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Abstract

Although deep neural networks are highly effective, their

high computational and memory costs severely hinder their

applications to portable devices. As a consequence, low-

bit quantization, which converts a full-precision neural net-

work into a low-bitwidth integer version, has been an active

and promising research topic. Existing methods formulate

the low-bit quantization of networks as an approximation or

optimization problem. Approximation-based methods con-

front the gradient mismatch problem, while optimization-

based methods are only suitable for quantizing weights and

can introduce high computational cost during the training

stage. In this paper, we provide a simple and uniform way

for weights and activations quantization by formulating it

as a differentiable non-linear function. The quantization

function is represented as a linear combination of several

Sigmoid functions with learnable biases and scales that

could be learned in a lossless and end-to-end manner via

continuous relaxation of the steepness of Sigmoid functions.

Extensive experiments on image classification and object

detection tasks show that our quantization networks outper-

form state-of-the-art methods. We believe that the proposed

method will shed new lights on the interpretation of neural

network quantization.

1. Introduction

Although deep neural networks (DNNs) have achieved

huge success in various domains, their high computational

and memory costs prohibit their deployment in scenarios

∗This work was done when the author was visiting Alibaba as a re-

search intern.
†Corresponding author.
‡Corresponding author.

(a) Sigmoid (b) ReLU

(c) Maxout (d) Quantization

Figure 1: Non-linear functions used in neural networks.

where both computational and storage resources are limited.

Thus, the democratization of deep learning hinges on the

development of efficient DNNs. Various techniques have

been proposed to lighten DNNs by either reducing the num-

ber of weights and connections or by quantizing the weights

and activations to lower bits. As exemplified by ResNet

[8], SqueezeNet [13] and MobileNet [11], numerous efforts

have been devoted to designing networks with compact lay-

ers and architectures. Once trained, these networks can be

further compressed with techniques such as network prun-

ing [7], weight sharing [3] or matrix factorization [16].

Approaches for quantizing full-precision networks into

low-bit networks can be roughly divided into two cate-
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gories: approximation-based and optimization-based ap-

proaches. Methods in the first category approximate the

full-precision (32-bit) values with discrete low-bit (e.g., bi-

nary) values via step functions in the forward pass [27, 30,

33, 19, 34, 15, 21, 22, 1]. Because the gradients of such

approximations are saturated, additional approximations in

the backward process are needed. As a consequence, the

use of different forward and backward approximations re-

sults in a gradient mismatch problem, which makes the op-

timization unstable. To avoid the approximation of gradi-

ents, some methods formulate the quantization of neural

networks as a discretely constrained optimization problem,

where the losses of the networks are incorporated [20, 10].

Unfortunately, optimization-based methods are only suit-

able for the quantization of weights. Moreover, the iterative

solution of the optimization problem suffers from a high

computational complexity during training.

Intuitively, if we can formulate the quantization opera-

tion as a simple non-linear function similar to common acti-

vation functions (e.g., Sigmoid [17], ReLU [25] and Maxout

[6]), no approximation of gradients would be needed, and

the quantization of any learnable parameters in the DNNs,

including activations and weights, can be learned straight-

forwardly and efficiently. Inspired by this, we present a

novel perspective for interpreting and implementing quan-

tization in neural networks. Specifically, we formulate

quantization as a differentiable non-linear mapping func-

tion, termed the quantization function. As shown in Fig. 1,

the quantization function is formed as a linear combina-

tion of several Sigmoid functions with learnable biases and

scales. In this way, the proposed quantization function can

be learned in a lossless and end-to-end manner and works

for any weights and activations in neural networks, thereby

avoiding the gradient mismatch problem. As illustrated in

Fig. 2, the quantization function can be trained via continu-

ous relaxation of the steepness of the Sigmoid functions.

Our main contributions are summarized as follows:

• In contrast to existing low-bit quantization methods,

we are the first to formulate quantization as a differen-

tiable non-linear mapping function, thereby providing

a simple/straightforward and general/uniform solution

for any-bit weight and activation quantization without

suffering the severe gradient mismatch problem.

• We implement a simple and effective form of quanti-

zation networks that can be learned in a lossless and

end-to-end manner and that outperforms state-of-the-

art quantization methods on both image classification

and object detection tasks.

2. Related Work

In this paper, we propose formulating the quantization

operation as a differentiable non-linear function. In this

section, we give a brief review of both low-bit quantization

methods and non-linear functions used in neural networks.

