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Abstract

Despite the advancement of supervised image recognition
algorithms, their dependence on the availability of labeled
data and the rapid expansion of image categories raise the
significant challenge of zero-shot learning. Zero-shot learn-
ing (ZSL) aims to transfer knowledge from labeled classes
into unlabeled classes to reduce human labeling effort. In
this paper, we propose a novel progressive ensemble network
model with multiple projected label embeddings to address
zero-shot image recognition. The ensemble network is built
by learning multiple image classification functions with a
shared feature extraction network but different label em-
bedding representations, which enhance the diversity of the
classifiers and facilitate information transfer to unlabeled
classes. A progressive training framework is then deployed
to gradually label the most confident images in each un-
labeled class with predicted pseudo-labels and update the
ensemble network with the training data augmented by the
pseudo-labels. The proposed model performs training on
both labeled and unlabeled data. It can naturally bridge
the domain shift problem in visual appearances and be ex-
tended to the generalized zero-shot learning scenario. We
conduct experiments on multiple ZSL datasets and the empir-
ical results demonstrate the efficacy of the proposed model.

1. Introduction

Despite the effectiveness of deep convolutional neural
networks (CNNSs) on supervised image classification prob-
lems, zero shot learning (ZSL) remains a challenging and
fundamental problem due to the rapid expansion of image
categories and the lacking in labeled training data. As a
special unsupervised domain adaptation, ZSL aims to trans-
fer information from the source domain, a set of training
classes with labeled data, to make predictions in the target
domain, a set of test classes with only unlabeled data. Dif-
ferent from standard domain adaptation, in ZSL the labeled
training classes and unlabeled test classes have no overlaps
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— they are entirely disjoint. Based on the visibility of the
instance labels, the training classes and the test classes are
usually referred to as seen and unseen classes respectively.

Existing zero-shot image recognitions have centered on
deploying label embeddings in a common semantic space,
e.g., in terms of high level visual attributes, to bridge the
domain gap between seen and unseen classes. For example,
animals share some common characteristics such as ‘black’,
‘yellow’, ‘spots’, ‘stripes’ and so on. Thus each animal class,
either seen or unseen, can be represented as a binary vector in
the semantic attribute space, with each element denoting the
appearance/absence of certain attribute. Much ZSL effort in
this direction has focused on developing effective mapping
models from the input visual feature space to the semantic
label embedding space [24, 10, 6, 19], or learning suitable
compatibility functions between the two spaces [2, 27, 33],
to facilitate prediction information transfer from the seen
classes to the unseen classes. However, these methods iden-
tify visual-semantic mappings only on the labeled seen class
data, which poses a fundamental domain shift problem due
to the appearance variations of visual attributes across seen
and unseen classes, and has negative impact on cross-class
generalization (i.e., ZSL performance) [11, 18].

In this paper, we propose a novel ZSL framework with an
progressive ensemble network to address the domain shift
problem and improve the generalization ability of ZSL. Ex-
isting ZSL works rely on a single set of label embeddings
to build inter-class label relations for knowledge transfer,
which can hardly to be suitable for all the unseen classes. In-
stead we construct a deep ensemble network that consists of
multiple image classification functions with a shared feature
extraction convolutional neural network and different label
embedding representations. Each label embedding represen-
tation facilitates information transfer from the seen classes
to a subset of unseen classes, while enhancing the diversity
of the multiple classifiers. By exploiting multiple classifiers
in an ensemble manner, we expect the ensemble network can
overcome the prediction noise and class bias in the original
label embeddings to gain robust zero-shot predictions. More-
over, we exploit the unlabeled data from unseen classes in
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a progressive ensemble framework to overcome the domain
shift problem. In each iteration, we select the most confi-
dently predicted unlabeled instances from each unseen class
under the current ensemble network, and combine these se-
lected instances and their predicted pseudo-labels with the
original labeled seen class data together to refine the en-
semble network parameters, especially its feature extraction
component. By incorporating the unseen class instances into
the ensemble network training and dynamically refine the
selected instances in each iteration, we expect the dynamic
progressive training process can effectively avoid the issue
of overfitting to the seen classes and improve the general-
ization ability of the ensemble network on unseen classes.
With the ensemble network directly handling multi-class
classification over all classes, the proposed approach can be
conveniently extended to address generalized ZSL. We con-
duct experiments on three standard ZSL datasets under both
conventional ZSL and generalized ZSL settings. The empiri-
cal results demonstrate the proposed approach outperforms
the state-of-the-art ZSL methods.

