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Abstract

Dense captioning aims at simultaneously localizing se-

mantic regions and describing these regions-of-interest

(ROIs) with short phrases or sentences in natural language.

Previous studies have shown remarkable progresses, but

they are often vulnerable to the aperture problem that a cap-

tion generated by the features inside one ROI lacks contex-

tual coherence with its surrounding context in the input im-

age. In this work, we investigate contextual reasoning based

on multi-scale message propagations from the neighboring

contents to the target ROIs. To this end, we design a novel

end-to-end context and attribute grounded dense captioning

framework consisting of 1) a contextual visual mining mod-

ule and 2) a multi-level attribute grounded description gen-

eration module. Knowing that captions often co-occur with

the linguistic attributes (such as who, what and where), we

also incorporate an auxiliary supervision from hierarchi-

cal linguistic attributes to augment the distinctiveness of the

learned captions. Extensive experiments and ablation stud-

ies on Visual Genome dataset demonstrate the superiority

of the proposed model in comparison to the state-of-the-art

methods.

1. Introduction

Dense captioning, which was first introduced by [20],

is to parse semantic contents in an input image and describe

them with captions in natural languages. It can benefit other

tasks, including image captioning [38], segmentation [28],

visual question answering [14] and etc. In this paper, we

mainly focus on the caption generation and adopt Faster

RCNN [29] for semantic instances localization, following

recent advances [20, 34].

Differing from subjective image descriptions for high-

level abstraction of an entire image, captions of semantic

∗Bin Liu is the corresponding author.
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Figure 1. Dense captioning with different levels of contextual in-

teractions: (i) without any contextual cues (marked by blue) [20],

(ii) with guidance from the global cue (marked by red) [34], and

(iii) with mutual interactions from neighboring (marked by or-

ange) and global visual information. (Best viewed in color.)

instances in compact bounding boxes are far more objective

and less affected by ambiguities raised by subjective anno-

tations. That is, incorrect captions may be generated when

the target regions are visually ambiguous without contex-

tual reasoning. For example, it may falsely caption the tar-

get ROIs marked in blue-box as “yellow balloons” rather

than “yellow pants” in Fig. 1(a-i), if not aware of their con-

textual visual contents [20]. An alternative solution pro-

posed in [34] try to exploit the global feature from the entire

image as the contextual cue to improve the region caption-

ing. However, the descriptions sometimes are corrupted by

global appearance, especially for small and unusual objects

against dominant global contents. The “yellow pants” in

Fig. 1 (a-ii) is mistakenly described as “yellow kite in the

sky”. The similar phenomenon happens in Fig. 1 (a-ii) that

it mistakenly generates “a mirror” rather than “a lamp”.

In contrast to the prior arts, in this study, we show

that the innovative model, named as Context and Attribute

Grounded Network (CAG-Net), designed with contextual

correlated visual cues (i.e., local, neighboring, global) per-

mits multi-scale contextual message passing to reinforce re-

gional description generation. For example, the neighbor-
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ing ROIs marked in warm-box in Fig. 1(a-iii), semantically

connecting to the visual features in the target in blue-box in

Fig. 1(a-i), provide more valuable hints that the target is a

“yellow pants” belonging to a skier. Such contextual learn-

ing has shown its remarkable potential in other tasks includ-

ing object detection, segmentation and retrieval. However,

the learning of contextual representation, and how it can

effectively function on dense captioning, remains an open

problem. Specifically, the proposed CAG-Net consists of

two vital modules:

1) Contextual Feature Extractor, establishing a non-local

similarity graph for the feature interaction between the tar-

get ROI and its neighboring ROIs based on their feature

affinity and spatial nearness, allows adaptive contextual in-

formation sharing from multiple adjacent ROIs (i.e., global

and neighbors) to interact with the target ROI.

2) Attribute-Grounded Caption Generator adopts LSTM

as the fundamental unit and fuses contextual features to gen-

erate the description for the target ROI. To reinforce the

coarse-to-fine structure of description generation, we adopt

coarse-level and fined-level linguistic attribute losses as the

additional supervision respectively at the sequential LSTM

cells. Without sequential restrictions from the ground-truth

captions, such keywords or attributes are more recognizable

by the content in the target ROI, and thus own a more stable

discriminative power for the extraction of visual patterns.

