them. In addition, adding feature fusion between the two

branches further improves the performance.

Evaluation on the PanoContext and Stanford 2D/3D

datasets. LayoutNet provided quantitative results on the

PanoContext [30] dataset with 414 panoramas for training
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Figure 5. Visual results. Given a single RGB panorama, our method automatically estimates the corresponding 3D room layout. Our

method is flexible to handle more complex room layout beyond the simple cuboid room. The checkerboard patterns on the walls indicate

the missing textures due to occlusion.

and 53 panoramas for testing. All rooms are labeled as

cuboid-shape. To compare, we trained our network on the

same dataset. The quantitative comparison is shown in Ta-

ble 4. Our model outperforms LayoutNet by a small margin.

We also evaluate our model on the Stanford 2D-3D [2]

dataset with annotations labeled by LayoutNet [33]. The

dataset includes 404 panoramas for training and 113

panoramas for testing. The last column in Table 4 shows

the quantitative result on the Stanford 2D-3D [2] dataset.

Table 4. Quantitative evaluation on the PanoContext [30] and

Stanford 2D/3D [2] datasets in 3D IoU (%)

Method PanoContext Stanford 2D-3D

LayoutNet [33] 74.48 76.33

Ours (full) 77.42 79.36

Timing. An end-to-end computation takes three main

steps - 1) an alignment process to align the input panorama

with a global coordinate system, 2) floor plan probabil-

ity map prediction by our neural network, and 3) 2D floor

plan fitting. Step 1) is most time-consuming, which takes

about 13.37s measured on a machine with a single NVIDIA

1080ti GPU and Intel i7-7700 3.6GHZ CPU. Step 2) takes

only 34.68ms and step 3) takes only 21.71ms.

Compared to LayoutNet, they carry out the same align-

ment process and their neural network prediction is also

very fast (39ms). However, they needed another very time-

consuming 3D layout optimization step in the end, which

takes 30.5s. In summary, an end-to-end computation by

LayoutNet takes about 43.9s while our method takes about

13.4s, a speed up of 3.28X.

9. Conclusion

We present an end-to-end deep learning framework,

called DuLa-Net, for estimating 3D room layouts from a
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Figure 6. Qualitative comparison with LayoutNet [33]. The 3D room layouts generated by LayoutNet[33] (green lines) and our method

(orange lines). Results are displayed on both the equirectangular panorama-view (left) and floor plan view (right), where the blue lines and

yellow solid shapes represent the ground truth, respectively.

single RGB panorama. We propose a new network architec-

ture that consists of two encoder-decoder branches for ana-

lyzing features from two distinct views of the input panora-

mas, namely the equirectangular panorama-view and the

perspective ceiling-view. The two branches are connected

through a novel feature fusion scheme and jointly trained

to achieve the best accuracy in the prediction of 2D floor

plan and layout height. To learn from complex layouts, we

introduce a new dataset, Realtor360, which contains 2573

indoor panoramas of Manhattan-world room layouts with

various complexity. Both the quantitative and qualitative

results demonstrate that our method outperforms the cur-

Figure 7. Limitations. Two failure cases generated by our method

(orange lines) due to the lack of object semantics. (Top) Our

method is misled by the reflection of mirror. (Bottom) The bound-

ary of floor plan is occluded by the refrigerator. The ground truth

layout is rendered in blue.

rent state-of-the-art in prediction accuracy, especially with

rooms with more than four corners, and take much less time

to compute the final 3D room layouts.

Limitations and future work. Our method has the fol-

lowing limitations: i) without knowing the object se-

mantics, our network might get confused with the rooms

that contains mirrors or large occluding objects as shown

in Fig. 7; and ii) our approach of 3D layout estimation in-

volves heuristics and assumptions that might over- or under-

estimate the underlying floor plan probability map and also

restrain the results to Manhattan world. We propose to ex-

plore the following directions in the near future. First, in-

troducing the object semantics, i.e., segmentation and la-

bels, to the network architecture could potentially improve

the accuracy by ignoring those distracting and occluding

objects from the floor plan prediction. Second, designing

a principled algorithm for a more robust 3D layout esti-

mation, e.g., no Manhattan-world assumption and support

rooms with curve shapes. Last but not the least, we believe

that even better results can be achieved by experimenting

with a larger range of encoders for our network architec-

ture.
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