2. Related Work
2.1. Zero-Shot Learning

Deploying label embeddings in a common semantic space,
e.g., visual attributes, to bridge the gap between seen and
unseen classes is the key of ZSL. Existing ZSL methods
have mostly centered on learning a transferable mapping
function between the input visual feature space and the se-
mantic label space. ALE [1] and DeViSE [10] both use a
linear projection to map visual features into the semantic
space. LatEm [33] uses non-linear compatibility functions
to match the two spaces, while some other works learn bi-
linear compatibility functions [2, 24]. Neural networks are
used in [35, 3] to embed semantic information, while Seman-
tic Auto-Encoders (SAE) with reconstruction loss is used
in [29, 19] to learn better projections to the semantic space.
SynC [8] and ConSE [22] embed unseen instances as a linear
combination of seen class embeddings.

Despite the differences in embedding techniques, these
methods are trained only on seen classes and have no clue
about the visual appearance variations in unseen classes.
They suffer from the aforementioned domain shift problem.
Some most recent advances try to solve ZSL in a generative
style. The work in [9] uses a linear projection to map an
unseen semantic attribute vector into a visual feature space,
which can be used for generating instances of the unseen
classes. The work of [7] uses a generative moment match-
ing network to generate unseen class instances, on which
a classifier is directly trained for classification. In [37] the
authors used a GAN to synthesize visual features from noisy
texts. However the generated features in these works are not
guaranteed to align well with the true unseen visual features,

and can still suffer from the domain shift problem.

2.2. Transductive Zero-Shot Learning

Different from the standard zero-shot learning setting
where unlabeled instances from unseen classes are treated as
inaccessible in the training phase, transductive ZSL refers to
the setting that unseen class instances are available during
training. As none of the unseen class instances are labeled,
this setting does not violate the ‘zero-shot’ principle. The
existing transductive ZSL works have improved standard
ZSL by exploiting the unseen class instances to overcome
the domain shift problem. In [12] the authors adopted a two-
step procedure. They first used CCA to project both visual
feature and class prototypes into a multi-view embedding
space, and then used test instances to build a hypergraph
in the embedded space for label propagation. The authors
of [18] proposed to solve ZSL from the viewpoint of un-
supervised domain adaptation with sparse coding. In [14]
the authors proposed to learn a shared model space on seen
and unseen data to facilitate knowledge transfer between
classes. The work in [29] uses auto-encoders to learn joint
embeddings of visual and semantic vectors. It exploits un-
seen class instances to minimize a prediction loss for better
adaptation. The work in [13] proposes to assign pseudo-
labels to test instances and train embedding matrix on both
seen and unseen class data. It nevertheless uses a single
projection matrix to project visual features into the semantic
space. More recently, the authors of [30] proposed to learn
generative models to predict data distribution of seen and
unseen classes from their attribute vectors, and used unla-
beled test data to refine the distribution parameters of target
classes. The work in [28] trains an end-to-end network that
optimizes the loss on both seen class data and unseen test
data, by minimizing the Quasi-Fully Supervised Learning
loss, which uses target class data to reduce seen/unseen bias
of the model during training.

Our proposed work belongs to transductive zero-shot
learning, but differs from the existing transductive ZSL
works in two major aspects: (1) Instead of using one set
of label embeddings that are not optimized for any target un-
seen class, our ensemble network uses multiple sets of label
embeddings, each of which is produced by enhancing the
inter-label relations between the seen classes and a subset of
unseen classes. An ensemble combination of multiple classi-
fication functions with different output representations can
facilitate robust knowledge transfer to all the unseen classes.
(2) We use a progressive ZSL framework that dynamically
incorporates a subset of unlabeled instances selected from
the unseen classes and their predicted pseudo-labels to grad-
ually improve the ensemble network and prevent domain
shift. In each iteration, with our dynamic instance selection
procedure, new instances can be selected and previous ones
might be dropped, which provides the ability to ‘correct’

11729



potential bad predictions in previous iterations.
2.3. Progressive Training with Pseudo-Labels

