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Abstract

Optimizing a deep neural network is a fundamental task

in computer vision, yet direct training methods often suf-

fer from over-fitting. Teacher-student optimization aims at

providing complementary cues from a model trained previ-

ously, but these approaches are often considerably slow due

to the pipeline of training a few generations in sequence,

i.e., time complexity is increased by several times.

This paper presents snapshot distillation (SD), the first

framework which enables teacher-student optimization in

one generation. The idea of SD is very simple: instead of

borrowing supervision signals from previous generations,

we extract such information from earlier epochs in the same

generation, meanwhile make sure that the difference be-

tween teacher and student is sufficiently large so as to pre-

vent under-fitting. To achieve this goal, we implement SD in

a cyclic learning rate policy, in which the last snapshot of

each cycle is used as the teacher for all iterations in the next

cycle, and the teacher signal is smoothed to provide richer

information. In standard image classification benchmarks

such as CIFAR100 and ILSVRC2012, SD achieves consis-

tent accuracy gain without heavy computational overheads.

We also verify that models pre-trained with SD transfers

well to object detection and semantic segmentation in the

PascalVOC dataset.

1. Introduction

A large portion of recent advances in computer vision

have been built upon deep learning, in particular training

very deep neural networks. With the depth increasing

from tens [25, 37, 40] to hundreds [18, 22], the issue of

the network optimization becomes more and more impor-

tant yet challenging. As such, researchers proposed vari-

ous approaches to deal with both under-fitting [30], over-

fitting [39] and numerical instability [23].

As an alternative approach to assist training, teacher-

student (T-S) optimization was originally designed for train-

ing a smaller network to approximate the behavior of a

larger one, i.e., model compression [19], but later re-

SA? IN? 1G?

Knowledge Distillation (2015) [19]

FitNet (2015) [35]

Net2Net (2016) [5] X

A Gift from KD (2017) [50]

Label Refinery (2018) [2] X X

Born-Again Network (2018) [11] X

Tolerant Teacher (2018) [49] X X

Snapshot Distillation (this work) X X X

Table 1. The attributes of different teacher-student optimization

approaches, where SA indicates that teacher and student have the

same architecture, IN indicates being evaluated on ImageNet, and

1G indicates that the entire process is done within one generation.

See Section 2 for a detailed survey.

searchers found its effectiveness in providing complemen-

tary cues to training the same network [11, 2]. These

approaches require a teacher model which is often obtained

from a standalone training process. Then, an extra loss

term which measures the similarity between the teacher and

the student is added to the existing cross-entropy loss term.

It was believed that such an optimization process benefits

from so-called secondary information [49], i.e., class-level

similarity that allows the student not to fit the one-hot class

distribution. Despite their success in improving recognition

accuracy, these approaches often suffer much heavier com-

putational overheads, because a sequence of models need

to be optimized one by one. A training process with one

teacher and K students requires K× more training time

compared to a single model.

This paper presents an algorithm named snapshot distil-

lation (SD) to perform T-S optimization in one generation

which, to the best of our knowledge, was not achieved in

prior research. The differences between SD and previous

methods are summarized in Table 1. The key idea of SD is

straightforward: taking extra supervision (a.k.a. the teacher

signal) from the prior iterations (in the same generation)

instead of the prior generations. Based on this frame-

work, we investigate several factors that impact the perfor-

mance of T-S optimization, and summarize three principles,

namely, (i) the teacher model has been well optimized; (ii)
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the teacher and student models are sufficiently different

from each other; and (iii) the teacher provides secondary

information [49] for the student to learn. Summarizing

these requirements leads to our solution that using a cyclic

learning rate policy, in which the last snapshot of each cycle

(which arrives at a high accuracy and thus satisfies (i)),

serves as the teacher for all iterations in the next cycle (these

iterations are pulled away from the teacher after a learning

rate boost, which satisfies (ii)). We also introduce a novel

method to smooth the teacher signal in order to provide mild

and more effective supervision (which satisfies (iii)).

Experiments are performed in two standard bench-

marks for image classification, namely, CIFAR100 [24] and

ILSVRC2012 [36]. SD consistently outperforms the base-

line (direct optimization) especially in deeper networks.

In addition, SD requires merely less than 1/3 extra train-

ing time beyond the baselines (see Section 3.3.4 for de-

tails), which is K times faster than the existing K-multi-

generation approaches [11, 49, 2], theoretically and practi-

cally. We also fine-tune the models trained by SD for ob-

ject detection and semantic segmentation in the PascalVOC

dataset [10] and observe accuracy gain, implying that the

improvement brought by SD is transferrable.

The remainder of this paper is organized as follows.

Section 2 briefly reviews related work. Section 3 describes

snapshot distillation and provides practical guides for T-

S optimization in one generation. After experiments are

shown in Section 4, we conclude this work in Section 5.

