
Progressive Ensemble Networks for Zero-Shot Recognition

Meng Ye

Computer and Information Sciences

Temple University, Philadelphia, USA

meng.ye@temple.edu

Yuhong Guo

School of Computer Science

Carleton University, Ottawa, Canada

yuhong.guo@carleton.ca

Abstract

Despite the advancement of supervised image recognition

algorithms, their dependence on the availability of labeled

data and the rapid expansion of image categories raise the

significant challenge of zero-shot learning. Zero-shot learn-

ing (ZSL) aims to transfer knowledge from labeled classes

into unlabeled classes to reduce human labeling effort. In

this paper, we propose a novel progressive ensemble network

model with multiple projected label embeddings to address

zero-shot image recognition. The ensemble network is built

by learning multiple image classification functions with a

shared feature extraction network but different label em-

bedding representations, which enhance the diversity of the

classifiers and facilitate information transfer to unlabeled

classes. A progressive training framework is then deployed

to gradually label the most confident images in each un-

labeled class with predicted pseudo-labels and update the

ensemble network with the training data augmented by the

pseudo-labels. The proposed model performs training on

both labeled and unlabeled data. It can naturally bridge

the domain shift problem in visual appearances and be ex-

tended to the generalized zero-shot learning scenario. We

conduct experiments on multiple ZSL datasets and the empir-

ical results demonstrate the efficacy of the proposed model.

1. Introduction

Despite the effectiveness of deep convolutional neural

networks (CNNs) on supervised image classification prob-

lems, zero shot learning (ZSL) remains a challenging and

fundamental problem due to the rapid expansion of image

categories and the lacking in labeled training data. As a

special unsupervised domain adaptation, ZSL aims to trans-

fer information from the source domain, a set of training

classes with labeled data, to make predictions in the target

domain, a set of test classes with only unlabeled data. Dif-

ferent from standard domain adaptation, in ZSL the labeled

training classes and unlabeled test classes have no overlaps

– they are entirely disjoint. Based on the visibility of the

instance labels, the training classes and the test classes are

usually referred to as seen and unseen classes respectively.

Existing zero-shot image recognitions have centered on

deploying label embeddings in a common semantic space,

e.g., in terms of high level visual attributes, to bridge the

domain gap between seen and unseen classes. For example,

animals share some common characteristics such as ‘black’,

‘yellow’, ‘spots’, ‘stripes’ and so on. Thus each animal class,

either seen or unseen, can be represented as a binary vector in

the semantic attribute space, with each element denoting the

appearance/absence of certain attribute. Much ZSL effort in

this direction has focused on developing effective mapping

models from the input visual feature space to the semantic

label embedding space [24, 10, 6, 19], or learning suitable

compatibility functions between the two spaces [2, 27, 33],

to facilitate prediction information transfer from the seen

classes to the unseen classes. However, these methods iden-

tify visual-semantic mappings only on the labeled seen class

data, which poses a fundamental domain shift problem due

to the appearance variations of visual attributes across seen

and unseen classes, and has negative impact on cross-class

generalization (i.e., ZSL performance) [11, 18].

In this paper, we propose a novel ZSL framework with an

progressive ensemble network to address the domain shift

problem and improve the generalization ability of ZSL. Ex-

isting ZSL works rely on a single set of label embeddings

to build inter-class label relations for knowledge transfer,

which can hardly to be suitable for all the unseen classes. In-

stead we construct a deep ensemble network that consists of

multiple image classification functions with a shared feature

extraction convolutional neural network and different label

embedding representations. Each label embedding represen-

tation facilitates information transfer from the seen classes

to a subset of unseen classes, while enhancing the diversity

of the multiple classifiers. By exploiting multiple classifiers

in an ensemble manner, we expect the ensemble network can

overcome the prediction noise and class bias in the original

label embeddings to gain robust zero-shot predictions. More-

over, we exploit the unlabeled data from unseen classes in
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a progressive ensemble framework to overcome the domain

shift problem. In each iteration, we select the most confi-

dently predicted unlabeled instances from each unseen class

under the current ensemble network, and combine these se-

lected instances and their predicted pseudo-labels with the

original labeled seen class data together to refine the en-

semble network parameters, especially its feature extraction

component. By incorporating the unseen class instances into

the ensemble network training and dynamically refine the

selected instances in each iteration, we expect the dynamic

progressive training process can effectively avoid the issue

of overfitting to the seen classes and improve the general-

ization ability of the ensemble network on unseen classes.