Exploiting unlabeled data by assigning them predicted
pseudo-labels in a static progressive training procedure has
been deployed in standard classification settings in the lit-
erature. A notable example is the well-known co-training
method [5], which uses two different classifiers to produce
pseudo-labels on unlabelled data. Sharing similar ideas with
co-training, a recent Tri-training method [36] also exploited
outputs of three different classifiers. In [26], the authors ap-
plied tri-training in solving unsupervised domain adaptation
problems. In [4], progressive curriculum learning is used to
train a model on "easy-to-hard" samples with a pre-defined
scheme. The self-paced co-training work in [21] uses a pro-
gressive "easy-to-hard" strategy as well as two views of the
data for training. The authors of [32] proposed a progressive
sampling scheme for video retrieval task. Distinct from these
works above, our proposed work proposes a novel ensemble
network that contains multiple classification functions with
different label embeddings to address a more challenging
zero-shot learning problem using a progressive procedure.

3. Approach

We consider zero-shot image recognition in the fol-
lowing setting. We have a set of N° labeled images,
Dy = {(xi,y:)}V,, from L* seen classes S = {1,--- , L°}
such that y; € S§. We also have a set of N* images,
D, = {(z;, yj)}é\zl, from L* unseen classes Y = {L* +
1,---,L} such that L = L* 4+ L“, where the labels,
{y,; € U}, are unavailable during training. We aim to trans-
fer information from the labeled data to predict the labels of
the unlabeled instances. To bridge the gap between seen and
unseen classes, we also assume we have a semantic label
representation matrix M &€ Rm*L, e.g., semantic attribute
vectors, for all the L seen and unseen classes.

In this section, we present a novel progressive ensem-
ble network model for zero-shot image recognition. The
proposed end-to-end framework is depicted in Figure 1. It
consists of multiple image classification functions with a
shared feature extraction network but different label embed-
ding representations. A progressive training framework is
deployed to iteratively refine the overall ensemble network
by incorporating unlabeled instances with their predicted
pseudo-labels in a dynamic and ensemble manner.

3.1. Ensemble Networks

Following the standard ZSL scheme, we can use a con-
volutional neural network (CNN) f, to extract high level
visual features from an image x, and then use an embedding
network f to embed the visual features f,(z) into the se-
mantic space, e.g., the attribute space, of label embeddings
R™. Here the overall deep network f o f,(x) (“o" denotes a

composition operation) forms an image classification func-
tion for all classes, S U U, which can categorize an image x
to the nearest class in the semantic label embedding space
R™. However, though a semantic label embedding matrix
M can enable zero-shot information transfer from the seen
classes to the unseen classes, the effectiveness of such infor-
mation transfer can vary substantially for different unseen
classes due to their various association levels with the seen
classes in the given semantic label embedding space. It is
hard to optimize the semantic associations between the seen
classes and all unseen classes simultaneously with one fixed
label embedding matrix M. Hence we propose to project
the label embeddings M into K different embedding spaces,
{Pr, :R™ - R" |k =1,---, K}, toinduce K sets of dif-
ferent label embeddings {P), (M)} to facilitate information
transfer to the unseen classes. For each label embedding
matrix Py (M), we can produce an embedding network fy,
e.g., a multilayer perceptron, to map f,(z) into the corre-
sponding label embedding space, which forms a zero-shot
classification function fj o f,(x). By employing the K clas-
sification functions in an ensemble manner we expect the
overall ensemble network can effectively reduce the impact
of noise and class bias of the original label embeddings M
to produce robust zero-shot image recognitions.

3.1.1 Label Embedding Projection

We aim to use different label embeddings to capture different
label associations between seen and unseen classes. Towards
this goal, we perform the k-th label embedding projection
‘Pj; adaptively by maximizing the weighted similarity score
between the seen classes, S, and a randomly selected subset
of the unseen classes, Z; C U, in the projected label em-
bedding space. In particular, we assume a linear projection
function Py, (M) = P®*) M, where the projection matrix
P ¢ RPX™ hag orthogonal rows, i.e., pPEpET — T,
We formulate the label embedding projection as the follow-
ing maximization problem:

) N AMT PET
max Z tr(PE M A M PRTY (D)
1E€ES,JEZ

subject to pRp®T — 1

where M.; denotes the i-th column of matrix M and tr(-) de-
notes a trace function, the association weight A;; is defined
as the cosine similarity between the corresponding ¢-th and
j-th classes in the original label representation space. This
maximization problem has a closed-form solution:

P®) = [uy,ug,...,up] " 2)

where {u;}"_, are the top h eigenvectors of matrix

Zies,jezk %(M:iAiJ’M:; + M:injMI)-
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Figure 1: The deep architecture of the proposed progressive ensemble network. The ensemble network consists of multiple
(K) image classification functions, each of which is a composition of a shared image feature extraction function f, and an

individual semantic embedding function f, i.e., fx o f,(z), with k € {1,--- |, K'}. We use the ResNet-34 [

] as the feature

extraction convolutional neural network f, and use a multilayer perceptron with two hidden layers (512 units) and ReLU
activation functions as each embedding function f;. The progressive training procedure iteratively and dynamically selects
unlabeled instances and their predicted pseudo-labels to augment the training data and refine the ensemble network.