2. Related Work

Recently, computer vision research has been largely

boosted by deep learning [26]. With the availability of

large-scale datasets [7] and powerful computational re-

sources, researchers designed deep networks to replace tra-

ditional handcrafted features [32] for visual recognition.

The fundamental idea is to build a hierarchical network

structure containing multiple layers, each of which contains

a number of neurons having the same or similar mathemati-

cal functions, e.g., convolution, pooling, normalization, etc.

The strong ability of deep networks at fitting complicated

feature-space distributions is widely verified in the previous

literature. In a fundamental task known as image classifi-

cation, deep convolutional neural networks [25] have been

dominating in the large-scale competitions [36]. To further

improve classification accuracy, researchers designed even

deeper networks [37, 40, 18, 22, 20], and also explored the

possibility of discovering network architectures automati-

cally [46, 57, 27].

The rapid progress of deep neural networks has helped a

lot of visual recognition tasks. Features extracted from pre-

trained classification networks can be transferred to small

datasets for image classification [8], retrieval [33] or object

detection [14]. To transfer knowledge to a wider range

of tasks, researchers often adopt a technique named fine-

tuning, which replaces the last few layers of a classifica-

tion network with some specially-designed modules (e.g.,

up-sampling for semantic segmentation [28, 3] and edge

detection [48] or regional proposal extraction for object

detection [13, 34]), so that the network can take advantage

of the properties of the target problem while borrowing

visual features from basic classification.

On the other hand, optimizing a deep neural network is a

challenging problem. When the number of layers becomes

very large (e.g., more than 100 layers), vanilla gradient

descent approaches often encounter stability issues and/or

over-fitting. To deal with them, researchers designed vari-

ous approaches such as ReLU activation [30], Dropout [39]

and batch normalization [23]. However, as depth increases,

the large number of parameters makes it easy for the neu-

ral networks to be over-confident [15], especially in the

scenarios of limited training data. An effective way is to

introduce extra priors or biases to constrain the training

process. A popular example is to assume that some visual

categories are more similar than others [6], so that a class-

level similarity matrix is added to the loss function [43, 45].

However, this method still suffers the lack of modeling per-

image class-level similarity (e.g., a cat in one image may

look like a dog, but in another image, it may be closer to a

rabbit), which is observed in previous research [44, 1, 52].

Teacher-student optimization is an effective way to

formulate per-image class-level similarity. In this flowchart,

a teacher network is first trained, and then used to guide

the student network, so that class-level similarities for each

image are delivered by the teacher’s output (e.g., con-

fidence scores). This idea was first proposed to distill

knowledge from a larger teacher network and compress

it to a smaller student network [19, 35], or initialize a

deeper/wider network with pre-trained weights of a shal-

lower/narrower network [5, 37]. Later, it was extended in

various aspects, including using an adjusted way of teacher

supervision [41, 31], using multiple teachers towards a

better guidance [42], adding supervision to intermediate

neural responses [50], and allowing two networks to pro-

vide supervision to each other [55]. Recently, researchers

noted that this idea can be used to optimize deep networks

in many generations [2, 11], namely, a few networks with

the same architecture are optimized one by one, in which

the next one borrows supervision from the previous one. It

was argued that the softness of the teacher signal plays an

important role in educating a good student [49]. Despite

the success of these approaches in boosting recognition

accuracy, they suffer from lower training efficiency, as in a

K-generation process (one teacher and K students) requires

K× more training time. An inspiring cue comes from the

effort of training a few models for ensemble within the same

time [21], in which the cost of training was largely reduced.
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3. Snapshot Distillation

This section presents snapshot distillation (SD), the first

approach that achieves teacher-student (T-S) optimization

within one generation. We first briefly introduce a general

flowchart of T-S optimization and build a notation sys-

tem. Then, we analyze the main difficulties that limit its

efficiency, based on which we formulate SD and discuss

principles and techniques to improve its performance.

3.1. Teacher­Student Optimization

Let a deep neural network be M : y = f(x;θ), where

x denotes the input image, y denotes the output data (e.g.,

a G-dimensional vector for classification with G being the

number of classes), and θ denotes the learnable parameters.

These parameters are often initialized as random noise, and

then optimized using a training set with N data samples,

D = {(x1,y1) , . . . , (xN ,yN )}.
Conventional optimization algorithm works by sampling

mini-batches or subsets from the training set. Each of them,

denoted as B, is fed into the current model to estimate the

difference between prediction and ground-truth labels:

L(B;θ) = −
1

|B|

∑

(xn,yn)∈B

y⊤
n ln f(xn;θ). (1)

This process searches over the parameter space to find the

approximately optimal θ that interprets or fits D. However,

the model trained in this way often over-fits the training set,

i.e., θ cannot be transferred to the testing set to achieve

good performance as in the training set. As observed in

prior work [15], this is partly because the supervision was

provided in one-hot vectors, which forces the network to

prefer the true class overwhelmingly to all other classes –

this is often not the optimal choice because rich information

of class-level similarity is simply discarded [45, 49].