2.1. Low­Bit Quantization of Neural Networks

Approaches for quantizing full-precision networks into

low-bit networks can be roughly divided into two cate-

gories: approximation-based and optimization-based ap-

proaches. The first approach is to approximate the 32-

bit full-precision values with discrete low-bit values in the

forward pass of the networks. BinaryConnect [4] directly

optimizes the loss of the network with weights W re-

placed by sign(W ), and it approximates the sign function

with the “hard tanh” function in the backward process to

avoid the zero-gradient problem. The binary weight net-

work (BWN) [27] adds scale factors for the weights during

binarization. Ternary weight network (TWN) [21] intro-

duces ternary weights and achieves improved performance.

Trained ternary quantization (TTQ) [34] proposes learning

both ternary values and scaled gradients for 32-bit weights.

DoReFa-Net [33] proposes quantizing 32-bit weights, ac-

tivations and gradients using different bit widths. Gradi-

ents are approximated by a customized form based on the

mean of the absolute values of the full-precision weights.

In [30], weights, activations, gradients and errors are all

approximated by low-bitwidth integers based on rounding

and shifting operations. Jacob et al. [15] propose an affine

mapping of integers to real numbers that allows inference to

be performed using integer-only arithmetic. As discussed

before, approximation-based methods use different forward

and backward approximations, which causes a gradient mis-

match problem. Friesen and Domingos [5] observe that

setting targets for hard-threshold hidden units to minimize

losses is a discrete optimization problem. Zhuang et al. [35]

propose a two-stage approach to quantize the weights and

activations in a two-step manner. Lin et al. [23] approx-

imate full-precision weights with a linear combination of

multiple binary weight bases. Zhang et al. [31] propose a

flexible non-uniform quantization method to quantize both

network weights and activations. Cai et al. [1] use several

piece-wise backward approximators to overcome the gradi-

ent mismatch problem. Zhou et al. [32] propose a step-

by-step decoupling operation to efficiently convert a pre-

trained full-precision convolutional neural network (CNN)

model into a low-precision version. As a specific quanti-

zation, HashNet [2] adopts a similar continuous relaxation

to train the hash function, where a single tanh function is

used for binarization. However, our training case (multi-

bit quantization of both activations and weights in multiple

layers) is substantially more complicated and challenging.

To avoid the gradient approximation problem,

optimization-based quantization methods have recently

been proposed. Such methods directly formulate the

quantization of neural networks as a discretely constrained
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optimization problem [20, 10]. Leng et al. [20] introduce

convex linear constraints for the weights and solve the

problem by the alternating direction method of multipliers

(ADMM). Hou and Kwok [10] directly optimize the loss

function w.r.t. the ternarized weights using a proximal

Newton algorithm. However, these methods are only

suitable for the quantization of weights and such iterative

solutions suffer from high computational costs for training.

2.2. Non­Linear Functions in Neural Networks

In neural networks, the design of hidden units is distin-

guished by the choice of the non-linear activation function

g(x) for hidden units [12]. The simplest form of a neural

network is the perceptron [28], where a unit step function is

introduced to produce a binary output:

g(x) = A(x) =

{
1 x ≥ 0,
0 x < 0.

(1)

This form is similar to the binary quantization operation,

i.e., discretize the continuous inputs into binary values.

However, the problem is that it is not immediately obvious

how to learn the perceptron networks [26].

To solve this problem, the sigmoid activation function is

adopted in the early form of feedforward neural networks:

g(x) = σ(x) =
1

1 + exp(−x)
, (2)

which has smooth and non-zero gradients everywhere

so that the sigmoid neurons can be learned via back-

propagation. When the absolute value of x is very large,

the output of a sigmoid function is close to a unit step func-

tion.

Currently, rectified linear units (ReLU) are more fre-

quently used as the activation functions in deep neural net-

works, and a generalization of ReLU is Maxout:

g(x) = max
j

(aj ∗ x+ cj), j = 1, . . . , k (3)

where {aj} and {cj} are learned parameters. The form of

Maxout indicates that a complex convex function can be ap-

proximated by a combination of k simple linear functions.

We adopt a similar idea to formulate the quantization func-

tion.