We can produce K different label embedding projection
matrices { P(*)}X_| by randomly selecting K different sub-
sets of unseen classes, { Zj, }1_, . Each resulting label embed-
ding matrix P*) M encodes a different knowledge transfer
structure between the seen and unseen classes.

3.1.2 Loss Function of the Ensemble Network

Given labeled training instances Dyyqin = { (74, yi)} Y,
the deep ensemble neural network with K classification
functions, {fx o f,(z)}_,, can be trained by minimizing
the following negative log-likelihood loss function:

N K

LWy, w1, .oy Wi ) = %Zz&c(vf,yi) 3)
i=1 k=1

where (w,, w1, ..., wr ) denote the model parameters, v =

fr © fo(z;) denotes the k-th classifier’s prediction vector

of instance x; in its label embedding space, and (-, -) is

a negative log-likelihood loss function computed over the

softmax prediction scores of the k-th classifier:

Ek(vf, c) = —log pk(c|vf)
exp(vFT PRI ML)
> wesou exp(VET PRIM. o0)

Note the softmax function above is defined over both seen
and unseen classes. It is designed to include training in-
stances from both seen and unseen classes. Hence, although
initially the labeled training data only contain the labeled
instances from the seen classes, such that D;,4;n = D, and
N = N?, we will expand it to include pseudo-labeled set
from unseen classes through progressive training below.

= —log

“4)

3.1.3 Ensemble Zero-Shot Prediction

With the multiple classification functions learned in the en-
semble network, we can integrate the K classification func-
tions to perform zero-shot prediction on each unlabeled in-
stance x; from unseen classes. We first make predictions
using each of the K classifiers based on similarity scores:

g = arg max (fio fulw), PPM) (5)
ceZy

where (-, -) denotes the inner product of two vectors. As the
k-th set of label embeddings are produced by maximizing the
label associations of seen classes and the subset of unseen
classes Zj, we hence only use the k-th classifier for zero-
shot predictions on the subset of unseen classes Zj. Then
we ensemble all the K predictions to determine the predicted
class using a normalized majority voting strategy:

§; = argmax  ¢(z;,c) (6)

_ ZkK:1 I[c = Qz(k)]

(7
S Ile € 2]

where  ¢(x;, ¢)

and I[] denotes an indicator function that returns value 1
when the given condition is true.

In the case of generalized ZSL, where a test instance x;
can be from either a seen or an unseen class, we still compute
the voting score of x; belonging to an unseen class c using
the normalized voting score in Eq.(7), but we compute the
voting score of x; belonging to a seen class c as its average
prediction score on this class by all the K classifiers, i.e.,

(wi, c) = %ZkK:ﬂfk o fu(z;), PRM.).
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Algorithm 1 Progressive Training of Ensemble Networks

Input: labeled data from seen classes Dg, unlabeled data
from unseen classes D,,, and label embedding matrix M.
Initialization:
Dtrain — DSs Dpseudo — Q);
perform label embedding projection for { P(*F) 1 ;
train an end-to-end deep ensemble network on Dyy.gir, .
repeat
predict pseudo-labels of D,, by Eq.(6) and (7);
generate a pseudo-labeled set Dpscudo by selecting the
top Npseudo instances from each unseen class;
update the training set: Dyygin < Ds U Dpseudo;
refine the ensemble network parameters on Dyyqir, -
until MaxIter

3.2. Progressive Ensemble Networks

Training with only labeled instances from the seen classes
can suffer from the aforementioned domain shift problem.
Meanwhile our ensemble network provides a natural foun-
dation for making voting-based predictions on the unseen
class instances and incorporating pseudo-labeled instances
from the unseen classes in the training process. We hence
propose to deploy a progressive training procedure that itera-
tively and dynamically exploits pseudo-labeled unseen class
instances to refine the ensemble network initially trained on
the labeled data from seen classes, D;.