To alleviate this issue, teacher-student (T-S) optimiza-

tion was proposed, in which a pre-trained teacher network

added an extra term to the loss function to measure the KL-

divergence between teacher and student [11]:

LS
(

B;θS
)

= −
1

|B|

∑

(xn,yn)∈B

{

λS · y⊤
n ln f

(

xn;θ
S
)

+

λT ·KL
[

f
(

xn;θ
T
)

‖f
(

xn;θ
S
)]}

, (2)

where θ
S and θ

T denote the parameters in teacher and

student models, respectively. This is to say, the fitting goal

of the student is no longer the ground-truth one-hot vector

which is too strict, but leans towards the teacher signal (a

softened vector most often with correct prediction). This

formulation can be applied in the form of multiple genera-

tions. Let K be the total number of generations [2, 11, 49].

These approaches started with a so-called patriarch model

Algorithm 1: Snapshot Distillation

Input : training set D, number of iterations L,

training configurations
{

γl, λ
T
l , λ

S
l , cl

}L

l=1
;

1 Initialize θ0;

2 for l = 1, 2, . . . , L do

3 Sample a mini-batch Bl from D;

4 Compute loss L(Bl;θl−1) using Eqn (3);

5 θl ← θl−1 − γl · ∇θl−1
L(Bl;θl−1)

6 end

Return: M : y = f(x;θ = θL).

M
(0), and in the k-th generation, M

(k−1) was used to

teach M
(k). [49] showed the necessity of setting a tolerant

teacher so that the students can absorb richer information

from class-level similarity and achieve higher accuracy.

Despite the ability of T-S optimization in improving

recognition accuracy, it often suffers the weakness of being

computationally expensive. Typically, a T-S process with

one teacher and K students costs K× more time, yet this

process is often difficult to parallelize1. This motivates us

to propose an approach named snapshot distillation (SD),

which is able to finish T-S optimization in one generation.

3.2. The Flowchart of Snapshot Distillation

The idea of SD is very simple. To finish T-S optimization

in one generation, during the training process, we always

extract the teacher signal from an earlier iteration, by which

we refer to an intermediate status of the same model, rather

than another model that was optimized individually.

Mathematically, let θ0 be the randomly initialized pa-

rameters. The baseline training process contains a total of L
iterations, the l-th of which samples a mini-batch Bl, com-

putes the gradient of Eqn (1), and updates the parameters

from θl−1 to θl. SD works by assigning a number cl < l for

the l-th iteration, indicating a previous snapshot f(x;θcl) as

the teacher to update θl−1. Thus, Eqn (2) becomes:

L(Bl;θl−1) = −
1

|Bl|

∑

(xn,yn)∈Bl

{

λS
l · y

⊤
n ln f(xn;θl−1)+

λT
l ·KL[f(xn;θcl) ‖f(xn;θl−1)]

}

. (3)

Here λS
l and λT

l are weights for one-hot and teacher super-

visions. When λT
l = 0, the teacher signal is ignored at the

current iteration, and thus Eqn (3) degenerates to Eqn (1).

The pseudo code of SD is provided in Algorithm 1. In

what follows, we will discuss several principles required to

improve the performance of SD.

1To make fair comparison, researchers often train deep networks using

a fixed number of GPUs. T-S optimization trains K + 1 models serially,

which is often difficult to accelerate even with a larger number of GPUs.
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M
T
#0 M

T
#75 M

T
#150

M#0 78.13 − −

M#75 78.18 78.02 −

M#150 77.67 77.58 77.47
Table 2. Classification error rates (%) on CIFAR100 with different

T-S similarities. All these models are trained for 300 epochs,

and all numbers are the average of two individual runs. The

first row (self) shows the accuracies of standard models (no T-

S optimization), and in the following rows, when M
T
#E1

teaches

M#E2
, they share the first min{E1, E2} common epochs. Some

T-S pairs that are probabilistically identical, so only one of them

is tested (see Section 3.3.2 for details).

3.3. Principles of Snapshot Distillation

This subsection forms the core contribution of our work,

which discusses the principles that should be satisfied to

improve the performance of SD. In practice, this involves

how to design the hyper-parameters {γl, λl, cl}
L

l=1. We first

describe three principles individually, and summarize them

to give our solution in the final part.