With the ensemble network directly handling multi-class

classification over all classes, the proposed approach can be

conveniently extended to address generalized ZSL. We con-

duct experiments on three standard ZSL datasets under both

conventional ZSL and generalized ZSL settings. The empiri-

cal results demonstrate the proposed approach outperforms

the state-of-the-art ZSL methods.

2. Related Work

2.1. Zero­Shot Learning

Deploying label embeddings in a common semantic space,

e.g., visual attributes, to bridge the gap between seen and

unseen classes is the key of ZSL. Existing ZSL methods

have mostly centered on learning a transferable mapping

function between the input visual feature space and the se-

mantic label space. ALE [1] and DeViSE [10] both use a

linear projection to map visual features into the semantic

space. LatEm [33] uses non-linear compatibility functions

to match the two spaces, while some other works learn bi-

linear compatibility functions [2, 24]. Neural networks are

used in [35, 3] to embed semantic information, while Seman-

tic Auto-Encoders (SAE) with reconstruction loss is used

in [29, 19] to learn better projections to the semantic space.

SynC [8] and ConSE [22] embed unseen instances as a linear

combination of seen class embeddings.

Despite the differences in embedding techniques, these

methods are trained only on seen classes and have no clue

about the visual appearance variations in unseen classes.

They suffer from the aforementioned domain shift problem.

Some most recent advances try to solve ZSL in a generative

style. The work in [9] uses a linear projection to map an

unseen semantic attribute vector into a visual feature space,

which can be used for generating instances of the unseen

classes. The work of [7] uses a generative moment match-

ing network to generate unseen class instances, on which

a classifier is directly trained for classification. In [37] the

authors used a GAN to synthesize visual features from noisy

texts. However the generated features in these works are not

guaranteed to align well with the true unseen visual features,

and can still suffer from the domain shift problem.

2.2. Transductive Zero­Shot Learning

Different from the standard zero-shot learning setting

where unlabeled instances from unseen classes are treated as

inaccessible in the training phase, transductive ZSL refers to

the setting that unseen class instances are available during

training. As none of the unseen class instances are labeled,

this setting does not violate the ‘zero-shot’ principle. The

existing transductive ZSL works have improved standard

ZSL by exploiting the unseen class instances to overcome

the domain shift problem. In [12] the authors adopted a two-

step procedure. They first used CCA to project both visual

feature and class prototypes into a multi-view embedding

space, and then used test instances to build a hypergraph

in the embedded space for label propagation. The authors

of [18] proposed to solve ZSL from the viewpoint of un-

supervised domain adaptation with sparse coding. In [14]

the authors proposed to learn a shared model space on seen

and unseen data to facilitate knowledge transfer between

classes. The work in [29] uses auto-encoders to learn joint

embeddings of visual and semantic vectors. It exploits un-

seen class instances to minimize a prediction loss for better

adaptation. The work in [13] proposes to assign pseudo-

labels to test instances and train embedding matrix on both

seen and unseen class data. It nevertheless uses a single

projection matrix to project visual features into the semantic

space. More recently, the authors of [30] proposed to learn

generative models to predict data distribution of seen and

unseen classes from their attribute vectors, and used unla-

beled test data to refine the distribution parameters of target

classes. The work in [28] trains an end-to-end network that

optimizes the loss on both seen class data and unseen test

data, by minimizing the Quasi-Fully Supervised Learning

loss, which uses target class data to reduce seen/unseen bias

of the model during training.

Our proposed work belongs to transductive zero-shot

learning, but differs from the existing transductive ZSL

works in two major aspects: (1) Instead of using one set

of label embeddings that are not optimized for any target un-

seen class, our ensemble network uses multiple sets of label

embeddings, each of which is produced by enhancing the

inter-label relations between the seen classes and a subset of

unseen classes. An ensemble combination of multiple classi-

fication functions with different output representations can

facilitate robust knowledge transfer to all the unseen classes.

(2) We use a progressive ZSL framework that dynamically

incorporates a subset of unlabeled instances selected from

the unseen classes and their predicted pseudo-labels to grad-

ually improve the ensemble network and prevent domain

shift. In each iteration, with our dynamic instance selection

procedure, new instances can be selected and previous ones

might be dropped, which provides the ability to ‘correct’
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potential bad predictions in previous iterations.