The progressive training algorithm is summarized in Al-
gorithm 1. In each iteration, it uses the current ensemble
network to predict the pseudo-label ¢; with Equation (6) for
each unlabeled instance x; from the unseen classes. Then for
each unseen class ¢ € U, it selects the top Nygeqq0 inStances
with the largest prediction scores ¢(z;,¢). The instances
selected from all the unseen classes together with their pre-
dicted labels form a pseudo-set Dpseudo = {(i, Ql)}fvz”l
The ensemble network parameters are then refined by min-
imizing a loss function in Equation (3) over an augmented
training set Dyyqin = Ds U Dpseudo- As the augmented
training set contains data from both the seen classes and
unseen classes, we expect the refined ensemble network can
overcome the domain shift problem in terms of visual appear-
ances of semantic features and improve zero-shot prediction
performance. Moreover, instead of gradually increasing the
pseudo-set, we dynamically update this set in each iteration
with the progressively improved ensemble network to correct
potential label mistakes in the previous pseudo-set.

4. Experiments

To investigate the empirical performance of our proposed
approach, we conducted experiments under both conven-
tional ZSL and generalized ZSL settings. In this section, we
present our experimental results and discussions.

Table 1: Summary of three attribute datasets for ZSL.

DATASET IMAGES  AVG. CLASSES ATTR.
CUB 11788 ~60 200 (150+50) 312
SUN 14340 ~20 717 (645+72) 102
AWA?2 37322 ~750 50 (40+10) 85

4.1. Experiment Settings
4.1.1 Datasets

We used three widely used ZSL datasets with label attribute
vectors to conduct experiments. The first one is the Caltech-
UCSD-Birds 200-2011 (CUB) dataset [31]. It is a fine-
grained dataset of bird species, containing 11,788 images
of birds from 200 different species. Each image is also an-
notated with 312 attributes. The second one is the SUN
dataset [23], which contains 14,340 images from 717 differ-
ent scenes. In this dataset each image is annotated with 102
attributes. The third dataset is the Animal with Attributes
2 (AWA?2) dataset [34], which is an updated version of the
previous AWA [20] dataset. AWA?2 consists of 37,322 im-
ages from 50 animal classes. It also provides 85 numerical
attribute values for each class. We used AWA?2 instead of
AWA as the raw image data of AWA is not publicly available
any more. Following previous ZSL works, we extracted the
label embedding matrix M from the attribute vectors.

4.1.2 Seen/Unseen Splits

In order to perform ZSL, a dataset needs to be split into two
disjoint subsets, the seen classes S and the unseen classes /.
To perform scientific ZSL study and maintain the ‘zero-shot’
principle, a ZSL model should never have access to the true
label information of the unseen class instances during the
training phase. However many ZSL approaches have used
CNN models pre-trained on the ImageNet [25] for image
feature extraction. If the pre-trained ImageNet classes have
overlaps with the ZSL test classes, it should be considered
as violating the ‘zero-shot’ rule. As pointed out in the com-
prehensive evaluation study [34], standard splits (SS) on the
ZSL datasets have unseen class overlaps with the 1K classes
of ImageNet, which can lead to superior performance on
these classes. Therefore in this study we also used the ZSL
splits proposed in [34] (PS), which has the same number of
test classes as the SS splits but ensures no class in ImageNet
appears in the test set of ZSL. For the SUN dataset, except
for the split with 72 test classes, there is another split with 10
test classes from [16], which is also used in some previous
works. We denote this split as SUN10 and the split with 72
test classes as SUN72. The overview of these datasets and
seen/unseen class splits are summarized in Table 1.
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Table 2: Conventional ZSL results. T denotes numbers cited from [

]. Methods in the top part of the table reported the Top-1

accuracy results (TOP-1), while those in the bottom part reported the multi-class accuracy (MACC) results. Numbers in
bracket denote results on AWA instead of AWA2. Best results are shown in bold font and second best in italic font.