To some extent, it is similar with the visual attributes of ob-

jects in multi-label classification.

Our contributions are listed as follows:

1) We design a context and attribute grounded dense cap-

tioning model that permits multi-scale (i.e., local, neigh-

boring, global) contextual information sharing and message

passing, where the knowledge integration is built on a non-

local similarity graph among instances in the input image.

2) A coarse-to-fine linguistic attribute supervision is pro-

posed to enhance the discriminativeness of the generated

captions, in which the ground-truth hierarchical linguistic

attributes are matched to the predicted keywords through a

novel coarse-to-fine manner.

3) Extensive experiments demonstrate the effectiveness of

the proposed CAG-Net model on the challenging large-

scale VG dataset.

2. Related Work

Image captioning to describe a general image with nat-

ural language was explored in recent years [5, 26, 12, 30,

2, 27, 35, 25]. The works [5, 36, 1, 6, 19, 7] focused on

improve ifiguremage captioning by the attention-embedded

features generated by an additional attention model. Based

on the attention model, Gu et al. [15] adopted a coarse-

to-fine framework which increased the model complexity

gradually with increasingly refined attention weights for

image captioning. In our work, dense image captioning ren-

ders individual captions for different ROIs in the image. As

for dense captioning, we firstly adopt the multi-scale fea-

ture interaction and attribute grounded generation for ac-

curate region descriptions. Our coarse-to-fine strategy is

based on the hierarchical attribute supervisions rather than

the different attention inputs of the description generation

modules [15]. The previous works [38, 36] adopted the at-

tributes (the words in the vocabulary) to train an additional

model for another input of the LSTM cells for the descrip-

tion generation. Differing from that, our work adopts the

linguistic attributes as the auxiliary supervision for coarse-

to-fine generation without any external branches or input.

Dense Image Captioning. Dense image captioning is sup-

posed to not only localize the regions of interest in the im-

age but also generate descriptions with natural language,

which was first proposed in [20]. Johnson et al. [20] in-

troduced a new dense localization layer, which was fully

differentiable and used bilinear interpolation to smoothly

extract the activations inside each region. Yang et al. [34]

exploited more accurate localization for regions by joint in-

ference of localization and description for a given region

proposal, while the global feature of the image was used as

the contextual cues to improve region captioning. However,

these previous works did not capture the relative features of

different regions and valid message passing between con-

textual regions for accurate region captioning.

Contextual Learning. Contextual learning was employed

in various topics in recent years [32, 24, 22, 39, 33, 10,

9], e.g., object detection, segmentation, and retrieval. For

both detection and segmentation, learning feature represen-

tations from a global view rather than the located object

itself has been proven effective by [37, 28]. Gkioxari et

al. [13] used more than one region proposals for action

recognition while Hu et al. [17] processed a set of objects si-

multaneously through interaction between their appearance

feature and geometry, thus allowing modeling of their re-

lations for object detection. As for contextual learning for

image captioning, Yao et al. [35] computed the probabil-

ity distribution on all the semantic relation classes for each

object pair with the learnt visual relation classifier to estab-

lish the semantic graph for image captioning. Contextual

feature learning among the located regions for dense cap-

tioning has never been explored in the previous works. In

our work, we establish contextual message passing module

without additional branches or any auxiliary relation labels.

3. Context and Attribute Grounded Dense

Captioning (CAG-Net)

In this paper, we propose a novel end-to-end dense im-

age captioning framework, named as Context and Attribute

Grounded Dense Captioning (CAG-Net). As shown in
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Figure 2. The architecture of CAG-Net. The multi-scale features are generated by the proposed Contextual Feature Extractor after region

proposals. Then the local (in blue) feature of the target region and multi-scale context cues, i.e., global (in red) and neighboring (in orange),

broadcast into the Attribute Grounded Caption Generator for region captioning in parallel. The final descriptions of the target region are

generated jointly by the hierarchical structures trained with the auxiliary attribute losses.

