
Probabilistic End-to-end Noise Correction for Learning with Noisy Labels

Kun Yi Jianxin Wu∗

National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing, China

yik@lamda.nju.edu.cn, wujx2001@nju.edu.cn

Abstract

Deep learning has achieved excellent performance in var-

ious computer vision tasks, but requires a lot of training

examples with clean labels. It is easy to collect a dataset

with noisy labels, but such noise makes networks overfit se-

riously and accuracies drop dramatically. To address this

problem, we propose an end-to-end framework called PEN-

CIL, which can update both network parameters and label

estimations as label distributions. PENCIL is independent

of the backbone network structure and does not need an aux-

iliary clean dataset or prior information about noise, thus

it is more general and robust than existing methods and is

easy to apply. PENCIL outperforms previous state-of-the-art

methods by large margins on both synthetic and real-world

datasets with different noise types and noise rates. Exper-

iments show that PENCIL is robust on clean datasets, too.

1. Introduction

Deep learning has shown very impressive performance

on various vision problems, e.g., classification, detection and

semantic segmentation. Although there are many factors for

the success of deep learning, one of the most important is

the availability of large-scale datasets with clean annotations

like ImageNet [3].

However, collecting a large scale dataset with clean labels

is expensive and time-consuming. On one hand, expert

knowledge is necessary for some datasets such as the fine-

grained CUB-200 [26], which demands knowledge from

ornithologists. On the other hand, we can easily collect a

large scale dataset with noisy annotations through image

search engines [4, 11, 20]. These noisy annotations can

be obtained by extracting labels from the surrounding texts

or using the searching keywords [28]. For a huge dataset

like JFT300M (which contains 300 million images), it is

∗This research was partially supported by the National Natural Science

Foundation of China (61772256, 61422203). J. Wu is the corresponding

author.

impossible to manually label it and inevitably about 20%

noisy labels exist in this dataset [22]. Hence, being able to

deal with noisy labels is essential.

The label noise problem has been studied for a long

time [1, 17]. Along with the recent successes of various deep

learning methods, noise handling in deep learning has gained

momentum, too [18, 21, 28]. However, existing methods

often have prerequisites that may not be practical in many

applications, e.g., an auxiliary set with clean labels [28] or

prior information about the noise [16]. Some methods are

very complex [29], which hurts their deployment capabil-

ity. Overfitting to noise is another serious difficulty. For a

DNN with enough capacity, it can memorize the random

labels [30]. Thus, some noise handling methods may finally

still overfit and their performance decline seriously, i.e., they

are not robust. Their accuracies on the clean test set reach a

peak in the middle of the training process, but will degrade

afterwards and the accuracies after the final training epoch

are poor [16, 24].

We attack the label noise problem from two aspects. First,

we model the label for an image as a distribution among

all possible labels [6] instead of a fixed categorical value.

This probabilistic modeling lends us the flexibility to handle

noise-contaminated and noise-free labels in a unified man-

ner. Second, inspired by [23], we maintain and update the

label distributions in both network parameter learning (in

which label distributions act as labels) and label learning (in

which label distributions are updated to correct noise). Un-

like [23] which updates labels simply by using the running

average of network predictions, we correct noise and update

our label distributions in a principled end-to-end manner.

The proposed framework is called PENCIL, meaning proba-

bilistic end-to-end noise correction in labels. The PENCIL

framework only uses the noisy labels to initialize our label

distributions, then iteratively correct the noisy labels by up-

dating the label distributions, and the network loss function

is computed using the label distributions rather than the noisy

labels.

Our contributions are as follows.

• We propose an end-to-end framework PENCIL for

7017

noisy label handling. PENCIL is independent of the

backbone network structure and does not need an auxil-

iary clean dataset or prior information about noise, thus

it is easy to apply. PENCIL utilizes back-propagation

to probabilistically update and correct image labels be-

yond updating the network parameters. To the best of

our knowledge, PENCIL is the first method in this line.

• We propose a variant of the DLDL method [6], which is

essential for correcting noise contained in our label dis-

tributions. PENCIL achieves state-of-the-art accuracy

on datasets with both synthetic and real-world noisy

labels (e.g., CIFAR-10, CIFAR-100 and Clothing1M).

• PENCIL is robust. It is not only robust in learning with

noisy labels, but also robust enough to apply in datasets

with zero or small amount of potential label noise (e.g.,

CUB-200) to improve accuracy.

2. Related Works

We first briefly introduce related works that inspired this

work and other noise handling methods in the literature.

Deep label distribution learning was introduced in [6]

(called DLDL), which was proposed to handle label uncer-

tainty by converting a categorical label (e.g., 25 years old)

into a label distribution (e.g., a normal distribution whose

mean is 25 and standard deviation is 3). The DLDL method

uses constant label distributions and the Kullback-Leibler

divergence to compute the network loss. In PENCIL, we

use label distributions for a different purpose such that the

label distributions can be updated and hence noise can be

probabilistically corrected. The original DLDL method did

not work in our setup and we designed a new loss function

in PENCIL to overcome this difficulty.

For deep learning methods, [30] showed that a deep net-

work with large enough capacity can memorize the training

set labels even when they are randomly generated. Hence,

they are particularly susceptible to noisy labels. Label noise

can lead to serious overfitting and dramatically reduce net-

work accuracy. However, [23] observed that when the learn-

ing rate is high, DNNs may maintain relatively high accuracy

(i.e., the impact of label noise is not significant). This ob-

servation was utilized in [23] to maintain an estimate of the

labels using the running average of network predictions with

a large learning rate. Then, these estimates were used as

supervision signals to train the network. PENCIL is inspired

by this observation and [23], too.