3. Quantization Networks

The main idea of this work is to formulate the quantiza-

tion operation as a differentiable non-linear function, which

can be applied to any weights and activations in deep neu-

ral networks. We first present our novel interpretation of

quantization from the perspective of non-linear functions,

followed by the learning of the quantization networks.

3.1. Reformulation of Quantization

The quantization operation maps continuous inputs into

discrete integer numbers, and a binary quantization opera-

tion can be seen as an unit step function. Inspired by the

design of Maxout units (Eq. 3), quantizing continuous val-

ues into a set of integer numbers can be formulated as a

combination of several binary quantizations. That said, the

ideal low-bit quantization function could be represented as

a combination of several unit step functions with specified

biases and scales, as shown in Fig. 2(e):

y =

n∑

i=1

siA(βx− bi)− o, (4)

where x is the full-precision weight/activation to be

quantized, and y is the quantized integer set Y (e.g.,

{−4,−2,−1, 0, 1, 2, 4}) with n + 1 (e.g., 7) quantization

intervals. A is the standard unit step function, with β be-

ing the overall scale factor of inputs, si and bi being the

scale and bias of each unit step function. In particular, β
and bi are parameters to be learned, and si is calculated by

si = Yi+1−Yi. The global offset o = 1
2

∑n

i=1 si keeps the

quantized output czero-centered. Once the target quantiza-

tion integer set Y is given, n = |Y| − 1, si and the offset o
can be directly obtained.

3.2. Training and Inference with Quantization Net­
works

Since the ideal step function is not smooth, we adopt a

continuous relaxation method to train it [2], by replacing

each unit step function in the ideal quantization function

(Eq. 4) with a sigmoid function. Such ”soft” quantization

function is differentiable (Fig. 2(c)), and can be learned in

an end-to-end manner via back-propagation without suffer-

ing the gradient mismatching.

Since the ideal quantization function (Eq.4) is finally ap-

plied in the inference stage, we gradually narrow the gap

between the ideal and soft quantization functions during the

training stage. Motivated by the distilling idea in [9], we

introduce a temperature factor T to the Sigmoid function:

σ(Tx) =
1

1 + exp(−Tx)
. (5)

When the value of T gets larger, the gap between two quan-

tization functions becomes smaller, but the learning capac-

ity of the quantization networks is also lower due to the sat-

urated gradient. Thus, during the training stage, we start

with a small T to ensure a stable and effective learning, and

gradually increase T w.r.t. the training epochs to finally

approach the ideal quantization functions, as illustrated in

Fig. 2.

Forward Propagation. For a set of full-precision

weights or activations that need to be quantized X =
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(a) No Quantization (b) T=1 (c) T=11 (d) T=121 (e) Complete Quantization

Figure 2: The relaxation process of a quantization function during training, which goes from a straight line to steps as the

temperature T increases.

{xd, d = 1, · · · , D}, the quantization function is applied

to each xd independently:

yd = Q(xd) = α(

n∑

i=1

siσ(T (βxd − bi))− o), (6)

where β and α are the scale factors of the input and output,

respectively; bi is the beginning of i-th quantization inter-

val, and particularly, b0 is set to −∞.

Like any other non-linear activation functions, Eq. (6)

provides a simple and uniform quantization operation, with-

out introducing any changes to the original network struc-

ture.

Backward Propagation. During the training stage, we

need to back-propagate the gradients of the loss ℓ through

the quantization function, as well as compute the gradients

with respect to the involved parameters:

∂ℓ

∂xd

=
∂ℓ

∂yd
·

n∑

i=1

Tβ

αsi
gid(αsi − gid), (7)

∂ℓ

∂α
=

D∑

d=1

∂ℓ

∂yd
·
1

α
yd, (8)

∂ℓ

∂β
=

D∑

d=1

∂ℓ

∂yd
·

n∑

i=1

Txd

αsi
gid(αsi − gid), (9)

∂ℓ

∂bi
=

D∑

d=1

∂ℓ

∂yd
·
−T

αsi
gid(αsi − gid). (10)

where gid = σ(T (βxd − bi)), and the gradients of n, si
and the offset o can be directly obtained by Y . Our soft

quantization function is a differentiable transformation that

introduces quantized weights and activations into the net-

work.