3.3.1 Principle #1: The Quality of Teacher

In prior work, the importance of having a high-quality

teacher model has been well studied. At the origin of T-

S optimization [19, 35, 50], a more powerful teacher model

was used to guide a smaller and thus weaker student model,

so that the teacher knowledge is distilled and compressed

into the student. This phenomenon persists in a multi-

generation T-S optimization in which teacher and student

share the same network architecture [2].

Mathematically, the teacher model determines the sec-

ond term on the right-hand side of Eqn (3), i.e., the KL-

divergence between teacher and student. If the teacher is

not well optimized and provides noisy supervision, the risk

that two terms conflict with each other becomes high. As

we shall see later, this principle is even more important in

SD, as the number of iterations allowed for optimizing each

student becomes smaller, and the efficiency (or the speed of

convergence) impacts the final performance heavier.

3.3.2 Principle #2: Teacher-Student Difference

In the context of T-S optimization in one generation, one

more challenge emerges. In each iteration, the teacher θcl

and student θl−1 are two snapshots from the same training

process, and so the similarity between them is higher than

that in multi-generation T-S optimization. This makes the

second term on the right-hand side of Eqn 3 degenerate

and, consequently, its contribution to the gradient that θl−1

receives for updating itself is considerably changed.

We evaluate the impact of T-S similarity using the 100-

layer DenseNet [22] on the CIFAR100 dataset [24]. All

models are trained with the cosine annealing learning rate

policy [29] for a total of 300 epochs. Detailed settings

are elaborated in Section 4.1. To construct T-S pairs with

different similarities, we first perform a complete training

process containing 300 standard epochs and starting from

scratch, and denote the final model by M#300. Then,

we take the snapshots at 150, 75 and 0 (scratch) epochs,

and denote them by M#150, M#75 and M#0, respectively,

with the number after # indicating the number of elapsed

epochs. Then, we continue training these snapshots with the

same configurations (mini-batch size, learning rates, etc.)

but different randomization which affects the sampled mini-

batch in each iteration and the data augmentation performed

at each training sample. These models are denoted by

M
T
#150, MT

#75 and M
T
#0, respectively, where the superscript

T implies being used as a teacher model, and each number

after # indicates the number of common epochs shared with

M#300. All these teacher models have exactly 300 epochs.

Now, we use these models to teach the intermediate

snapshots, i.e., M#150, M#75 and M#0. When M
T
#E1

is used to teach M#E2
, their common part, i.e., the first

E0 = min{E1, E2} epochs are preserved, i.e., the first E0

epochs used Eqn (1) and the remaining 300 − E0 epochs

used Eqn (2). Results are summarized in Table 2. Note

that from a probabilistic perspective, M
T
#150, M

T
#75 and

M
T
#0 are identical to each other in classification accuracy,

and from the previous part we expect them to provide the

same teaching ability. We start with observing their be-

havior when M#0 is the student. This case degenerates to

a two-generation T-S optimization. Since all teachers are

probabilistically identical, we only evaluate one of these

pairs, reporting a 78.13% accuracy which is higher than

the baseline (the average of M
T
#150, M

T
#75 and M

T
#0 is

77.65%). However, when M#75 is the student, MT
#0 serves

as a better teacher because it does not share the first 75
epochs with M#75. This offers a larger difference between

teacher and student and, consequently, produces better clas-

sification performance (78.18% vs. 78.02%). When M#150

is chosen to be the student, this phenomenon preserves, i.e.,

T-S optimization prefers a larger difference between teacher

and student.

3.3.3 Principle #3: Secondary Information

The last factor, also being the one that was most studied be-

fore, is how knowledge is delivered from teacher to student.

There are two arguments, both of which suggesting that a

smoother teacher signal preserves richer information, but

they differ from each other in the way of achieving this goal.

The distillation algorithm [19] used a temperature term T
to smooth both input and output scores, and the tolerant

teacher algorithm [49] trained a less confident teacher by

adding a regularization term in the first generation (a.k.a.
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the patriarch), and this strategy was verified the advanta-

geous over the non-regularized version [11].

In the context of snapshot distillation, we follow [19]

to divide the teacher signal (in logits, the neural responses

before the softmax layer) by a temperature coefficient T >
1. In the framework of knowledge distillation, the student

signals should also be softened before the KL divergence

is computed with the teacher signals. The reason is that,

the student with a shallow architecture is not capable of

completely mimicking the same outputs of the teacher with

a deep architecture [2, 19], and thus matching the soft

versions of their outputs is a more rational choice. The aim

of knowledge distillation is to match the outputs, forcing

the student to predict what the teacher predicts as much

as possible. However, our goal is to generate secondary

information in T-S optimization, instead of matching. As a

result, we do not divide the student signal by T . This strat-

egy also aligns with Eqn 1 used in the very first iterations

(i.e., no teacher signals are provided). In experiments, we

observe a faster convergence as well as consistent accuracy

gain – see Section 4.1 for detailed numbers. We name it as

asymmetric distillation.