Label noise is an important issue and has long been re-

searched [1, 17]. There are mainly two types of label noise:

symmetric noise and asymmetric noise, which are modeled

in [13] and [21], respectively. [5] is a survey of relatively

early methods. [19] argued that deep neural networks are

inherently robust to label noise to some extent. And, deep

methods have achieved state-of-the-art results in recent years.

Hence, we mainly focus on noise handling in deep learning

models in this section.

One intuitive and easy solution is to delete all the samples

which are considered as unreliable [2]. However, many diffi-

cult samples will be deleted, but these samples are important

to algorithm’s accuracy [8]. Thus, more profound noisy label

handling methods become necessary.

There are mainly two lines of attack to the the noisy

label problem: constructing a special model based on noisy

labels or using a robust loss function. The objective of these

methods is to construct a noise-aware model which explicitly

deals with noisy labels. [28] constructed a model to deal with

noisy labels, and tested their method on a real-world dataset

collected by them. [24] proposed a framework called CNN-

CRF, which combined convolutional neural networks (CNN)

with conditional random fields (CRF) to characterize noisy

labels. [29] utilized similar ideas to determine the confidence

of each label. This approach is gaining popularity in recent

years (e.g., in [14, 15, 25]), and different techniques such

as local inherent dimensionality have been brought into the

noisy label learning domain.

Another effective approach is to design robust loss func-

tions in order for a noise-tolerant model. Forward and back-

ward methods [16] explicitly modeled the noise transition

matrix in loss computation. [7] investigated the robustness

of different loss functions, such as the mean squared loss,

mean absolute loss and cross entropy loss. [31] combined

advantages of the mean absolute loss and cross entropy loss

to obtain a better loss function.

[23] did not fall in these two categories. It is special

in the sense that it replaced the noisy label with their own

estimate of the label (i.e., running average of the network’s

predictions). This approach is effective in noise handling but

ad-hoc. PENCIL is partly inspired by this work, but more

principled and effective.

Existing methods usually have prerequisites that are im-

practical, such as demanding an additional clean dataset (e.g.,

to curb overfitting) or a groundtruth noise transition matrix.

When these prerequisites are not satisfied, they often fail

to produce robust models. These methods are sometimes

too complex to be deployed in real-world applications. In

contrast, the proposed PENCIL method does not require

additional information, and it can be easily applied to any

backbone network.

3. The Proposed PENCIL Method

First of all, we define the notations for our study. Column

vectors are denoted in bold (e.g., x) and matrices in capital

form (e.g., X). Specifically, 1 is a vector of all-ones. We

use both hard labels and soft labels. The hard-label space is

H = {y : y ∈ {0, 1}c,1⊤y = 1}, and the soft-label space

is S = {y : y ∈ [0, 1]c,1⊤y = 1}. That is, a soft-label is a

7018

label distribution.

3.1. Probabilistic modeling of noisy labels

In a c-class classification problem, we have a training set

X = {x1,x2, . . . ,xn}. In the ideal scenario, every image

xi has a clean label yi ∈ H, which is a one-hot vector (i.e.,

equivalent to an integer between 1 and c). In our noisy label

problem, the labels might be wrong with relatively high

probability and we use ŷi ∈ H to denote labels which may

contain noise. Using cross entropy, the loss function is

L = −
1

n

n
∑

i=1

c
∑

j=1

ŷij log fj(xi;θ) , (1)

where ŷij is the j’th element of ŷi, f is a model’s predic-

tion (processed by the softmax function) and θ is the set of

network parameters.

In PENCIL, we maintain a label distribution yd
i ∈ S =

{y : y ∈ [0, 1]c,1⊤y = 1} for every image xi, which is

our estimate of the underlying noise-free label for xi. y
d
i is

used as the pseudo-groundtruth label in our learning, which

is initialized based on the noisy label ŷi. It is continuously

updated (i.e., the noise is gradually corrected) through back-

propagation. This probabilistic setting allows ample flexibil-

ity for noise correction. Note that our probabilistic modeling

of the noisy labels is different from that in DLDL [6]. Label

distributions in DLDL are fixed and cannot be updated.

In [6], the loss function is KL-divergence:

L =
1

n

n
∑

i=1

KL(yd
i ||f(xi;θ)), and (2)

KL(yd
i ||f(xi;θ)) =

c
∑

j=1

ydij log

(

ydij

fj(xi;θ)

)

. (3)

This loss is used in [23], too. However, KL-divergence is

an asymmetric function. Hence, if we exchange the two

operands in Eq. 2, we obtain a new loss function

L =
1

n

n
∑

i=1

KL(f(xi;θ)||y
d
i), and (4)

KL(f(xi;θ)||y
d
i) =

c
∑

j=1

fj(xi;θ) log

(

fj(xi;θ)

ydij

)

.