METHODS CUB AWA?2 SUN72 SUNI10
SS PS SS PS SS PS
DEVISE [10]f 53.2 52.0 68.6 59.7 57.5 56.5 -
SYNC [8]} 54.1 55.6 71.2 46.6 59.1 56.3 -
ALE [1]t 53.2 54.9 80.3 62.5 59.1 58.1 -
SJE [2]t 55.3 53.9 69.5 61.9 57.1 53.7 -
SAE [19]F 334 33.3 80.7 54.1 42.4 40.3 -
Top-1 REVISE [29] 65.4 - (93.4) - - - -
GFZSL [30] 63.8 - (94.3) - - - 87.0
QFSL [28] 69.7 72.1 84.8 79.7 61.7 58.3 -
PROGRESSIVE TRAINING 54.0 49.8 73.2 57.8 49.6 47.9 76.6
PREN.,/oproj 64.7 61.4 88.5 66.6 61.1 60.1 84.4
PREN (PROPOSED) 66.9 66.4 95.7 74.1 63.3 62.9 86.3
UDA [18] 40.6 - (75.6) - - - -
DCL [13] - - (81.9) - - - 84.4
MACC PROGRESSIVE TRAINING 53.7 49.9 73.0 53.8 49.5 48.0 76.7
PREN.,/oproj 64.4 61.4 89.4 65.7 61.0 60.2 84.5
PREN (PROPOSED) 66.6 66.4 96.1 78.6 63.2 62.8 86.4

4.1.3 Evaluation Metric

We adopted the popularly used Top-1 accuracy to evaluate
the ZSL prediction performance. The Top-1 accuracy counts
the proportion of correctly labeled instances in each test class
and then takes an average over all these classes. To compare
with some literature works, we also reported the multi-class
classification accuracy results when needed.

4.1.4 Implementation Details

For an input image, we resized it to 224 x 224 and fed
it to ResNet-34 [15]. The 512 dimensional vector from
the last average pooling layer of ResNet is used as visual
features of the image. The ResNet is initialized by the pre-
trained model on ImageNet. We used multilayer perceptrons
(MLPs) with two hidden layers (each with size 512) and one
output layer (with size h) as the consequent embedding func-
tions. ReLLU activation is applied after each layer. We used
Adam [17] to train our model, with the default parameter
setting 81 = 0.9, B2 = 0.999 and learning rate y = 0.001.
We set MaxIter = 20. In each iteration the model is trained
with 100 batches with batch size 64. For the progressive
training procedure, we used Npseudo = min(pNavg; Nmaz)s
where IV, 4 is the average number of images in each training
class, p and N,,,, are set to 0.25 and 20 respectively. We
used K = 50 different label embeddings (i.e., the number of
classifiers). For { Z;}5_,, which are the randomly selected
subsets of unseen classes for producing the label embedding

projection matrices, we set the size of each Zj, as half of
the unseen class number. We projected the original label
embeddings to a lower dimension space such h < m. We
used h=70 in the experiments if not specifically noted.

4.2. Conventional ZSL Results

4.2.1 Comparison Methods

We compared the proposed Progressive Ensemble Network
(PrEN) model with a number of state-of-the-art ZSL meth-
ods. These methods can be divided into two groups: De-
ViSE [10], SynC [8], ALE [1], SJE [2], and SAE [19] belong
to inductive ZSL methods, while the transductive methods
include UDA [18], DCL [13], ReViSE [29], GFZSL [30],
and QFSL [28]. All the comparison methods used the stan-
dard fixed splits. We hence take the convenience to cite the
results from [34] and the literature for fair comparisons.

In order to separate the impact of the progressive training
principle from our proposed ensemble framework, we also
compared with a Progressive Training baseline variant of
the proposed model, which drops the ensemble framework
to use only one classifier with the original label embeddings.
Moreover, to investigate the effectiveness of multiple adap-
tive label embedding projections, we also tested another
ensemble baseline variant, which deviates from the proposed
model only by using the same original label embeddings
for the K classifiers without any projection. We denote this
baseline variant as PrEN,, /o pro;-
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4.2.2 Result Analysis

We summarized the comparison results in Table 2. As two
different evaluation metrics, Top-1 Accuracy and multi-class
accuracy, are used in the comparison works, we divide the ta-
ble into two parts, where the top part presents Top-1 accuracy
results and the bottom part presents multi-class accuracy re-
sults. We reported the results of our proposed PrEN method
in terms of both evaluation metrics. From the table, we notice
that most results under ‘PS’ are worse than their counterpart
results under ‘SS’, especially on the AWA?2 datasets. This
indicates that the overlapping of test classes with ImageNet
1K classes did bring extra benefit in performance. However,
the transductive ZSL methods we found are mostly evaluated
under the ‘SS’ setting, we hence expect their missing results
under ‘PS’ can only be worse than the reported ‘SS’ results.
Moreover, the transductive works, ReViSE, GFZSL, UDA
and DCL, reported results on CUB, AWA or SUN10, but
not on AWA?2 and SUN72. Since AWA?2 is nearly a drop-in-
replacement of AWA [34], we included their results on AWA
just for reference.