2.3. Progressive Training with Pseudo­Labels

Exploiting unlabeled data by assigning them predicted

pseudo-labels in a static progressive training procedure has

been deployed in standard classification settings in the lit-

erature. A notable example is the well-known co-training

method [5], which uses two different classifiers to produce

pseudo-labels on unlabelled data. Sharing similar ideas with

co-training, a recent Tri-training method [36] also exploited

outputs of three different classifiers. In [26], the authors ap-

plied tri-training in solving unsupervised domain adaptation

problems. In [4], progressive curriculum learning is used to

train a model on "easy-to-hard" samples with a pre-defined

scheme. The self-paced co-training work in [21] uses a pro-

gressive "easy-to-hard" strategy as well as two views of the

data for training. The authors of [32] proposed a progressive

sampling scheme for video retrieval task. Distinct from these

works above, our proposed work proposes a novel ensemble

network that contains multiple classification functions with

different label embeddings to address a more challenging

zero-shot learning problem using a progressive procedure.

3. Approach

We consider zero-shot image recognition in the fol-

lowing setting. We have a set of Ns labeled images,

Ds = {(xi, yi)}
Ns

i=1, from Ls seen classes S = {1, · · · , Ls}
such that yi ∈ S. We also have a set of Nu images,

Du = {(xj , yj)}
Nu

j=1, from Lu unseen classes U = {Ls +
1, · · · , L} such that L = Ls + Lu, where the labels,

{yj ∈ U}, are unavailable during training. We aim to trans-

fer information from the labeled data to predict the labels of

the unlabeled instances. To bridge the gap between seen and

unseen classes, we also assume we have a semantic label

representation matrix M ∈ R
m×L, e.g., semantic attribute

vectors, for all the L seen and unseen classes.

In this section, we present a novel progressive ensem-

ble network model for zero-shot image recognition. The

proposed end-to-end framework is depicted in Figure 1. It

consists of multiple image classification functions with a

shared feature extraction network but different label embed-

ding representations. A progressive training framework is

deployed to iteratively refine the overall ensemble network

by incorporating unlabeled instances with their predicted

pseudo-labels in a dynamic and ensemble manner.

3.1. Ensemble Networks

Following the standard ZSL scheme, we can use a con-

volutional neural network (CNN) fv to extract high level

visual features from an image x, and then use an embedding

network f to embed the visual features fv(x) into the se-

mantic space, e.g., the attribute space, of label embeddings

R
m. Here the overall deep network f ◦ fv(x) (“◦" denotes a

composition operation) forms an image classification func-

tion for all classes, S ∪ U , which can categorize an image x

to the nearest class in the semantic label embedding space

R
m. However, though a semantic label embedding matrix

M can enable zero-shot information transfer from the seen

classes to the unseen classes, the effectiveness of such infor-

mation transfer can vary substantially for different unseen

classes due to their various association levels with the seen

classes in the given semantic label embedding space. It is

hard to optimize the semantic associations between the seen

classes and all unseen classes simultaneously with one fixed

label embedding matrix M . Hence we propose to project

the label embeddings M into K different embedding spaces,

{Pk : Rm → R
h |k = 1, · · · ,K}, to induce K sets of dif-

ferent label embeddings {Pk(M)} to facilitate information

transfer to the unseen classes. For each label embedding

matrix Pk(M), we can produce an embedding network fk,

e.g., a multilayer perceptron, to map fv(x) into the corre-

sponding label embedding space, which forms a zero-shot

classification function fk ◦ fv(x). By employing the K clas-

sification functions in an ensemble manner we expect the

overall ensemble network can effectively reduce the impact

of noise and class bias of the original label embeddings M

to produce robust zero-shot image recognitions.

3.1.1 Label Embedding Projection

We aim to use different label embeddings to capture different

label associations between seen and unseen classes. Towards

this goal, we perform the k-th label embedding projection

Pk adaptively by maximizing the weighted similarity score

between the seen classes, S , and a randomly selected subset

of the unseen classes, Zk ⊂ U , in the projected label em-

bedding space. In particular, we assume a linear projection

function Pk(M) = P (k)M , where the projection matrix

P (k) ∈ R
h×m has orthogonal rows, i.e., P (k)P (k)⊤ = I .