(5)

We will soon show that Eq. 4 is more suitable for noise

handling. In fact, Eq. 2 led to very poor results in our ex-

periments and we propose to use Eq. 4 as one of the loss

functions in PENCIL. More details will be discussed in Sec-

tion 3.4.

noisy

label

��

label

initialization

��

label

distribution

��

input

image

�

network

prediction

���; �	

entropy

loss

ℒ�

compatibility

loss

ℒ�

classification

loss

ℒ�

backbone

CNN
softmax

Figure 1. The PENCIL learning framework. We use label dis-

tributions yd (which is the softmax transformed version of label

initialization variables ỹ) to replace noisy labels ŷ. The label dis-

tributions are updated in every iteration using three loss functions,

among which the classification loss and compatibility loss updates

y
d by requiring the label distributions produce both smooth models

and not too distant from the noisy labels.

3.2. Endtoend noise correction in labels

Our label distribution yd models the unknown noise-free

label for xi. Hence, we need to estimate these distributions

in our learning process. Let X and Y d be the union of xi

and yd
i (for all 1 ≤ i ≤ n), respectively. Inspired by [23],

we let Y d be part of the parameters that are to be updated

in the back-propagation process. That is, PENCIL not only

updates the network parameters θ as in traditional networks,

but also updates Y d (i.e., yd
i) in every iteration. Therefore,

we optimize both network parameters and label distributions

as follows:

min
θ,Y d

L(θ,Y d|X) (6)

The overall architecture of PENCIL is shown in Fig. 1.

In the PENCIL framework, three types of “labels” (yd,

ŷ and ỹ) are involved. Label distribution yd is updated by

back-propagation. In the end, yd will be a good estimate

of the underlying unknown noise-free label (i.e., noise cor-

rected label). ỹ is a variable that assists yd to be normalized

to a probability distribution, by

yd = softmax(ỹ) . (7)

Hence, ỹ is not constrained and can be updated freely using

back-propagation, but yd is always a valid distribution.

The original noisy label ŷ does not directly impact the

parameter (θ) learning. However, it is useful because we

use it to indirectly initialize our label distribution yd. At the

start of PENCIL, ỹ is initialized by ŷ as follows:

ỹ = Kŷ , (8)

where K is a large constant (K = 10 in our experiments),

and hence from Eq. 7 we have yd ≈ ŷ after this initializa-

tion.

7019

3.3. Compatibility loss

The noisy label ŷ is also useful in PENCIL’s loss compu-

tation. In fact, there are lots of (e.g., 80% of) correct labels

even in datasets with noisy labels. Therefore, we should not

let the estimated label distribution yd be completely different

from those noisy labels ŷ.

We define a compatibility loss Lo(Ŷ ,Y d) to enforce this

requirement, as

Lo(Ŷ ,Y d) = −
1

n

n
∑

i=1

c
∑

j=1

ŷij log y
d
ij , (9)

which is a classic cross entropy loss between label distribu-

tion and noisy label.

3.4. Classification loss

The deviation between our label distribution yd and the

network prediction f(x;θ) guides how the network param-

eters θ should be updated. In DLDL [6] and a similar

work [23], the classic KL-loss (Eq. 2) is used to calculate

the distance between these two distributions. However, we

find that Eq. 2 works poorly in PENCIL and propose to use

Eq. 4 instead, as a new classification loss (which we denote

as Lc).

Because we need to update the label distribution, we need

to calculate ∂Lc

∂yd . If Eq. 2 is used as the classification loss

Lc, then

∂Lc

∂ydij
= 1 +

c
∑

j=1

log
ydij

fj(xi;θ)
. (10)

And, if we use Eq. 4 as Lc, we have

∂Lc

∂ydij
= −

c
∑

j=1

fj(xi;θ)

ydij
. (11)

Then, we have the following observations for a fixed

training example i and any class index j.

Case 1 If the prediction fj(xi;θ) is much larger than label

distribution ydij , Eq. 10 leads to a medium negative

gradient (because of the log), but Eq. 11 leads to a large

negative gradient for updating ydij .

Case 2 If fj(xi;θ) is much smaller than yd
j , Eq. 10 leads to

a medium positive gradient while Eq. 11 leads to a

gradient which is almost zero.

Suppose for xi the noisy label ŷi is peaked at j = 3
(i.e., ŷi,3 = 1) but the true label is 7. Thus, initially ydi,3
will be the peak in our label distribution yd

i . The internal

smoothness inside the network may make the prediction

f(xi;θ) to (correctly) peak at j = 7. Hence, we have

f7(xi;θ)≫ ŷi,7 and f3(xi;θ)≪ ŷi,3. Eq. 4 (Eq. 11) will

then (correctly) increase ydi,7 by a large amount, while Eq. 2

(Eq. 10) will not (Case 1). Now consider the updating of ydi,3.

Eq. 2 (Eq. 10) will only decrease ydi,3 by a medium amount,

and Eq. 4 (Eq. 11) will keep ydi,3 almost intact (Case 2).

Combining these observations altogether, we believe that

although the classic KL-loss (Eq. 2) is a good fit for other

applications, our proposed Eq. 4 is more suitable for correct-

ing the noise in labels. Hence, we use the variant of KL-loss

in Eq. 4 as our classification loss Lc.

3.5. Entropy loss

Obviously, when the prediction f(x;θ) is the same as

the label distribution yd, the network will stop updating.

However, f(x;θ) tend to approach yd fairly quickly, be-

cause label distributions are used as the supervision signal

for learning network parameters θ. Following [23], we add

an additional loss (regularization) term to avoid this problem.