Training and Inference. To quantize a network, we

specify a set of weights or activations and insert the quanti-

zation function for each of them according to Eq. (6). For

example, a layer that previously receives x as an input be-

comes Q(x), and a module that previously uses W as pa-

rameters now becomes Q(W ). Once the network has been

Algorithm 1 Training quantization networks

Input: Network N with M modules MM
m=1 and their

corresponding activations/inputs {X (m)}Mm=1, train-

able weights (or other parameters) {Θ(m)}Mm=1,

and corresponding target quantized integers set

{Y
(m)
X ,Y

(m)
Θ }Mm=1.

Output: Quantized network for inference, N inf
Q

N tr
Q ← N // Training quantization network

for m← 1 to M do

Infer {s
(m)
i , o(m)} and intialize {α(m), β(m), b

(m)
i }

(Eq. 6) in the soft quantization function {Q
(m)
X ,Q

(m)
Θ }

based on {Y
(m)
X ,Y

(m)
Θ ,X (m),Θ(m)} .

Apply the soft quantization function to each element

xm
d in X (m) and each element θmd in Θ(m):

ymd = Q
(m)

{α
(m)
X

,β
(m)
X

,b
(m)
X

}
(xm

d ),

θ̂md = Q
(m)

{α
(m)
Θ ,β

(m)
Θ ,b

(m)
Θ }

(θmd ).

Forward propagate module m with the quantized

weights and activations.

end for

for epoch← 1 to Max Epochs do

Train N tr
Q to optimize the parameters

Θ ∪ {α
(m)
Θ , β

(m)
Θ , b

(m)
Θ , α

(m)
X , β

(m)
X , b

(m)
X }

M

m=1 with

gradually increased temperature T
end for

N inf
Q ← N tr

Q // Inference quantization network with

frozen parameters

for m← 1 to M do

Replace the soft quantization functions with Eq. (11)

for inference.

end for

trained, we replace the sigmoid function in Eq. (6) with the

unit step function for inference:

y = α(

n∑

i=1

siA(βx− bi)− o). (11)

Algorithm 1 summarizes the procedure for training
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Methods

W/A
1/32 2/32 3(±2)/32 3(±4)/32 1/1 1/2

BinaryConnect [4] 35.4/61.0 - - - 27.9/50.42 -

BWN [27] 56.8/79.4 - - - 44.2/69.2 -

DoReFa [33] 53.9/76.3 - - - 39.5/- 47.7/-

TWN [21] - 54.5/76.8 - - - -

TTQ [34] - 57.5/79.7 - - - -

ADMM [20] 57.0/79.7 58.2/80.6 59.2/81.8 60.0/82.2 - -

HWGQ [1] - - - - - 52.7/76.3

TBN [29] - - - - - 49.7/74.2

LQ-Net [31] - 60.5/82.7 - - - 55.7/78.8

Ours 58.8/81.7 60.9/83.2 61.5/83.5 61.9/83.6 47.9/72.5 55.4/78.8

Table 1: Top-1 and Top-5 accuracies (%) of AlexNet on ImageNet classification. The performance of the full-precision model

is 61.8/83.5. “W” and “A” represent the quantization bits of the weights and activations, respectively.

quantization networks. For a full-precision network N
with M modules, where a module can be either a convo-

lutional layer or a fully connected layer, we denote all the

activations to be quantized in the m-th module as X (m),

and all the weights to be quantized in the m-th module

as Θ(m). All elements in X (m) share the same quantiza-

tion function parameters {α
(m)
X , β

(m)
X ,b

(m)
X }. All elements

in Θ(m) share the same quantization function parameters

{α
(m)
Θ , β

(m)
Θ ,b

(m)
Θ }. We apply the quantization function

module by module, and train the network with a gradually

increased temperature T .

4. Experiments

4.1. Image Classification

To evaluate our method, we compare with the state-

of-the-art classification methods on ImageNet dataset

(ILSVRC 2012). ImageNet consists of approximately 1.2
million training images from 1,000 categories and 50,000

validation images. We evaluate our method on AlexNet [18]

(over-parameterized architectures) and ResNet-18/ResNet-

50 [8] (compact-parameterized architectures). We report

our classification performance using Top-1 and Top-5 ac-

curacies with networks quantized to Binary({0, 1}, 1 bit),

Ternary({-1, 0, 1}, 2 bits), {-2, -1, 0, 1, 2} (denoted as 3

bits(±2)), {-4, -2, -1, 0, 1, 2, 4 } (denoted as 3 bits(±4)),

and {-15, -14, · · · , -1, 0, 1, · · · , 14, 15 } (5 bits). All the pa-

rameters are fine-tuned from pretrained full-precision mod-

els.