We formulate the label embedding projection as the follow-

ing maximization problem:

max
P (k)

∑

i∈S,j∈Zk

tr(P (k)M:iAijM
⊤
:j P

(k)⊤) (1)

subject to P (k)P (k)⊤ = I

where M:i denotes the i-th column of matrix M and tr(·) de-

notes a trace function, the association weight Aij is defined

as the cosine similarity between the corresponding i-th and

j-th classes in the original label representation space. This

maximization problem has a closed-form solution:

P (k) = [u1,u2, ...,uh]
⊤ (2)

where {ui}
h
i=1 are the top h eigenvectors of matrix∑

i∈S,j∈Zk

1
2 (M:iAijM

⊤
:j +M:jAijM

⊤
:i ).
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Figure 1: The deep architecture of the proposed progressive ensemble network. The ensemble network consists of multiple

(K) image classification functions, each of which is a composition of a shared image feature extraction function fv and an

individual semantic embedding function fk, i.e., fk ◦ fv(x), with k ∈ {1, · · · ,K}. We use the ResNet-34 [15] as the feature

extraction convolutional neural network fv and use a multilayer perceptron with two hidden layers (512 units) and ReLU

activation functions as each embedding function fk. The progressive training procedure iteratively and dynamically selects

unlabeled instances and their predicted pseudo-labels to augment the training data and refine the ensemble network.

We can produce K different label embedding projection

matrices {P (k)}Kk=1 by randomly selecting K different sub-

sets of unseen classes, {Zk}
K
k=1. Each resulting label embed-

ding matrix P (k)M encodes a different knowledge transfer

structure between the seen and unseen classes.

3.1.2 Loss Function of the Ensemble Network

Given labeled training instances Dtrain = {(xi, yi)}
N
i=1,

the deep ensemble neural network with K classification

functions, {fk ◦ fv(x)}
K
k=1, can be trained by minimizing

the following negative log-likelihood loss function:

L(ωv, ω1, ..., ωK) =
1

N

N∑

i=1

K∑

k=1

ℓk(v
k
i , yi) (3)

where (ωv, ω1, ..., ωK) denote the model parameters, vk
i =

fk ◦ fv(xi) denotes the k-th classifier’s prediction vector

of instance xi in its label embedding space, and ℓk(·, ·) is

a negative log-likelihood loss function computed over the

softmax prediction scores of the k-th classifier:

ℓk(v
k
i , c) = −log pk(c|v

k
i )

= −log
exp(vk⊤

i P (k)M:c)∑
c′∈S∪U

exp(vk⊤
i P (k)M:c′)

(4)

Note the softmax function above is defined over both seen

and unseen classes. It is designed to include training in-

stances from both seen and unseen classes. Hence, although

initially the labeled training data only contain the labeled

instances from the seen classes, such that Dtrain = Ds and

N = Ns, we will expand it to include pseudo-labeled set

from unseen classes through progressive training below.

3.1.3 Ensemble Zero-Shot Prediction

With the multiple classification functions learned in the en-

semble network, we can integrate the K classification func-

tions to perform zero-shot prediction on each unlabeled in-

stance xi from unseen classes. We first make predictions

using each of the K classifiers based on similarity scores:

ŷ
(k)
i = arg max

c∈Zk

〈fk ◦ fv(xi), P
(k)M:c〉 (5)

where 〈·, ·〉 denotes the inner product of two vectors. As the

k-th set of label embeddings are produced by maximizing the

label associations of seen classes and the subset of unseen

classes Zk, we hence only use the k-th classifier for zero-

shot predictions on the subset of unseen classes Zk. Then

we ensemble all the K predictions to determine the predicted

class using a normalized majority voting strategy:

ŷi = arg max
c

φ(xi, c) (6)

where φ(xi, c) =

∑K
k=1 I[c = ŷ

(k)
i ]

∑K
k=1 I[c ∈ Zk]

(7)

and I[·] denotes an indicator function that returns value 1

when the given condition is true.

In the case of generalized ZSL, where a test instance xi

can be from either a seen or an unseen class, we still compute

the voting score of xi belonging to an unseen class c using

the normalized voting score in Eq.(7), but we compute the

voting score of xi belonging to a seen class c as its average

prediction score on this class by all the K classifiers, i.e.,

φ(xi, c) =
1
K

∑K
k=1〈fk ◦ fv(xi), P

(k)M:c〉.
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Algorithm 1 Progressive Training of Ensemble Networks

Input: labeled data from seen classes Ds, unlabeled data

from unseen classes Du, and label embedding matrix M .

Initialization:

Dtrain ← Ds, Dpseudo ← ∅;
perform label embedding projection for {P (k)}Kk=1;

train an end-to-end deep ensemble network on Dtrain.

repeat

predict pseudo-labels of Du by Eq.(6) and (7);

generate a pseudo-labeled setDpseudo by selecting the

top Npseudo instances from each unseen class;

update the training set: Dtrain ← Ds ∪ Dpseudo;

refine the ensemble network parameters on Dtrain.

until MaxIter

3.2. Progressive Ensemble Networks

Training with only labeled instances from the seen classes

can suffer from the aforementioned domain shift problem.