From the comparison results in terms of Top-1 accuracy,
we can see that PrEN outperforms all the five inductive meth-
ods across all datasets. Comparing with the transductive
methods, PrEN produced the second best results on CUB,
SUN10, and the ‘PS’ split of AWA?2, where QFSL performs
the best. Nevertheless, PrEN produced the best results in
all the other cases, the ‘SS’ split of AWA?2, both ‘SS’ and
‘PS’ splits of SUN72. In particular, on the more challenging
scene classification dataset SUN72 (more unseen classes and
less training data for each class), PrEN achieves 63.3% and
62.9% on ‘SS’ and ‘PS’ splits, and outperforms all the other
methods with notable performance gains. In terms of multi-
class accuracy, our proposed PrEN largely outperforms the
two transductive ZSL methods, UDA and DCL. For exam-
ple, PrEN achieves 66.6% on CUB and 86.4% on SUN10,
which are much better than the 40.6% reported by UDA
on CUB and the 84.4% reported by DCL on SUN10 respec-
tively. These results demonstrate the efficacy of the proposed
approach for conventional zero-shot image recognition tasks.

By comparing the proposed PrEN with the baseline vari-
ants, we notice there are large performance gaps between the
proposed full model PrEN and the two variants, Progressive-
Training baseline variant and PrEN,, /,p,;. Without the
ensemble architecture and the diverse label embeddings,
the progressive training procedure alone cannot produce
any effective model. Even by just dropping the label em-
bedding projection but maintaining the ensemble architec-
ture, PrEN,, /o pro; still yields much inferior performance
than PrEN. These suggest that the proposed ensemble net-
work architecture with the essential label embedding projec-
tions forms a solid and critical foundation for incorporating
pseudo-labels through progressive training.

Figure 2: Parameter sensitivity analysis.

Empirical Computational Complexity. From above, we
can see that tremendous performance gain has been achieved
by the proposed PrEN model over its baseline Progressive
Training variant. As PrEN involves training multiple clas-
sifiers, K = 50 in our experiments, while the Progressive
Training variant has K = 1, a natural question to ask is that
how much additional computational cost is required to yield
such performance gain. Here we use the number of floating-
point operations (FLOPs), i.e., the total number of multi-
plication and addition operations, involved in passing one
image from the input of the deep network architecture to the
outputs as an empirical measure of the computational com-
plexity induced by each deep model. Both models share the
same ResNet34 backbone structure which involves 3.6 bil-
lion FLOPs, while PrEN has 49 more MLP components than
the Progressive baseline, and each component has around
0.8 million FLOPs. Comparing to the 3.6 billion FLOPs in
the backbone ResNet, the additional 49 x 0.8 million ~ 0.04
billion FLOPs induced by the proposed PrEN is relatively
negligible, which however contributed to the average 16.9%
and 17.9% performance gain in terms of Top-1 accuracy and
multi-class accuracy respectively. This again validates the
suitability and efficacy of the proposed ensemble architecture
with localized adaptive label embedding projections.

4.3. Parameter Sensitivity Analysis

In this section, we investigate the sensitivity of the pro-
posed model with respect to its two hyper-parameters, K
and h. K is the number of projected label embeddings as
well as the number of classifiers, while A is the dimension
of projected label embeddings.

To study how does & affect the test performance, we
performed conventional ZSL on the CUB dataset with the
‘PS’ split. We fixed K = 50 and repeated the experiment
for each h value from the set {10, 20, 30, ..., 70}. The test
accuracies are reported on the left side of Figure 2. We
can see that the test ZSL accuracies increase quickly from
h = 10 to h = 30 and then the increase becomes very small.
Nevertheless the best performance is achieved at h = 50.
This suggests that larger dimension does help preserve useful
information in the projected label embeddings. But even with
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Table 3: Generalized ZSL results in terms of average Top-1 accuracy. T denotes numbers cited from [

Top-1 accuracies on unseen and seen classes, respectively. ‘H’ denotes the harmonic mean of them.