3.3.4 Summary and Solution

Summarizing the above three principles, we present our

solution to improve the performance of SD. We partition

the entire training process with L iterations into K mini-

generations with L1, L2 . . . , LK iterations, respectively,

and
∑K

k=1Lk = L. The last iteration in each mini-

generation serves as the teacher of all iterations in the next

mini-generation. This is to say, there are K − 1 teachers.

The first teacher is the snapshot at L′
1 = L1 iterations, the

second one at L′
2 = L1 + L2 iterations, and the last one at

L′
K−1 = L1 + L2 . . .+ LK−1 iterations. We have:

cl = max {L′
k, L

′
k < l}. (4)

For l 6 L′
1, we define cl = 0 for later convenience, and

in this case λS
l = 1, λT

l = 0 and Eqn (3) degenerates to

Eqn (1). In comparison to a normal training scheme, SD

needs 1
3 ×

K−1
K

extra computation: the last K − 1 mini-

generations require additional teacher’s forward propaga-

tion. This number is 25% for our CIFAR100 experiments

(Section 4.1, K = 4) and 16.7% for our ILSVRC2012

experiments (Section 4.2, K = 2). In comparison to other

K-generation methods [11, 49], SD is theoretically and

practically K times faster, because all other methods require

teacher inference except for the first generation. Following

Principle #2, we shall assume that the iterations right after

each teacher have large learning rates, in order to ensure

the sufficient difference between the teacher and student

models. Meanwhile, according to Principle #1, the teacher

itself should be good, which implies that the iterations

before each teacher have small learning rates, which makes

the network converge to an acceptable state after sufficient

training iterations with the large ones. To satisfy both

conditions, we require the learning rates within each mini-

generation to start from a large value and gradually decay.

In practice, we use the cosine annealing strategy [29] which

was verified to converge better:

γl =
1

2
αkl
×

[

1 + cos

(

l − L′
kl−1

L′
kl
− L′

kl−1

· π

)]

. (5)

Here, kl is the index of mini-generation of l, and αkl
is

the starting learning rate at the beginning of this mini-

generation (often set to be large). Finally, we follow Sec-

tion 3.3.3 to use asymmetric distillation in order to satisfy

Principle #3.

3.4. Discussions

If we set L1 = L2 = . . . = LK and switch off the

teacher signal, the above solution degenerates to snapshot

ensemble (SE) [21]. In experiments, we compare these

two approaches under the same setting, and find that both

approaches work well on CIFAR100 (SD reports better

results), but on ILSVRC2012, SD achieves higher accuracy

over the baseline while SE does not2. This is arguably

because CIFAR100 is relatively simple, so that the orig-

inal setting (L iterations) are over-sufficient for conver-

gence, and thus reducing the number of iterations of each

mini-generation does not cause significant accuracy drop.

ILSVRC2012, however, is much more challenging and thus

convergence becomes a major drawback of both SD and

SE. SD, with the extra benefit brought by T-S optimization,

bridges this gap and outperforms the baseline.

Note that the above solution is only one choice. Under

Algorithm 1 and the three principles, other training strate-

gies can be explored, e.g., using super-convergence [38]

to alleviate the drawback of weaker convergence. These

options will be studied in the future.

4. Experiments

4.1. The CIFAR100 Dataset

• Settings and Baselines

We first evaluate SD on the CIFAR100 dataset [24], a

low-resolution (32 × 32) dataset containing 60,000 RGB

images. These images are split into a training set of 50,000
images and a testing set of 10,000 images, and in both

of them, images are uniformly distributed over all 100
classes (20 superclasses each of which contains 5 fine-level

2The SE paper [21] reported a higher accuracy on ResNet50, but it

was compared to the baseline with the stepwise learning rate policy, not

the cosine annealing policy that should be the direct baseline. The latter

baseline is more than 1% higher than the former, and also outperforms SE.
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Backbone Alg. T M#L1
M#L2