Similarity Graph

…

α1 α2 αK…

Neighboring ROIs

Target ROI

Figure 3. An example of Contextual Feature Extractor for the

target proposal. (left) The similarity graph between target (in

blue) proposal and contextual neighboring (in orange) proposals

are generated considering both spatial configuration and appear-

ance similarity. (right) The neighboring feature are obtained by

fusing the contextual neighboring proposals with the similarity

graph. Best viewed in color.

Fig. 2, we first learn visual features of the input image by

a CNN model as the way adopted by Faster RCNN [29],

and obtain the semantic features. Such semantic features

are used to generate a set of candidate regions (ROIs) by

a Region Proposal Network (RPN) [29]. Based on these

ROI features, we introduce a Contextual Feature Extrac-

tor (CFE) which generates the global, neighboring and

local (i.e., target itself) cues (Sec. 3.1). The neighboring

cues are collected by establishing a similarity graph be-

tween the target ROI and the neighboring ROIs, shown in

Fig. 3. The multi-scale contextual cues, broadcast in par-

allel, are fused by an Attribute Grounded Caption Gen-

erator (AGCG) which employs multiple LSTM [16] cells

(Sec. 3.2). To generate rich and fine-grained descriptions

and reinforce the coarse-to-fine procedure of description

generation, we adopt an auxiliary supervision, Linguistic

Attributes, hierarchically upon the outputs of the sequen-

tial LSTM cells, as in Fig. 2. The proposed model is trained

to both minimize the sentence loss and the binary cross-

entropy losses (attribute losses) for caption generation.

3.1. Contextual Feature Extractor

Denote the regions-of-interest (ROIs) in an image as

R = {Ri|i = 1, 2, ..., N} and the entire image as R
∗.

The contextual features for the local region Ri are from the

multi-scale contextual cues of local region Ri, neighboring

region Rn
i = R/Ri, and the global region R

∗. For the

target region Ri, denote the local, neighboring and global

features as F
l
i, F

n
i , and F

g
i , respectively, where F

g
i refers

to the features extracted from the entire input image and F
l
i

is the feature of the target instance. The Contextual Fea-

ture Extractor (CFE) focuses on exploring the neighboring

features Fn
i which can be formulated as Fn

i = f(Ri,R
n
i ).

We design a region-level similarity graph (i.e., ROI-

level) for neighboring ROIs aggregation, inspired by pixel-

level non-local operations. Non-local means [4] has been

often used as a filter by computing a weighted mean of all

pixels in an image, which allows pixels to contribute to the

filtered response based on the patch appearance similarity.

Similarly, neighboring ROIs with similar semantic appear-

ance are supposed to contribute more on the feature extrac-

tion for the target local instance. Following the operation

in [4], we rewrite the formulation of f(Ri,R
n
i ) as

f(Ri,R
n
i ) =

∑

∀j,j 6=i

G(Fl
i,F

l
j)F

l
j , (1)

where G(Fl
i,F

l
j) is the appearance similarity between re-

gion Ri and Rj , and F
l
i is the fixed-length local feature of
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(b) L + G (d) CAG-Net(c)  L + G + N ( CCI )(a) L

Figure 4. Comparisons between different network structures. (a) L generates the descriptions separately after region proposals; (b) L +

G generates descriptions with not only the local feature but also the global feature of the image; (c) L + G + N (CCI) integrates global,

neighboring and local information for the target to generate descriptions; (d) CAG-Net by multiple LSTM cells is a stacked version of (c)

CCI but supervised with hierarchical linguistic attribute losses.

A

● ● ●

● ● ●

● ● ●

young EOSsurfer

(a)  Unrolled Structure

(b) Captioning Loss

A young surfer is standing on the surfboard.

Attribute 

Loss

A young surfer stands on the surfboard.

Sentence 

Loss

surfer surfboard standing onyoung ● ● ●

surfer surfboard stands onyoung ● ● ●

Ground Truth Predictions

Figure 5. The unrolled structure of Contextual Cue Integrator

(CCI). (a) Unrolled structure integrates the local (in blue) informa-

tion and multi-scale context cues, i.e., global (in red) and neigh-

boring (in orange). The hollow circle stands for the LSTM cell

while the plus sign for the feature fusion briefly. (b) The caption-

ing loss consists of a sentence loss and an attribute loss.

region Ri. The similarity G is the normalized cross correla-

tion based on Gaussian function, formulated as,

G(Fl
i,F

l
j) =

exp(Fl
i

⊤
F

l
j)

∑
∀j,j 6=i exp(F

l
i

⊤
Fl

j)
, (2)

where F
l
i

⊤
F

l
j is dot-product similarity of cross correlation.