The entropy loss can force the network to peak at only one

category rather than being flat because the one-hot distribu-

tion has the smallest possible entropy value. This property is

advantageous for classification problems. The entropy loss

is defined as

Le(f(x;θ)) = −
1

n

n
∑

i=1

c
∑

j=1

fj(x;θ) log fj(x;θ) . (12)

At the same time, it also helps avoid the training from being

stalled in our PENCIL framework, because the label distribu-

tion is not going to be a one-hot distribution and then f(x;θ)
will be different from yd.

3.6. The overall PENCIL framework

With all components ready, the PENCIL loss function is

L =
1

c
Lc(f(x;θ),Y

d) + αLo(Ŷ ,Y d) +
β

c
Le(f(x;θ)) ,

in which α and β are two hyperparameters. Using this loss

function and the PENCIL framework’s architecture in Fig. 1,

we can use any deep neural network as the backbone net-

work in Fig. 1, and then equip it with the PENCIL network to

handle learning problems with noisy labels. The relationship

between variables and loss functions are clearly visualized in

Fig. 1 as arrows. Forward computations are visualized by red

solid arrows, while back-propagation computations are visu-

alized as blue dashed arrows. The algorithmic description of

the PENCIL framework is shown in Algorithm 1.

We want to add two notes about PENCIL. First, the error

back-propagation process in PENCIL is pretty straightfor-

ward. For example, it can be done automatically in deep

learning packages that support automatic gradient compu-

tation. Second, after the network has been fully trained (cf.

Section 4), those PENCIL-related components in Fig. 1 are

not needed at all—the backbone network alone can perform

prediction for future test examples.

7020

Algorithm 1 The proposed PENCIL framework

Input: the noisy training set {xi, ŷi} (1 ≤ i ≤ n), and the

number of training epochs T

1: initialize ỹi (1 ≤ i ≤ n) by Eq. 8

2: t← 1
3: while t ≤ T do

4: update θ and yd
i (1 ≤ i ≤ n) by forward computa-

tion and backward propagation in the mini-batch fashion

using all n training examples (i.e., to finish one epoch)

5: t← t+ 1

Output: the trained network model θ, and the noise cor-

rected labels yd
i (1 ≤ i ≤ n).

Similar to [23], we implement our PENCIL training

through 3 steps.

Backbone learning: We firstly train the backbone net-

work with a large fixed learning rate from scratch without

noise handling. As aforementioned, it is observed that when

the learning rate is high, a DNN often does not overfit the

label noise. Therefore, in this step, we use a fixed high learn-

ing rate with only the cross-entropy loss function in Eq. 1.

The resulted DNN is the backbone network in Fig. 1.

PENCIL learning: Then, we use the PENCIL frame-

work to update both network parameters and label distribu-

tions. The learning rate is still a fixed high value. Therefore,

the network will not overfit label noise and the label distri-

butions will correct noise in the original labels. At the end

of this step, we obtain a label distribution vector for every

image. Algorithmic details are shown in Algorithm 1. Note

that in practice we find that updating ỹ requires a learning

rate that is much larger than that used for updating other

parameters. Because the overall learning rate is fixed in this

step, we simply use one single hyperparameters λ to update

ỹ (i.e., do not use PENCIL’s overall learning rate), as

ỹ ← ỹ − λ
∂L

∂ỹ
. (13)

Final fine-tuning: Lastly, we use the learned label distri-

butions to fine-tune the network using only the classification

loss Lc (i.e., α = β = 0). In this step, the label distributions

will not be updated and the learning rate will be gradually

reduced as in common neural network training.

4. Experiments

We tested the proposed PENCIL framework on both syn-

thetic and real-world datasets: CIFAR-100 [12], CIFAR-

10 [12], CUB-200 [26] and Clothing1M [28]. All experi-

ments were implemented using the PyTorch framework.

4.1. Datasets

CIFAR-100: Following [31], we retained 10% of the

training data as the validation set, and both train and val-

idation sets were noise contaminated. However, note that

we did not use the validation set in our method, because

PENCIL does not need a validation set.

There are two types of noises: symmetric and asymmetric.

Following [31], in the symmetric noise setup, label noise

is uniformly distributed among all categories, and the label

noise percentage is r ∈ [0, 1]. For every example, if the

correct label is i, then the noise-contaminated label has 1− r

probability to remain correct, but has r probability to be

drawn uniformly from the c labels. The asymmetric noise

label was generated by flipping each class to the next class

circularly with noise rate r ∈ [0, 1].

CIFAR-10: Following [23], we retained 10% of the

CIFAR-10 training data as the validation set and modify

the original correct labels to obtain different noisy label

datasets. The setting for symmetric noise is the same as

that in CIFAR-100. As for asymmetric noise, following

[16] the noisy labels were generated by mapping truck

→ automobile, bird→ airplane, deer→ horse

and cat ↔ dog with probability r. These noise genera-

tion methods are in coincidence with confusions that often

happen in the real world.

Clothing1M: Clothing1M is a large-scale dataset with

noisy labels. It consists of more than one million images

from 14 classes with many wrong labels. Images were ob-

tained from several online shopping websites and labels were

generated by their surrounding texts. The estimated noise

level is roughly 40% [28]. This dataset is seriously imbal-

anced and the label mistakes mostly happen between similar

classes (i.e., asymmetric). There exist additional training,

validation and test sets with 50k, 14k and 10k examples

whose labels are believed to be clean, respectively.