All the images from ImageNet are resized to 256 pix-

els for the smaller edge, followed by a random crop of

224 × 224. Each pixel value of the input images is sub-

tracted by the mean values and divided by the variances.

Random horizontal flipping is introduced for preprocessing.

No other data augmentation tricks are used in the learning

process. We choose a batch size of 256 during training.

Similar to [27] and [21], the parameters of the first convolu-

tional layer and the last fully connected layer for classifica-

tion are not quantized. For testing, images are preprocessed

in the same way.

For our quantization function Eq. (6), to ensure all the in-

put full-precision values lie in the linear region of our quan-

tization function, the input scale β is initialized to 5p
4 ×

1
q

,

where p is the max absolute value of elements in Y and q is

the max absolute value of the elements in {X ,Θ}. Here ac-

tivation set X consists of the activations of randomly sam-

pled 1000 samples from the dataset. The output scale α
is initialized to 1

β
, which keeps the magnitude of the in-

puts unchanged after quantization. We adopt a layer-wise

quantization in this paper, i.e., the weights/activations from

the same layer share the same quantization function and the

weights/activations from different layers use different quan-

tization functions.

Weight quantization: For binary quantization, only 1
sigmoid function is needed: n = 1, b = 0, s = 2, and o =
1. For the quantization of other bits, we first group the full-

precision inputs into n+ 1 clusters via k-means clustering,

then rank the centers of the clusters in an ascending order,

{c1, . . . , cn+1}. The biases are initialized by bi =
ci+ci+1

2 .

Activation quantization: The outputs of the ReLU units

are used for the activation quantization (Conv-BN-ReLU(-

Pooling)-Quant). The o in Eq. (6) is set to 0 because all ac-

tivations are non-negative. For binary quantization({0, 1}),
only 1 sigmoid function is needed, i.e., n = 1 and s = 1.

For two-bit quantization of the activations ({0, 1, 2, 3}),
n = 3 and si = 1. We randomly take 1000 samples from

the dataset, and use the min/max activation values of the

output in each layer for the initialization of q. And bi is

obtained by clustering as in weight quantization with this

1000 samples.
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Methods

W/A
1/32 2/32 3(±2)/32 3(±4)/32 5/32 1/1 1/2 32/2

BWN [27] 60.8/83.0 - - - - 51.2/73.2 - -

TWN [21] - 61.8/84.2 - - - - - -

TTQ [34] - 66.6/87.2 - - - - - -

INQ [32] - 66.0/87.1 - 68.1/88.4 69.0/89.1 - - -

ABC-Net [23] - - - - 68.3/87.9 42.7/67.6 - -

HWGQ [1] - - - - - - 59.6/82.2 -

ADMM [20] 64.8/86.2 67.0/87.5 67.5/87.9 68.0/88.3 - - - -

ICLR18 [5] - - - - - - - 64.3/-

TBN [29] - - - - - - 55.6/79.0 -

LQ-Net [31] - 68.0/88.0 - 69.3/88.8 - - 62.6/84.3 -

Ours 66.5/87.3 69.1/88.9 69.9/89.3 70.4/89.6 70.6/89.6 53.6/75.3 63.4/84.9 65.7/86.5

Table 2: Top-1 and Top-5 accuracies (%) of ResNet-18 on ImageNet classification. The performance of the full-precision

model are 70.3/89.5.

Methods

W/A
1/32 2/32 3(±2)/32 3(±4)/32 5/32

BWN [27] 68.7/- - - - -

TWN [21] - 72.5/- - - -

INQ [32] - - - - 74.8/-

LQ-Net [31] - 75.1/92.3 - - -

Ours 72.8/91.3 75.2/92.6 75.5/92.8 76.2/93.2 76.4/93.2

Table 3: Top-1 and Top-5 accuracies (%) of ResNet-50 on ImageNet classification. The performance of the full-precision

model are 76.4/93.2.

The whole training process consists of 3 phases. Firstly,

we disable the activation quantization and only train the

quantization of the weights. Secondly, we fix the quan-

tization of the weights and only train the quantization of

the activations. Finally, we train the quantization of both

weights and activations until the model converges. In prac-

tice, freezing T = 1 for the back-propagation of binary

quantization achieves better performance.