Meanwhile our ensemble network provides a natural foun-

dation for making voting-based predictions on the unseen

class instances and incorporating pseudo-labeled instances

from the unseen classes in the training process. We hence

propose to deploy a progressive training procedure that itera-

tively and dynamically exploits pseudo-labeled unseen class

instances to refine the ensemble network initially trained on

the labeled data from seen classes, Ds.

The progressive training algorithm is summarized in Al-

gorithm 1. In each iteration, it uses the current ensemble

network to predict the pseudo-label ŷi with Equation (6) for

each unlabeled instance xi from the unseen classes. Then for

each unseen class c ∈ U , it selects the top Npseudo instances

with the largest prediction scores φ(xi, c). The instances

selected from all the unseen classes together with their pre-

dicted labels form a pseudo-set Dpseudo = {(xi, ŷi)}
Np

i=1.

The ensemble network parameters are then refined by min-

imizing a loss function in Equation (3) over an augmented

training set Dtrain = Ds ∪ Dpseudo. As the augmented

training set contains data from both the seen classes and

unseen classes, we expect the refined ensemble network can

overcome the domain shift problem in terms of visual appear-

ances of semantic features and improve zero-shot prediction

performance. Moreover, instead of gradually increasing the

pseudo-set, we dynamically update this set in each iteration

with the progressively improved ensemble network to correct

potential label mistakes in the previous pseudo-set.

4. Experiments

To investigate the empirical performance of our proposed

approach, we conducted experiments under both conven-

tional ZSL and generalized ZSL settings. In this section, we

present our experimental results and discussions.

Table 1: Summary of three attribute datasets for ZSL.

DATASET IMAGES AVG. CLASSES ATTR.

CUB 11788 ∼60 200 (150+50) 312

SUN 14340 ∼20 717 (645+72) 102

AWA2 37322 ∼750 50 (40+10) 85

4.1. Experiment Settings

4.1.1 Datasets

We used three widely used ZSL datasets with label attribute

vectors to conduct experiments. The first one is the Caltech-

UCSD-Birds 200-2011 (CUB) dataset [31]. It is a fine-

grained dataset of bird species, containing 11,788 images

of birds from 200 different species. Each image is also an-

notated with 312 attributes. The second one is the SUN

dataset [23], which contains 14,340 images from 717 differ-

ent scenes. In this dataset each image is annotated with 102

attributes. The third dataset is the Animal with Attributes

2 (AWA2) dataset [34], which is an updated version of the

previous AWA [20] dataset. AWA2 consists of 37,322 im-

ages from 50 animal classes. It also provides 85 numerical

attribute values for each class. We used AWA2 instead of

AWA as the raw image data of AWA is not publicly available

any more. Following previous ZSL works, we extracted the

label embedding matrix M from the attribute vectors.

4.1.2 Seen/Unseen Splits

In order to perform ZSL, a dataset needs to be split into two

disjoint subsets, the seen classes S and the unseen classes U .

To perform scientific ZSL study and maintain the ‘zero-shot’

principle, a ZSL model should never have access to the true

label information of the unseen class instances during the

training phase. However many ZSL approaches have used

CNN models pre-trained on the ImageNet [25] for image

feature extraction. If the pre-trained ImageNet classes have

overlaps with the ZSL test classes, it should be considered

as violating the ‘zero-shot’ rule. As pointed out in the com-

prehensive evaluation study [34], standard splits (SS) on the

ZSL datasets have unseen class overlaps with the 1K classes

of ImageNet, which can lead to superior performance on

these classes. Therefore in this study we also used the ZSL

splits proposed in [34] (PS), which has the same number of

test classes as the SS splits but ensures no class in ImageNet

appears in the test set of ZSL. For the SUN dataset, except

for the split with 72 test classes, there is another split with 10

test classes from [16], which is also used in some previous

works. We denote this split as SUN10 and the split with 72

test classes as SUN72. The overview of these datasets and

seen/unseen class splits are summarized in Table 1.
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Table 2: Conventional ZSL results. † denotes numbers cited from [34]. Methods in the top part of the table reported the Top-1

accuracy results (TOP-1), while those in the bottom part reported the multi-class accuracy (MACC) results. Numbers in

bracket denote results on AWA instead of AWA2. Best results are shown in bold font and second best in italic font.