CUB-200: We tested the robustness of our framework

in a fine-grained classification dataset CUB-200. CUB-200

contains 11788 images of 200 species of birds, which is not

considered to have the noisy label difficulty. Therefore, we

tested our framework on this dataset to show that PENCIL

is robust. In addition, there is probably a small percentage

of noisy labels in CUB-200 [27]. It is interesting to observe

whether PENCIL is robust and effective in such a dataset.

4.2. Implementation details

Next, we describe more implementation details for each

dataset.

CIFAR-100: We used ResNet-34 [9] as the backbone

network for fair comparison with existing methods. The

learning rate was 0.35, α = 0.1, β = 0.4, and λ = 10000.

Mean subtraction, horizontal random flip and 32×32 random

crops after padding 4 pixels on each side were performed as

data preprocessing and augmentation. We used SGD with

0.9 momentum, a weight decay of 10−4, and batch size of

128. Following [23], the epoch numbers for three steps were

70, 130 and 120, respectively. In the last step, we used the

7021

Table 1. Hyperparameters for CIFAR-10 experiments. 3000 → 0

means that λ decreases from 3000 to 0 linearly.
Symmetric Noise

noise rate (%) learning rate α β λ

10 0.02 0.1 0.8 200

30 0.03 0.1 0.8 300

50 0.04 0.1 0.8 400

70 0.08 0.1 0.8 800

90 0.12 0.1 0.4 1200

Asymmetric Noise

noise rate (%) learning rate α β λ

10 0.06 0.1 0.4 600

20 0.06 0.1 0.4 600

30 0.06 0.1 0.4 600

40 0.03 0 0.4 3000 → 0

50 0.03 0 0.4 4000 → 0

learning rate of 0.2 and divided it by 10 after 40 and 80

epochs [23]. All experiments on CIFAR-100 used the same

settings as described above. In fact, we can obtain better

results by further tuning the hyperparameters (e.g., as what

we will soon introduce for CIFAR-10). However, we choose

to use the same set of hyperparameters to demonstrate the

robustness of our framework.

CIFAR-10: We used PreAct ResNet-32 [10] as the back-

bone network for fair comparison with existing methods.

We used the same settings as those for CIFAR-100, except

the overall learning rate, α, β and λ hyperparameters. On

CIFAR-10, these hyperparameters are shown in Table 1.

As shown in Table 1, the learning rate increases as the

noise rate increases for symmetric noise. This is reasonable,

because when noise rate gets higher, we need stronger ro-

bustness and we can increase the learning rate to prevent our

network from overfitting. And, when the noise rate is very

high (e.g., 50% asymmetric), there are too many noisy labels.

Hence, we can remove the effect of noisy labels by removing

Lo (i.e., set α to 0). At the same time, we require a large λ

to correct these noisy labels quickly. However, after a few

epochs, the noisy labels were quickly corrected to a stable

state (cf. Fig. 2 and Fig. 3). Hence, we need to decrease λ

linearly to prevent wrong updates in later epochs.

CUB-200: On this dataset, we used ResNet-50 [9] pre-

trained on ImageNet. Data preprocessing and augmentation

is also applied, including performing mean subtraction, hor-

izontal random flip, resizing the image to 256 × 256 and

224 × 224 random crops. We used SGD with 0.9 momen-

tum, a weight decay of 10−4, and batch size of 16. The

number of epochs for the three steps are 35, 65 and 60, re-

spectively. The learning rate of the first and second step

is 2 × 10−3. In the last step, the learning rate is 10−3 and

divided by 10 after 20 epochs and 40 epochs. β is 0.8 and we

reported results for different values of α and λ as ablation

studies.

Clothing1M: We used ResNet-50 pre-trained on Ima-

geNet as the backbone network for fair comparison with

existing methods. Data preprocessing and augmentation are

the same as those in CUB-200. We used SGD with 0.9 mo-

mentum, a weight decay of 10−3, and batch size of 32. The

epoch numbers of three steps are 5, 10 and 10, respectively.

The first step learning rate is 1.6 × 10−3 and the second

step learning rate is 8 × 10−4. The last step learning rate

is 5 × 10−4 and divided by 10 after 5 epochs. α = 0.08,

β = 0.8. In first 5 epochs of second step λ = 3000, and in

last 5 epochs of second step λ = 500.

This dataset exists serious data imbalance. Therefore, we

randomly selected a small balanced subset (using the noisy

labels) to relieve the difficulty caused by imbalance. The

small subset includes about 260k images and all classes have

the same number of images. All our experiments on Cloth-

ing1M were done with this subset in this study. However,

note that this subset is not truly balanced, because the labels

are noisy.

4.3. Results on CIFAR100

Firstly we tested PENCIL on CIFAR-100. The results are

shown in Table 2. All dataset settings followed [31]. The

method “Forward T [16]” used the groundtruth noise tran-

sition matrix (which is not available in real-world datasets),

hence its numbers were not compared with other methods.

Except for the 80% symmetric noise case, PENCIL signifi-

cantly outperformed previous methods in all symmetric and

asymmetric noise cases. Even if “Forward T ” used strong

prior information which should not have been used, our

PENCIL method still outperformed it in most cases.

As for the 80% symmetric noise case, it revealed a failure

mode of the proposed PENCIL method. When the noise

rate is too high (e.g., 80%), the correct labels only form a

minority group and they are too weak to bootstrap the noise

correction process. Hence, PENCIL tends to fail in such

high noise rate problems. Fortunately, we hardly deal with

such high noise rate in real-world applications. For example,

the large scale real-world image dataset JFT300M [22] only

includes about 20% noisy labels.