AlexNet: This network consists of five convolutional

layers and two fully connected layers. This network is the

mostly widely used benchmark for the quantization of neu-

ral networks. As in [27, 21, 20], we use AlexNet coupled

with batch normalization [14] layers. We update the model

by stochastic gradient descent (SGD) with the momentum

set to 0.9. The learning rate is initialized to 0.001 and de-

cays by 0.1 at epochs 25 and 40, respectively. The model

is trained for at most 55 epochs in total. The weight de-

cay is set to 5e−4. The temperature T is set to 10 and in-

creased linearly w.r.t. the number of training epochs, i.e.,

T = epoch × 10. The gradients are clipped with a maxi-

mum L2 norm of 5.

The results of different quantization methods are shown

in Table 1, where 1/1 means both weights and activations

are binary quantized. As shown by the results, our quanti-

zation network outperforms state-of-the-art methods in both

weight quantization and activation quantization.

ResNet: The most common baseline architectures, in-

cluding AlexNet, VGG and GoogleNet, are all over-

parameterized by design to achieve improved accuracy.

Therefore, it is easy to obtain sizable compression of these

architectures with a small accuracy degradation. A more

meaningful benchmark would be to quantize the model ar-

chitectures that already possess efficient parameters, e.g.,

ResNet. We use the ResNet-18 and ResNet-50 networks

proposed in [8] for evaluation.

The learning rate is decayed by 0.1 at epochs 30 and

45, and the model is trained for at most 55 epochs in to-

tal. The weight decay is set to 1e−4. The temperature T
is set to 5 and increased linearly w.r.t the training epochs

(T = epoch × 5). The other settings are the same as those

for AlexNet. The results of different quantization meth-

ods are shown in Table 2 and Table 3 for ResNet-18 and

ResNet-50, respectively. We can see that the performance

degradation of the quantized models is larger than that on

AlexNet. This is reasonable because the parameters of the

original model are more compact. Note that even in such
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Methods

W/A
2/32 3(±4)/32 3(±4)/8

ADMM [20] 76.2 77.6 -

Ours 76.3 77.7 76.1

Table 4: mAP (%) of SSD on Pascal VOC object detection.

The performance of the full-precision model is 77.8.

a compact model, our method still achieves lossless results

with only 3 bits. In addition, as far as we know, we are the

first to surpass the full-precision model on ResNet-18 with

3-bit weight quantization.

4.2. Object Detection

To evaluate our quantization network on object detection

tasks, we test it on the popular SSD (single shot multibox

detection) architecture [24]. The models are trained on the

Pascal VOC 2007 and 2012 training datasets and tested on

Pascal VOC 2007 test dataset. We follow the same settings

in [24], and the input images are resized to 300× 300. Ex-

cept for the final convolutional layers with 1×1 kernels and

the first convolution layer, the parameters of all other layers

in the backbone VGG16 are quantized.

We update the model by SGD with the momentum set to

0.9. The initial learning rate is set to 1e−5 for the quantized

parameters and 1e−7 for the non-quantized parameters and

then decayed by 0.1 at epochs 70 and 90. The models are

trained for 100 epochs in total. The batch size is set to 16,

and the weight decay is 5e−4. We increase the temperature

T by 10 every epoch, i.e., T = epoch × 10. The gradients

are clipped with maximum L2 norm of 20.

Since other baseline quantization methods did not report

their performances on object detection tasks, we only com-

pare our model with ADMM. As shown by the results in

Table 4, our model is slightly better than ADMM. This re-

sult is very promising since our method is much simpler and

substantially more general than ADMM.

4.3. Ablation Experiments

In this section, we discuss the settings of our quantiza-

tion network. All statistics are collected from the training

process for Alexnet and ResNet-18 on ImageNet.

Configuration of Bias b. Usually, the quan-

tized values are set linearly (e.g., {−1,−k−1
k

,

. . . ,− 1
k
, 0, 1

k
, . . . , k−1

k
, 1}) or logarithmically (e.g.,

{−1,− 1
2 , . . . ,−

1
2k−1 , 0,

1
2k−1 , . . . ,

1
2 , 1) with a scale factor

α [21, 30, 20, 33, 10, 15]. In this paper, we find that

the distribution of the full-precision parameters of the

pre-trained model roughly follows a Gaussian distribution,

which indicates that quantizing weights into linear or

logarithmic intervals may fail to preserve such distribution.