M#L3
M#L4

best ensemble SOTA

ResNet20

BL N/A − − − 33.57 33.57 −
Year –—

SE N/A 36.17 33.36 32.98 32.66 32.54 30.86

SD 2 36.17 33.78 32.98 32.31 32.31 32.08
2016 [51] 19.25

SD 3 36.17 33.69 32.24 31.97 31.76 30.76

ResNet32

BL N/A – – – 31.61 31.61 –
2017 [54] 19.25

SE N/A 33.78 32.15 31.41 30.74 30.51 28.93

SD 2 33.78 32.07 31.05 30.67 30.57 29.80
2017 [56] 17.73

SD 3 33.78 31.52 30.64 30.32 30.16 28.71

ResNet56

BL N/A – – – 30.23 29.94 –
2017 [47] 17.31

SE N/A 32.85 31.60 30.45 29.68 29.55 27.93

SD 2 32.85 30.47 29.72 29.29 29.22 28.11
2017 [22] 17.18

SD 3 32.85 30.82 29.55 29.37 29.28 27.74

ResNet110

BL N/A – – – 28.77 28.53 –
2017 [16] 17.01

SE N/A 31.89 29.81 29.07 28.27 28.09 26.45

SD 2 31.89 29.84 28.71 27.71 27.52 27.19
2017 [53] 16.80

SD 3 31.89 29.22 28.37 27.87 27.75 26.19

DenseNet100

BL N/A – – – 22.49 22.00 –
2017 [9] 16.53

SE N/A 24.31 22.76 22.16 22.18 22.00 19.63

SD 2 24.31 23.10 22.06 21.78 21.59 20.27
2017 [12] 15.85

SD 3 24.31 23.19 21.60 21.17 21.17 19.71

DenseNet190

BL N/A – – – 16.82 16.69 –
2018 [11] 14.90∗

SE N/A 18.98 18.12 16.95 16.84 16.70 15.70

SD 2 18.98 17.48 16.32 18.02 16.06 15.72
2018 [49] 14.47∗

SD 3 18.98 17.67 16.95 18.65 16.33 15.92

Table 3. CIFAR100 classification errors (%) obtained by different network backbones. Regarding the algorithm option, BL indicate the

baseline model trained with cosine annealing learning rates, SE indicates snapshot ensemble with the same learning rate policy as SD

during the entire training process. T is the temperature term. We report the accuracy at the end of each mini-generation, at the best epoch,

and obtained from model ensemble (M#L1
through M#L4

), respectively. The logits of M#Lk
are multiplied by T k−1 for ensemble of SD.

Among the state-of-the-art (SOTA) methods, an asterisk indicates that model ensemble was used to achieve the corresponding error rate.

In addition, [12] used complicated data augmentation to achieve an error rate of 15.85% – we just applied standard data augmentation.

classes). We do not perform experiments on the CIFAR10

dataset because it does not contain fine-level visual con-

cepts, and thus the benefit brought by T-S optimization is

not significant (as observed in [11] and analyzed in [49]).

We investigate two groups of baseline models. The first

group contains standard deep ResNets [18] with 20, 32, 56
and 110 layers. Given a 32 × 32 input image, a 3 × 3
convolution is first performed without changing its spatial

resolution. Three stages followed, each of which has a few

residual blocks (two 3×3 convolutions summed up with an

identity connection). Batch normalization [23] and ReLU

activation [30] are applied after each convolutional layer.

The spatial resolution changes in the three stages (32× 32,

16 × 16 and 8 × 8), as well as the number of channels

(16, 32 and 64). An average pooling layer is inserted after

each of the first two stages. The network ends with global

average-pooling followed by a fully-connected layer with

100 outputs. The second group has two DenseNets [22]

with 100 and 190 layers, respectively. These networks

share the similar architecture with the ResNets, but the

building blocks in each stage are densely-connected, with

the output of each block concatenated to the accumulated

feature vector and fed into the next block. The base feature

length and growth rate are 24 and 12 for DenseNet100, and

80 and 40 for DenseNet190.

Following the conventions, we train all these networks

from scratch. We use the standard Stochastic Gradient De-

scent (SGD) with a weight decay of 0.0001 and a Nesterov

momentum of 0.9. In ResNets, we train the network for 164
epochs with a mini-batch size of 128 and a base learning

rate of 0.1. In DenseNets, we train the network for 300
epochs with a mini-batch size of 64 and a base learning

rate of 0.1. The cosine annealing learning rate [29] is used,

in order to make fair comparison between the baseline and

SD. In the training process, standard data-augmentation is

used, i.e., each image is symmetrically-padded with a 4-

pixel margin on each of the four sides. In the enlarged

40×40 image, a subregion with 32×32 pixels is randomly

cropped and flipped with a probability of 0.5. We do not

use any data augmentation in the testing stage.

To apply SD, we evenly partition the entire training pro-

cess into 4 mini-generations, i.e., K = 4. For ResNets, we

have L1 = 41, L2 = 82 and L3 = 123, and for DenseNets,

L1 = 75, L2 = 150 and L3 = 225. The same learning rate
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αk = 0.1 is used at the beginning of each mini-generation,

and decayed following Eqn (5). We use an asymmetric

distillation strategy (Section 3.3.3) with T = 2 and T = 3,

respectively. In Eqn (3), we set λS
l = 1 + 1/T and λT

l = 1
to approximately balance two gradients in magnitudes [19].