We have intentionally chosen the same set of hyperpa-

rameters in all experiments on this dataset, and the results

demonstrate the robustness of our PENCIL framework to

these hyperparameters. We can obtain better accuracy by

using different hyperparameters for different noise rate and

noise type, as shown in Table 1 on the CIFAR-10 dataset.

4.4. Experiments on CIFAR10

Next, we evaluated the performance of our PENCIL

framework on CIFAR-10. All the settings have been de-

scribed in Section 4.2. On the original noise-free CIFAR-10

dataset, the result of our backbone network (PreAct ResNet-

32) is 94.05%. Our setup followed that in [23]. However, re-

sults in [23] used a prior knowledge (i.e., all categories have

the same number of noise-free training examples), which

7022

Table 2. Results on CIFAR-100. We report the average accuracy and standard deviation of 5 trials. #1 to #5 are quoted from [31]. PENCIL

(#6) is the result of last epoch (without using the validation set). The row with a star * (#2) did not participate in comparison for fairness.
method Symmetric Noise Asymmetric Noise

noise rate (%) 20 40 60 80 10 20 30 40

1 Cross Entropy Loss 58.72±0.26 48.20±0.65 37.41±0.94 18.10±0.82 66.54±0.42 59.20±0.18 51.40±0.16 42.74±0.61

2 Forward T * [16] 63.16±0.37 54.65±0.88 44.62±0.82 24.83±0.71 71.05±0.30 71.08±0.22 70.76±0.26 70.82±0.45

3 Forward T̂ [16] 39.19±2.61 31.05±1.44 19.12±1.95 8.99±0.58 45.96±1.21 42.46±2.16 38.13±2.97 34.44±1.93

4 Lq [31] 66.81±0.42 61.77±0.24 53.16±0.78 29.16±0.74 68.36±0.42 66.59±0.22 61.45±0.26 47.22±1.15

5 Trunc Lq [31] 67.61±0.18 62.64±0.33 54.04±0.56 29.60±0.51 68.86±0.14 66.59±0.23 61.87±0.39 47.66±0.69

6 PENCIL (last) 73.86±0.34 69.12±0.62 57.79±3.86 fail 75.93±0.20 74.70±0.56 72.52±0.38 63.61±0.23

Table 3. Test accuracy on CIFAR-10 with symmetric noise. We

reported the average result of 5 trials. All results in this table were

based on our own implementation.
method Symmetric Noise

noise rate (%) 10 30 50 70 90

1 Cross Entropy Loss
best 91.66 89.00 85.15 78.09 50.74

last 88.43 72.78 53.11 33.32 16.30

2 Tanaka et al. [23]
best 93.23 91.23 88.50 84.51 54.36

last 93.23 91.22 88.51 84.59 53.49

3 PENCIL
best 93.26 92.09 90.29 87.10 61.21

last 93.28 92.24 90.36 87.18 60.80

should not be used. For fair comparison, we implemented

the “Tanaka et al. [23]” method and in our implementation

we did not use this prior knowledge.

Table 3 lists results of symmetric noise for CIFAR-10. In

Table 3, “best” denotes the test accuracy of the epoch where

the validation accuracy was optimal and “last” denotes the

test accuracy of the last epoch. As aforementioned, when the

learning rate is small, the deep neural network’s accuracy

will decline because the network memorizes all the (noisy)

labels, i.e., the network is overfitting. As shown in row

#1, the traditional neural network using the classic cross

entropy loss is heavily affected by this difficulty. Its best-

epoch test accuracy was significantly better than that of the

last-epoch one. And, as the noise rate increased, the gap

was even larger because the overfitting to noise became

more serious as expected. On the contrary, our method and

the Tanaka et al. [23] did not have obvious accuracy drop

between best- and last-epochs. Therefore, the proposed

PENCIL method has strong robustness. As for the test set

accuracy, PENCIL had a clear advantage than competing

methods in Table 3. The winning gap became especially

apparent when the noise rate increased to larger values. For

example, when the noise rate was 90%, PENCIL obtained

roughly 7% higher accuracy than that of Tanaka et al. and

10% higher than that of cross entropy.

Table 4 lists results of asymmetric noise for CIFAR-10.

In terms of robustness, methods shown in row #1, #2 and

#3 had the overfitting problem and their test accuracies

had large gaps between the best- and last-epochs. The

Tanaka et al. method experienced the same issue when the

noise rate was high (50%), but was robust in other cases.

Our PENCIL method, however, remained robust throughout

Table 4. Test accuracy on CIFAR-10 with asymmetric noise. We

reported the average result of 5 trials. Rows #1, #4 and #5

were based on our own implementation. Rows #2 and #3 were

quoted from [23]. The methods marked with a “*” used additional

information that should not be used, and need to be excluded in a

fair comparison.
method Asymmetric Noise

noise rate (%) 10 20 30 40 50

1 Cross Entropy Loss
best 91.09 89.94 88.78 87.78 77.79

last 85.24 80.74 76.09 76.12 71.05

2 Forward T * [16]
best 92.4 91.4 91.0 90.3 83.8

last 91.7 89.7 88.0 86.4 80.9

3 CNN-CRF * [24]
best 92.0 91.5 90.7 89.5 84.0

last 90.3 86.6 83.6 79.7 76.4

4 Tanaka et al. [23]
best 92.53 91.89 91.10 91.48 75.81

last 92.64 91.92 91.18 91.55 68.35

5 PENCIL
best 93.00 92.43 91.84 91.01 80.51

last 93.04 92.43 91.80 91.16 80.06

all the experiments.