Quantization methods W/A Top-1 Top-5

linear 2/32 60.6 82.8
non-uniform 2/32 60.9 83.2

linear 3(±4)/32 60.7 83.0
non-uniform 3(±4)/32 61.9 83.6

Table 5: Ablation study concerning training the quantiza-

tion of AlexNet on ImageNet classification: using linear vs.

non-uniform quantization.

(a) Top-1 (b) Top-5

Figure 3: The gap between the training model and test-

ing model along with the training process for ResNet-18

{−4,+4}. The gap between the training and testing model

converges as the learning proceeds.

Thus, we adopt a non-uniform quantization (e.g., K-means

clustering) to counterbalance this, based on the n + 1
clustering centers for determining the quantization intervals

{bi}. The experimental results in Table 5 demonstrate the

superior of the non-uniform quantization over the linear

quantization. We also found that fixing the biases during

training achieves better performance than learning an

adaptive biases. Therefore, we freeze the biases after the

initialization in all experiments.

Effect of Temperature. As discussed in Section 3, the

temperature T controls the gap between the hard quanti-

zation function Eq. (11) in the inference stage and the soft

quantization function Eq. (6) in the training stage. To inves-

tigate the effect of this gap on the performance of quantized

networks, we compare the testing accuracy of the models

(trained with different T ) when soft and hard quantization

functions are adopted, as shown in Fig. 3. We can see that as

the temperature T increases, the difference between them is

gradually reduced. Thus, gradually increasing the tempera-

ture T during training can achieve a good balance between

model learning capacity and quantization gap.

Training from pre-trained model. In our training, the

temperature parameter T is increased linearly w.r.t. the

training epochs. When training from scratch, the temper-

ature T may become quite large before the network is well-

converged, and the saturated neurons will slow down the
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Training methods W/A Top-1 Top-5

from scratch 3(±4)/32 55.3 78.8
from pre-trained 3(±4)/32 70.4 89.6

Table 6: Ablation study of training the quantization of

ResNet-18 for ImageNet classification: from scratch vs.

from a pre-trained model.

Binary Ternary Full-precision

Time 1x 1.4x 45x

Space 1x 2x 32x

Table 7: Time-space complexity of final inference based on

the VU9P FPGA evaluation. Each number indicates the ra-

tio to the complexities of the binary network. Binary: 1-bit

weights and 1-bit activations. Ternary: 2-bit weights and

2-bit activations.

network training process and cause the network to become

stuck in local minima. According to Table 6, training from

a pre-trained model can greatly improve the performance

compared to training from scratch.

Time-space complexity of the final model for infer-

ence. Table 7 shows the time-space complexities of the fi-

nal quantization networks for inference based on the VU9P

FPGA evaluation. We can see that both the time and space

complexities are significantly reduced resulting from the

low-bit quantization of the neural networks.

Convergence of Temperature T . The training process

is very stable w.r.t. different T (shown in Fig. 4). The

approximation of the final “soft” quantization function to

a “hard” step function is determined by the final tempera-

ture, which is controlled by the maximum training epoch

(T = epoch ∗ 10). The increasing speed of the tempera-

ture (e.g., 10) controls the speed of convergence (or learning

rate) from a “soft” to “hard” quantization (shown in Figure 4
in our paper), and it is consistent with the learning progress

of the backbone model. Practically, for different backbone

models, we can tune T in {5, 10, 20, 40} based on the per-

formance on validation set as for the learning rate for the

DL models.

5. Conclusion

This work focused on interpreting and implementing the

low-bit quantization of deep neural networks from the per-

spective of non-linear functions. Inspired by activation

functions in DNNs, a soft quantization function is proposed

and incorporated into deep neural networks as a new type

of activation function. With this differentiable non-linear

quantization function embedded, the quantization networks

Figure 4: The training error curve and the train-

ing/validation accuracy curve for AlexNet quantization (left

to right: T = 5/10/20 ∗ epoch). Similar curves are ob-

served for T = 1/30/40 ∗ epoch; we do not show them

here because of space limitation.

can be learned in an end-to-end manner. Our quantization

method is both highly flexible and suitable for arbitrary-bit

quantization and can be applied for the quantization of both

weights and activations. Extensive experiments on image

classification and object detection tasks have verified the ef-

fectiveness of the proposed method.
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