METHODS
CUB AWA2 SUN72 SUN10

SS PS SS PS SS PS

TOP-1

DEVISE [10]† 53.2 52.0 68.6 59.7 57.5 56.5 -

SYNC [8]† 54.1 55.6 71.2 46.6 59.1 56.3 -

ALE [1]† 53.2 54.9 80.3 62.5 59.1 58.1 -

SJE [2]† 55.3 53.9 69.5 61.9 57.1 53.7 -

SAE [19]† 33.4 33.3 80.7 54.1 42.4 40.3 -

REVISE [29] 65.4 - (93.4) - - - -

GFZSL [30] 63.8 - (94.3) - - - 87.0

QFSL [28] 69.7 72.1 84.8 79.7 61.7 58.3 -

PROGRESSIVE TRAINING 54.0 49.8 73.2 57.8 49.6 47.9 76.6

PRENw/oProj 64.7 61.4 88.5 66.6 61.1 60.1 84.4

PREN (PROPOSED) 66.9 66.4 95.7 74.1 63.3 62.9 86.3

MACC

UDA [18] 40.6 - (75.6) - - - -

DCL [13] - - (81.9) - - - 84.4

PROGRESSIVE TRAINING 53.7 49.9 73.0 53.8 49.5 48.0 76.7

PRENw/oProj 64.4 61.4 89.4 65.7 61.0 60.2 84.5

PREN (PROPOSED) 66.6 66.4 96.1 78.6 63.2 62.8 86.4

4.1.3 Evaluation Metric

We adopted the popularly used Top-1 accuracy to evaluate

the ZSL prediction performance. The Top-1 accuracy counts

the proportion of correctly labeled instances in each test class

and then takes an average over all these classes. To compare

with some literature works, we also reported the multi-class

classification accuracy results when needed.

4.1.4 Implementation Details

For an input image, we resized it to 224 × 224 and fed

it to ResNet-34 [15]. The 512 dimensional vector from

the last average pooling layer of ResNet is used as visual

features of the image. The ResNet is initialized by the pre-

trained model on ImageNet. We used multilayer perceptrons

(MLPs) with two hidden layers (each with size 512) and one

output layer (with size h) as the consequent embedding func-

tions. ReLU activation is applied after each layer. We used

Adam [17] to train our model, with the default parameter

setting β1 = 0.9, β2 = 0.999 and learning rate η = 0.001.

We set MaxIter = 20. In each iteration the model is trained

with 100 batches with batch size 64. For the progressive

training procedure, we used Npseudo = min(ρNavg, Nmax),
where Navg is the average number of images in each training

class, ρ and Nmax are set to 0.25 and 20 respectively. We

used K = 50 different label embeddings (i.e., the number of

classifiers). For {Zk}
K
k=1, which are the randomly selected

subsets of unseen classes for producing the label embedding

projection matrices, we set the size of each Zk as half of

the unseen class number. We projected the original label

embeddings to a lower dimension space such h < m. We

used h=70 in the experiments if not specifically noted.

4.2. Conventional ZSL Results

4.2.1 Comparison Methods

We compared the proposed Progressive Ensemble Network

(PrEN) model with a number of state-of-the-art ZSL meth-

ods. These methods can be divided into two groups: De-

ViSE [10], SynC [8], ALE [1], SJE [2], and SAE [19] belong

to inductive ZSL methods, while the transductive methods

include UDA [18], DCL [13], ReViSE [29], GFZSL [30],

and QFSL [28]. All the comparison methods used the stan-

dard fixed splits. We hence take the convenience to cite the

results from [34] and the literature for fair comparisons.

In order to separate the impact of the progressive training

principle from our proposed ensemble framework, we also

compared with a Progressive Training baseline variant of

the proposed model, which drops the ensemble framework

to use only one classifier with the original label embeddings.

Moreover, to investigate the effectiveness of multiple adap-

tive label embedding projections, we also tested another

ensemble baseline variant, which deviates from the proposed

model only by using the same original label embeddings

for the K classifiers without any projection. We denote this

baseline variant as PrENw/oProj .
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4.2.2 Result Analysis

We summarized the comparison results in Table 2. As two

different evaluation metrics, Top-1 Accuracy and multi-class

accuracy, are used in the comparison works, we divide the ta-

ble into two parts, where the top part presents Top-1 accuracy

results and the bottom part presents multi-class accuracy re-

sults. We reported the results of our proposed PrEN method

in terms of both evaluation metrics. From the table, we notice

that most results under ‘PS’ are worse than their counterpart

results under ‘SS’, especially on the AWA2 datasets. This

indicates that the overlapping of test classes with ImageNet

1K classes did bring extra benefit in performance. However,

the transductive ZSL methods we found are mostly evaluated

under the ‘SS’ setting, we hence expect their missing results

under ‘PS’ can only be worse than the reported ‘SS’ results.