The Forward [16] and CNN-CRF [24] methods both

require the ground-truth noise transition matrix, which is

hardly available in applications. Our method does not re-

quire any prior information about noise labels. Table 4 shows

that PENCIL has been robust and is the overall accuracy win-

ner on CIFAR-10.

We recorded the number of correct labels in PENCIL’s

second step. In a label distribution vector, the category

corresponding to the maximum value in the probability dis-

tribution was identified as the label estimated by PENCIL. If

this label was the same as the noise-free groundtruth label,

we say it was correct. The results for 70% symmetric and

30% asymmetric noise on CIFAR-10 are shown in Fig. 2 and

Fig. 3, respectively. We can observe that PENCIL effectively

and stably estimated correct labels for most examples even

with high noise rates. For example, with 70% symmetric

noise rate, originally only about 16000 labels were correct,

but after PENCIL’s learning process there are about 39000

correct labels.

4.5. Experiments on CUB200

We performed additional experiments on CUB-200 with

different hyperparameters α and λ. This dataset is generally

considered to contain no or only few noisy labels. There-

fore, we use it to further test the robustness of PENCIL on

7023

0 20 40 60 80 100 120

epoch

40

50

60

70

80

90

c
o
rr

e
c
t

la
b
e
l
(%

)

CIFAR10 with 70% symmetric noise

Figure 2. Correct labels on CIFAR-10 with 70% symmetric noise.

0 20 40 60 80 100 120

epoch

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

c
o
rr

e
c
t

la
b
e
l
(%

)

CIFAR10 with 30% asymmetric noise

Figure 3. Correct labels on CIFAR-10 with 30% asymmetric noise.

problems not affected by noisy labels.

The results are listed in Table 5. Row #1 is the baseline

(classic method) and rows #2 to #7 are PENCIL results.

For a wide range of α and λ values, PENCIL consistently

exhibited competitive results (i.e., without obvious degrada-

tion). Furthermore, we observed the final label distributions,

and the maximum values of all label distributions are correct

(i.e., same as the correct labels). This observation shows that

PENCIL works robustly in clean datasets, too.

In the settings of rows #4 to #7, PENCIL achieved

higher accuracy than the baseline. In particular, row #4
is 0.71% higher. A small percentage of label noise may

exist in this dataset [27]. Our hypothesis is that by replacing

the original one-hot label with probabilistic modeling in

PENCIL, we obtained better robustness and consequently a

small edge in accuracy.

4.6. Experiments on Clothing1M

Finally, we tested PENCIL on Clothing1M, which is a

real-world noisy label dataset. It includes a lot of unknown

structure (asymmetric) noise.

The results are shown in Table 6. All results are best

test accuracy. Rows #1 and #2 were quoted from [16],

and row #3 was reported in [23]. Although these baseline

models were trained on the whole Clothing1M training set,

our PENCIL used a randomly sampled pseudo-balanced

subset, including about 260k images. The backbone network

was ResNet-50 for all methods.

Table 5. Test accuracy on CUB-200 with different hyperparameters.

The accuracy of PENCIL does not decline in standard datasets with

clean labels.
method Test Accuracy (%)

1 Cross Entropy Loss 81.93

PENCIL

λ α

2 1000 0 81.91

3 2000 0 81.84

4 3000 0 82.64

5 1000 0.1 82.09

6 2000 0.1 82.21

7 3000 0.1 82.22

Table 6. Test accuracy on the Clothing1M dataset. Rows #1 and

#2 were quoted from [16] and #3 was quoted from [23]. These

baseline methods used the complete Clothing1M training data,

but our method only used a small pseudo-balanced subset (i.e.,

balanced in terms of noisy labels). Our method achieved state-of-

the-art result in this real-world dataset.
method Test Accuracy (%)

1 Cross Entropy Loss 68.94

2 Forward [16] 69.84

3 Tanaka et al. [23] 72.16

4 PENCIL 73.49

In Table 6, only noisy labeled examples were used (i.e.,

without using the clean training subset). The Forward [16]

method required the ground-truth noise transition matrix,

which is not available. Hence, it used an estimated matrix

instead. The Tanaka et al. [23] method used the distribution

of noisy labels to relieve the imbalanced problem. In our

PENCIL method, we did not use any extra prior informa-

tion. PENCIL achieved 1.33% higher accuracy than that

of Tanaka et al. [23], 3.65% higher than Forward [16] and

4.55% than cross entropy.

5. Conclusion

We proposed a framework named PENCIL to solve the

noisy label problem. PENCIL adopted label probability

distributions to supervise network learning and to update

these distributions through back-propagation end-to-end in

every epoch. We proposed a KL-loss, which is different from

previous methods but is robust for noisy label handling. The

proposed PENCIL framework is end-to-end and independent

of the backbone network structure, thus it is easy to deploy.

We tested PENCIL with synthetic label noise on CIFAR-

100 and CIFAR-10 with different noise types and noise rates,

and outperformed current state-of-the-art methods by large

margins. We also experimented on CUB-200, which is con-

sidered to be noise free. The results show that PENCIL is

robust for different datasets and hyperparameters. Lastly,

we tested PENCIL on the real-world large scale label noise

dataset Clothing1M. On this dataset, we achieved 1.33%

higher accuracy than previous state-of-the-art.