• Quantitative Results and Analysis

Results are summarized in Table 3. Towards fair com-

parison, for different instances of the same backbone, net-

work weights are initialized in the same way, although

randomness during the training process (e.g., data shuffle

and augmentation) is not unified. In addition, the first mini-

generation (M#L1
, no T-S optimization) is shared between

SE (snapshot ensemble) and SD.

We first observe that SD brings consistent accuracy gain

for all models, regardless of network backbones, and sur-

passing both the baseline and SE. In DenseNet190, the most

powerful baseline, SD with T = 2 achieves an error rate

of 16.06% at the best epoch, which is competitive among

the state-of-the-arts (all of which reported the best epoch).

Moreover, in terms of model ensemble from M#L1
through

M#L4
, SD provides comparable numbers to SE, although

we emphasize that SD focuses on optimizing a single model

while SE, with weaker single models, requires ensemble

to improve classification accuracy. Another explanation

comes from the optimization policy of SD. By introducing a

teacher signal to optimize each student, different snapshots

in SD tend to share a higher similarity than SE, and this is

the reason that SD reports a smaller accuracy gain from a

single model to model ensemble.

Another important topic to discuss is how asymmetric

distillation impacts T-S optimization, for which we show

several evidences. With a temperature term T > 1, the stu-

dent tends to become smoother, i.e., the entropy of the class

distribution is larger. However, as shown in [11] and [49], T-

S optimization achieves satisfying performance via finding

a balancing point between certainty and uncertainty, so,

as the latter gradually increases, we can observe a peak

in classification accuracy. In DenseNet190 with T = 2,

this peak appears during the third mini-generation which

achieves the lowest error rate at 16.06%, but the final error

rate goes up 18.02%. A similar phenomenon also appears

in DenseNet100 with T = 4, which also achieves the

lowest error at the third mini-generation (the lowest error

of 21.26% vs. the last error 21.86%), and in ResNets with

T > 5. This reveals that the optimal temperature term

is closely related to the network backbone. For a deeper

backbone (e.g., DenseNet190) which itself has a strong

ability of fitting data, we use a smaller T to introduce less

soft labels, decreasing the ambiguity.

4.2. The ILSVRC2012 Dataset

• Settings and Baselines

We now investigate a much more challenging dataset,

ILSVRC2012 [36], which is a popular subset of the Im-

ageNet database [7]. It contains 1.3M training images

and 50K testing images, all of which are high-resolution,

covering 1,000 object classes in total. The distribution over

classes is approximately uniform in the training set and and

strictly uniform in the testing set.

We use deep ResNets [18] with 101 and 152 layers.

They share the same overall design with the ResNets used

for CIFAR100, but in each residual block, there is a so-

called bottleneck structure which compresses the number

of channels by 3/4 and later recovers the original number.

Each input image has a size of 224 × 224. After the first

7 × 7 convolutional layer with a stride of 2 and a 3 × 3
max-pooling layer, four main stages follow with different

numbers of blocks (ResNet101: 3, 4, 23, 3; ResNet152:

3, 8, 36, 3). The spatial resolutions in these four stages are

56 × 56, 28 × 28, 14 × 14 and 7 × 7, and the number of

channels are 256, 512, 1,024 and 2,048, respectively. Three

max-pooling layers are inserted between these four stages.

The network ends with global average-pooling followed by

a fully-connected layer with 1,000 outputs.

We follow the conventions to configure the training pa-

rameters. The standard Stochastic Gradient Descent (SGD)

with a weight decay of 0.0001 and a Nesterov momentum

of 0.9 is used. In a total of 90 epochs, the mini-batch size is

fixed to be 256. We still use the cosine annealing learning

rate [29] starting with 0.1. A series of data-augmentation

techniques [40] are applied in training to alleviate over-

fitting, including rescaling and cropping the image, ran-

domly mirroring and rotating (slightly) the image, changing

its aspect ratio and performing pixel jittering. In the testing

stage, the standard single-center-crop is used.

To apply SD, we set K = 2 which partitions the training

process into two equal sections (each has 45 epochs). The

reason of using a smaller K (compared to CIFAR experi-

ments) is that on ILSVRC2012 with high-resolution images

and more complex semantics, it is much more difficult to

guarantee convergence with a fewer number of iterations

within each mini-generation. Regarding the temperature

term, we fix T = 2. Other settings are the same as in the

CIFAR experiments.