Moreover, the transductive works, ReViSE, GFZSL, UDA

and DCL, reported results on CUB, AWA or SUN10, but

not on AWA2 and SUN72. Since AWA2 is nearly a drop-in-

replacement of AWA [34], we included their results on AWA

just for reference.

From the comparison results in terms of Top-1 accuracy,

we can see that PrEN outperforms all the five inductive meth-

ods across all datasets. Comparing with the transductive

methods, PrEN produced the second best results on CUB,

SUN10, and the ‘PS’ split of AWA2, where QFSL performs

the best. Nevertheless, PrEN produced the best results in

all the other cases, the ‘SS’ split of AWA2, both ‘SS’ and

‘PS’ splits of SUN72. In particular, on the more challenging

scene classification dataset SUN72 (more unseen classes and

less training data for each class), PrEN achieves 63.3% and

62.9% on ‘SS’ and ‘PS’ splits, and outperforms all the other

methods with notable performance gains. In terms of multi-

class accuracy, our proposed PrEN largely outperforms the

two transductive ZSL methods, UDA and DCL. For exam-

ple, PrEN achieves 66.6% on CUB and 86.4% on SUN10,

which are much better than the 40.6% reported by UDA

on CUB and the 84.4% reported by DCL on SUN10 respec-

tively. These results demonstrate the efficacy of the proposed

approach for conventional zero-shot image recognition tasks.

By comparing the proposed PrEN with the baseline vari-

ants, we notice there are large performance gaps between the

proposed full model PrEN and the two variants, Progressive-

Training baseline variant and PrENw/oProj . Without the

ensemble architecture and the diverse label embeddings,

the progressive training procedure alone cannot produce

any effective model. Even by just dropping the label em-

bedding projection but maintaining the ensemble architec-

ture, PrENw/oProj still yields much inferior performance

than PrEN. These suggest that the proposed ensemble net-

work architecture with the essential label embedding projec-

tions forms a solid and critical foundation for incorporating

pseudo-labels through progressive training.

Figure 2: Parameter sensitivity analysis.

Empirical Computational Complexity. From above, we

can see that tremendous performance gain has been achieved

by the proposed PrEN model over its baseline Progressive

Training variant. As PrEN involves training multiple clas-

sifiers, K = 50 in our experiments, while the Progressive

Training variant has K = 1, a natural question to ask is that

how much additional computational cost is required to yield

such performance gain. Here we use the number of floating-

point operations (FLOPs), i.e., the total number of multi-

plication and addition operations, involved in passing one

image from the input of the deep network architecture to the

outputs as an empirical measure of the computational com-

plexity induced by each deep model. Both models share the

same ResNet34 backbone structure which involves 3.6 bil-

lion FLOPs, while PrEN has 49 more MLP components than

the Progressive baseline, and each component has around

0.8 million FLOPs. Comparing to the 3.6 billion FLOPs in

the backbone ResNet, the additional 49×0.8 million ≈ 0.04

billion FLOPs induced by the proposed PrEN is relatively

negligible, which however contributed to the average 16.9%
and 17.9% performance gain in terms of Top-1 accuracy and

multi-class accuracy respectively. This again validates the

suitability and efficacy of the proposed ensemble architecture

with localized adaptive label embedding projections.

4.3. Parameter Sensitivity Analysis

In this section, we investigate the sensitivity of the pro-

posed model with respect to its two hyper-parameters, K

and h. K is the number of projected label embeddings as

well as the number of classifiers, while h is the dimension

of projected label embeddings.

To study how does h affect the test performance, we

performed conventional ZSL on the CUB dataset with the

‘PS’ split. We fixed K = 50 and repeated the experiment

for each h value from the set {10, 20, 30, ..., 70}. The test

accuracies are reported on the left side of Figure 2. We

can see that the test ZSL accuracies increase quickly from

h = 10 to h = 30 and then the increase becomes very small.

Nevertheless the best performance is achieved at h = 50.

This suggests that larger dimension does help preserve useful

information in the projected label embeddings. But even with

11734



Table 3: Generalized ZSL results in terms of average Top-1 accuracy. † denotes numbers cited from [34]. ‘u’ and ‘s’ denotes

Top-1 accuracies on unseen and seen classes, respectively. ‘H’ denotes the harmonic mean of them.