]. ‘v’ and ‘s’ denotes

METHODS CUB AWA2 SUN72
U S H U S H U S H

DEVISE [10]} 23.8 53.0 32.8 17.1 74.7 27.8 16.9 27.4 20.9
SYNC [8]t 11.5 70.9 19.8 10.0 90.5 18.0 7.9 43.3 13.4
ALE [1] 23.7 62.8 34.4 16.8 76.1 27.5 21.8 33.1 26.3
SJE [21t 23.5 59.2 33.6 8.0 73.9 14.4 14.7 30.5 19.8
SAE [19]t 7.8 54.0 13.6 1.1 82.2 2.2 8.8 18.0 11.8
PREN (PROPOSED) 35.2 55.8 43.1 32.4 88.6 47.4 35.4 27.2 30.8

a very small fraction of the original dimension, e.g., 10%,
our model can achieve very good performance; on CUB a h
value within (30, 70] would be a safe choice.

We also performed sensitivity analysis for K on CUB.
We fixed h = 70 and tested different K values from
{10, 20, ...,60}. The test accuracy results with different
K values are reported in the right subfigure of Figure 2. It
is easy to observe that the ZSL accuracy is very poor when
K has a small value 10. Then the ZSL performance dra-
matically increases with K increasing from 10 to 30, and
the change becomes very small with K further increasing
to 60. These results suggest our proposed model is not very
sensitive to the hyper-parameters K as long as it is set to
values within the reasonable range, such as K > 30.

4.4. Generalized ZSL Results

Majority of ZSL works in the literature has focused on
the conventional ZSL setting, where the test classes are as-
sumed to consist of only unseen classes. This assumption
can be overly strict. Hence here we conducted experiments
to compare the test performance of the proposed progressive
ensemble network (PrEN) with related methods under the
generalized ZSL (GZSL) setting, where the test instances
can come from both seen and unseen classes. As the clas-
sifiers within our PrEN model perform multi-class classifi-
cation over all the classes, it can be conveniently extended
to address GZSL. For GZSL the main problem is that many
unseen class instances can be wrongly classified into seen
classes. Hence we only select pseudo instances for unseen
classes in the first few iterations of the progressive training
process, while selecting pseudo instances for both seen and
unseen classes in later iterations to achieve balanced per-
formance. To evaluate our model under GZSL, we follow
the comprehensive study in [34] to use the ‘PS’ splits, and
separate a random 20% of the instances for each seen class
and add these into the test set. We evaluated the top-1 test
accuracy on unseen and seen classes separately, and compute
their harmonic mean as the GZSL accuracy result. We com-
pared to five ZSL methods that have addressed GZSL in the
literature. Although the authors of [28] also reported their

GZSL results of the transductive method QFSL, they con-
ducted GZSL in a non-standard and limited general setting
with extra knowledge — they assumed whether the unlabeled
instances belong to seen vs unseen classes is known. For
fairness, we hence did not compare with their results. Our
comparison results are reported in Table 3.

We can see that some comparison methods can achieve
quite good performance on seen classes while their zero-shot
accuracy on unseen classes is very low; for example SynC
achieves 11.5% (unseen) and 70.9% (seen) on AWA?2 , as
well as 10.0% (unseen) and 90.5% (seen) on CUB. The over-
all performance of the comparison methods on all classes,
under column ‘H’, is still poor. We also notice there is
usually a trade-off between the performance on the seen
classes and that on the unseen classes, while the harmonic
mean measures the overall performance. The proposed PrEN
though didn’t yield superior performance on seen classes,
its zero-shot prediction performance on unseen classes is
much better than the other comparison methods. Moreover,
in terms of the overall GZSL performance, we can see the
proposed PrEN outperforms all the comparison methods
with large margins. This validates the effectiveness of the
proposed model under GZSL setting.

5. Conclusion

In this paper, we proposed a novel progressive deep en-
semble network for transductive zero-shot image recogni-
tion. By integrating multiple classifiers with different label
embeddings, the ensemble network can maintain informa-
tive knowledge transfer from seen classes to unseen classes
through adaptive inter-label relations. By progressively re-
fining the ensemble network parameters with pseudo-labeled
test instances, the training procedure can alleviate the do-
main shift problem and avoid overfitting to the seen classes.
We conducted experiments on multiple standard datasets
under both conventional and generalized ZSL settings. The
proposed model has demonstrated superior performance than
the state-of-the-art comparison methods.
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