• Quantitative Results

Experimental results are summarized in Table 4. SD

achieves consistent accuracy gain over the baseline in terms

of both top-1 and top-5 error rates. On ResNet101, the top-

1 and top-5 errors drop by 0.37% and 0.25% absolutely, or

1.71% and 4.31% relatively; on ResNet152, the top-1 and

top-5 errors drop by 0.26% and 0.11% absolutely, or 1.23%
and 1.94% relatively. These improvement seems small, but

we emphasize that (i) to the best of our knowledge, this

is the first time that a model achieves higher accuracy on

ILSVRC2012 with T-S optimization within one generation;

(ii) SD also collaborates well with SENet [20], a powerful
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Backbone Alg.
M#L1

M#L2

Top-1 Top-5 Top-1 Top-5

ResNet101 BL − − 21.62 5.80

ResNet101 SE 22.94 6.51 22.14 6.07

ResNet101 SD 22.94 6.51 21.25 5.55

ResNet152 BL − − 21.17 5.66

ResNet152 SE 22.56 6.44 21.84 5.84

ResNet152 SD 22.56 6.44 20.93 5.48

ResNet101+S BL − − 21.10 5.59

ResNet101+S SD 22.41 6.10 20.59 5.29

ResNet152+S SD 21.89 6.04 20.21 5.17

Table 4. ILSVRC2012 classification errors (%) obtained by dif-

ferent network backbones. Regarding the algorithm option, BL

indicate the baseline model trained with cosine annealing learning

rates, and SD snapshot distillation with T = 2. The error rates

of SE [21] are 21.66% on ResNet101 and 21.19% on ResNet152

– even worse than BL. “+S” means equipping the network with

squeeze-and-excitation modules (SENet [20]).
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Figure 1. Training and testing curves of ResNet152. The right

figure shows the details in the rectangular region of the left figure.

and generalized add-on to the backbones; and (iii) these ac-

curacy gain transfers well to other visual recognition tasks,

as shown in the next subsection.

We plot the curves of both the baseline and SD in the

training process of ResNet152. We can see that, in the

second mini-generation, SD achieves a higher training error

but a lower testing error, i.e., the gap between training and

testing accuracies becomes smaller, which aligns with our

motivation that T-S optimization alleviates over-fitting.

4.3. Transfer Experiments

Last but not least, we fine-tune the models pre-trained

on ILSVRC2012 to the object detection and semantic seg-

mentation tasks in the PascalVOC dataset [10], a widely

used benchmark in computer vision. The most powerful

models, i.e., the baseline and SD versions of ResNet152,

are transferred using a standard approach, which preserves

the network backbone (all layers before the final pooling

layer), and introduces a network head known as Faster

R-CNN [34] for object detetion, and DeepLab-v3 [4] for

semantic segmentation.

This model is fine-tuned in an end-to-end manner. For

object detection on PascalVOC 2007, 5,011 training images

Backbone mAP @ 2007 mIOU @ 2012

ResNet152-BL 73.49 77.53

ResNet152-SD 74.93 77.97

Table 5. PascalVOC object detection (2007, mAP, %) and seman-

tic segmentation (2012, mIOU, %) results, both obtained by fine-

tuning the pre-trained deep networks on ILSVRC2012 with Faster

R-CNN [34] and DeepLab-v3 [4].

are fed into the network through 10 epochs with a mini-

batch size of 16. We start a learning rate of 0.01 and divide

it by 10 after 8 epochs. For semantic segmentation on

PascalVOC 2012, 10,582 training images [17] are fed into

the network through 50 epochs with a mini-batch size of

8. We use the “poly” learning rate policy where the initial

learning rate is 0.007 and the power is 0.9. Results in terms

of mAP and mIOU are summarized in Table 4.3. One can

see that, the model with a higher accuracy on ILSVRC2012

also works better in both tasks, i.e., the benefit brought by

SD preserves after fine-tuning. Also, we emphasize that

SD, with the same network architecture, does not require

any additional costs in transfer learning, which claims its

potential applications in a wide range of vision problems.

5. Conclusions

In this paper, we present a framework named snap-

shot distillation (SD), which finishes teacher-student (T-S)

optimization within one generation. To the best of our

knowledge, this goal was never achieved before. The key

contribution is to take teacher signals from the previous

iterations of the same training process, and discuss on three

principles that impact the performance of SD. The final

solution is easy to implement yet efficient to carry out. With

less than 1/3 extra training time, SD boosts the classifi-

cation accuracy of several baseline models on CIFAR100

and ILSVRC2012 consistently, and the performance gain

persists after the trained model is fine-tuned on other vision

tasks, e.g., object detection, semantic segmentation.

Our research reduces the basic unit of T-S optimization

from a complete generation to a mini-generation which is

composed of a number of iterations. The essential difficulty

that prevents us from further partitioning this unit is the

requirement of T-S difference. We believe there exists,

though not yet found, a way of eliminating this constraint

so that the basic unit can be even smaller, e.g., one single

iteration. In this way, we can integrate supervision from the

previous iteration into the current one, obtaining a new loss

function in which the teacher signal appears as a term of

higher-order gradients. We leave this for future research.
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