METHODS
CUB AWA2 SUN72

U S H U S H U S H

DEVISE [10]† 23.8 53.0 32.8 17.1 74.7 27.8 16.9 27.4 20.9

SYNC [8]† 11.5 70.9 19.8 10.0 90.5 18.0 7.9 43.3 13.4

ALE [1]† 23.7 62.8 34.4 16.8 76.1 27.5 21.8 33.1 26.3

SJE [2]† 23.5 59.2 33.6 8.0 73.9 14.4 14.7 30.5 19.8

SAE [19]† 7.8 54.0 13.6 1.1 82.2 2.2 8.8 18.0 11.8

PREN (PROPOSED) 35.2 55.8 43.1 32.4 88.6 47.4 35.4 27.2 30.8

a very small fraction of the original dimension, e.g., 10%,

our model can achieve very good performance; on CUB a h

value within (30, 70] would be a safe choice.

We also performed sensitivity analysis for K on CUB.

We fixed h = 70 and tested different K values from

{10, 20, ..., 60}. The test accuracy results with different

K values are reported in the right subfigure of Figure 2. It

is easy to observe that the ZSL accuracy is very poor when

K has a small value 10. Then the ZSL performance dra-

matically increases with K increasing from 10 to 30, and

the change becomes very small with K further increasing

to 60. These results suggest our proposed model is not very

sensitive to the hyper-parameters K as long as it is set to

values within the reasonable range, such as K > 30.

4.4. Generalized ZSL Results

Majority of ZSL works in the literature has focused on

the conventional ZSL setting, where the test classes are as-

sumed to consist of only unseen classes. This assumption

can be overly strict. Hence here we conducted experiments

to compare the test performance of the proposed progressive

ensemble network (PrEN) with related methods under the

generalized ZSL (GZSL) setting, where the test instances

can come from both seen and unseen classes. As the clas-

sifiers within our PrEN model perform multi-class classifi-

cation over all the classes, it can be conveniently extended

to address GZSL. For GZSL the main problem is that many

unseen class instances can be wrongly classified into seen

classes. Hence we only select pseudo instances for unseen

classes in the first few iterations of the progressive training

process, while selecting pseudo instances for both seen and

unseen classes in later iterations to achieve balanced per-

formance. To evaluate our model under GZSL, we follow

the comprehensive study in [34] to use the ‘PS’ splits, and

separate a random 20% of the instances for each seen class

and add these into the test set. We evaluated the top-1 test

accuracy on unseen and seen classes separately, and compute

their harmonic mean as the GZSL accuracy result. We com-

pared to five ZSL methods that have addressed GZSL in the

literature. Although the authors of [28] also reported their

GZSL results of the transductive method QFSL, they con-

ducted GZSL in a non-standard and limited general setting

with extra knowledge – they assumed whether the unlabeled

instances belong to seen vs unseen classes is known. For

fairness, we hence did not compare with their results. Our

comparison results are reported in Table 3.

We can see that some comparison methods can achieve

quite good performance on seen classes while their zero-shot

accuracy on unseen classes is very low; for example SynC

achieves 11.5% (unseen) and 70.9% (seen) on AWA2 , as

well as 10.0% (unseen) and 90.5% (seen) on CUB. The over-

all performance of the comparison methods on all classes,

under column ‘H’, is still poor. We also notice there is

usually a trade-off between the performance on the seen

classes and that on the unseen classes, while the harmonic

mean measures the overall performance. The proposed PrEN

though didn’t yield superior performance on seen classes,

its zero-shot prediction performance on unseen classes is

much better than the other comparison methods. Moreover,

in terms of the overall GZSL performance, we can see the

proposed PrEN outperforms all the comparison methods

with large margins. This validates the effectiveness of the

proposed model under GZSL setting.

5. Conclusion

In this paper, we proposed a novel progressive deep en-

semble network for transductive zero-shot image recogni-

tion. By integrating multiple classifiers with different label

embeddings, the ensemble network can maintain informa-

tive knowledge transfer from seen classes to unseen classes

through adaptive inter-label relations. By progressively re-

fining the ensemble network parameters with pseudo-labeled

test instances, the training procedure can alleviate the do-

main shift problem and avoid overfitting to the seen classes.

We conducted experiments on multiple standard datasets

under both conventional and generalized ZSL settings. The

proposed model has demonstrated superior performance than

the state-of-the-art comparison methods.
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