7024

References

[1] Dana Angluin and Philip D. Laird. Learning from noisy

examples. Machine Learning, 2(4):343–370, 1988.

[2] Carla E. Brodley and Mark A. Friedl. Identifying mislabeled

training data. J. Artif. Intell. Res., 11:131–167, 1999.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Fei-Fei Li. ImageNet: A large-scale hierarchical image

database. In CVPR, pages 248–255, 2009.

[4] Robert Fergus, Fei-Fei Li, Pietro Perona, and Andrew Zisser-

man. Learning object categories from Internet image searches.

Proceedings of the IEEE, 98(8):1453–1466, 2010.

[5] Benoı̂t Frénay and Michel Verleysen. Classification in the

presence of label noise: A survey. IEEE Trans. Neural Netw.

Learning Syst., 25(5):845–869, 2014.

[6] Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, and Xin

Geng. Deep label distribution learning with label ambiguity.

IEEE Trans. Image Processing, 26(6):2825–2838, 2017.

[7] Aritra Ghosh, Himanshu Kumar, and P. S. Sastry. Robust

loss functions under label noise for deep neural networks. In

AAAI, pages 1919–1925, 2017.

[8] Isabelle Guyon, Nada Matic, and Vladimir Vapnik. Discov-

ering informative patterns and data cleaning. In KDD, pages

181–203, 1996.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, pages

770–778, 2016.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV, vol-

ume 9908 of LNCS, pages 630–645. Springer, 2016.

[11] Jonathan Krause, Benjamin Sapp, Andrew Howard, Howard

Zhou, Alexander Toshev, Tom Duerig, James Philbin, and

Li Fei-Fei. The unreasonable effectiveness of noisy data for

fine-grained recognition. In ECCV, volume 9907 of LNCS,

pages 301–320. Springer, 2016.

[12] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Master’s thesis, University of Toronto, 2009.

[13] Jan Larsen, Lars Nonboe Andersen, Mads Hintz-Madsen, and

Lars Kai Hansen. Design of robust neural network classifiers.

In ICASSP, pages 1205–1208, 1998.

[14] Kuang-Huei Lee, Xiaodong He, Lei Zhang, and Linjun Yang.

CleanNet: Transfer learning for scalable image classifier train-

ing with label noise. In CVPR, pages 5447–5456, 2018.

[15] Xingjun Ma, Yisen Wang, Michael E. Houle, Shuo Zhou,

Sarah M. Erfani, Shu-Tao Xia, Sudanthi N. R. Wijewickrema,

and James Bailey. Dimensionality-driven learning with noisy

labels. In ICML, pages 3355–3364, 2018.

[16] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon,

Richard Nock, and Lizhen Qu. Making deep neural networks

robust to label noise: A loss correction approach. In CVPR,

pages 1944–1952, 2017.

[17] J. Ross Quinlan. Induction of decision trees. Machine Learn-

ing, 1(1):81–106, 1986.

[18] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian

Szegedy, Dumitru Erhan, and Andrew Rabinovich. Training

deep neural networks on noisy labels with bootstrapping. In

ICLR, 2015.

[19] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit.

Deep learning is robust to massive label noise. arXiv preprint

arXiv:1705.10694, 2017.

[20] Florian Schroff, Antonio Criminisi, and Andrew Zisserman.

Harvesting image databases from the web. IEEE Trans. Pat-

tern Anal. Mach. Intell., 33(4):754–766, 2011.

[21] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir

Bourdev, and Rob Fergus. Training convolutional networks

with noisy labels. arXiv preprint arXiv:1406.2080, 2014.

[22] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav

Gupta. Revisiting unreasonable effectiveness of data in deep

learning era. In ICCV, pages 843–852, 2017.

[23] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiy-

oharu Aizawa. Joint optimization framework for learning

with noisy labels. In CVPR, pages 5552–5560, 2018.

[24] Arash Vahdat. Toward robustness against label noise in train-

ing deep discriminative neural networks. In NIPS, pages

5601–5610, 2017.

[25] Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey,

Hongyuan Zha, Le Song, and Shu-Tao Xia. Iterative learning

with open-set noisy labels. In CVPR, pages 8688–8696, 2018.

[26] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-

longie, and P. Perona. Caltech-UCSD Birds 200. Technical

Report CNS-TR-2010-001, California Institute of Technol-

ogy, 2010.

[27] Michael J. Wilber, Iljung S. Kwak, David J. Kriegman, and

Serge J. Belongie. Learning concept embeddings with com-

bined human-machine expertise. In ICCV, pages 981–989,

2015.

[28] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang

Wang. Learning from massive noisy labeled data for image

classification. In CVPR, pages 2691–2699, 2015.

[29] Jiangchao Yao, Jiajie Wang, Ivor W Tsang, Ya Zhang, Jun

Sun, Chengqi Zhang, and Rui Zhang. Deep learning from

noisy image labels with quality embedding. IEEE Transac-

tions on Image Processing, 2018, accepted.

[30] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht,

and Oriol Vinyals. Understanding deep learning requires

rethinking generalization. In ICLR, 2017.

[31] Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy

loss for training deep neural networks with noisy labels. In

NIPS, 2018.

7025