Therefore, we can obtain the similarity graph for each target

ROI with its neighboring ROIs in the image.

General object detection algorithm usually generates re-

dundant region candidates (ROIs) to ensure the accuracy

and robustness in region localization and detection. How-

ever, in this case, the integrated neighboring feature Fn
i will

be contaminated by distant and independent proposals, and

the amount of ROIs in Rn
i also tremendously increase the

computation cost and noises in the environment. Therefore,

we sample a subset of Rn
i based on their spatial nearness

such that the closer ROIs are more relative to the target ROI.

We sort ROIs in Rn
i based on the IoU (intersection over

union) metric with the target region Ri. By sampling the

top-k proposals as R̂n
i , the calculation of the neighboring

features can be accelerated as Fn
i = f(Ri, R̂

n
i ).

3.2. Attribute Grounded Caption Generator

We present a novel caption generator with two parts: (1)

a Contextual Cue Integrator to fuse contextual features pro-

duced by the CFE in Sec. 3.1, and (2) an Attribute Grounded

Coarse-to-Fine Generator with coarse-level and fined-level

linguistic attribute losses as the additional supervision to en-

hance the discriminativeness of the generated captions.

Contextual Cue Integrator (CCI) - The contextual cue in-

tegrator adopts multiple LSTM cells to hierarchically inte-

grate the multi-scale contextual features into the localized

features. The local, neighboring and global features are

spread through the LSTM cells so as to generate context-

aware descriptions for the target ROI. These descriptions

are fused together for the final captioning of the target re-

gion at each time step of LSTM. The unrolled contextual

cue integration module is shown in Fig. 5(a). The local

branch is regarded as the backbone for the target and the

global and neighboring branches are grouped as multi-scale

contextual cues to provide complementary guidances. Thus,

the contextual cues are adaptively combined at first, and

they are then added to the local branch via a second adap-

tive fusion, as shown in Fig. 4(c). The importance of differ-

ent levels’ features is regularized by the adaptive weights,

which are optimized during training the framework.

Attribute Grounded Coarse-to-Fine Generator - It is

challenging in generating rich and accurate descriptions just

by the sequential LSTMs. To this end, we increase its repre-

sentative power by introducing a coarse-to-fine caption gen-

eration procedure with sequential LSTM cells, i.e., coarse

stage and refined stage supervised with the auxiliary hierar-

chical linguistic attribute losses.

The linguistic attribute losses serve as the intermediate

and auxiliary supervisions from coarse to fine in addition

to the general sentence loss of captioning, implemented at
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The person wears white shirt. The younger girl has  short hair.

Persons are talking on the sidewalk.

. . .   

The young man is standing behind bus.

A man talks to the girl.

person

Object/ Scene 

girl persons man

. . .   

. . .   

shirt

. . .   
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younger

Attributes/ Status

young

. . .   

. . .   
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. . .   

short

. . .   

young white short
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Interaction/ Action 

talking

. . .   

. . .   

has

. . .   

standing

. . .   

talk have stand

Relation/ Spatiality

on

. . .   

behind

. . .   

to

. . .   

on behind to
Coarse-level

Attributes𝒜2

. . .   . . .   

. . .   Training 

Annotations

(Sentences)

Fined-level

Attributes𝒜1

Figure 6. Illustration of sentence itemization. Fined-level attributes A1: the original sentences of training annotations (bottom) are item-

ized to individual words and divided into four groups: object/scene (noun), attribute/status (adjective), interaction/action (verb) and re-

lation/spatially (preposition). Coarse-level attributes A2: the individual words are normalized and clustered by semantical similarity for

high-level words, e.g., the girl and man in A1 belong to person in A2.

each stage as shown in Fig. 2. The attribute losses are for-

matted as binary classification (i.e., exist or not) losses for

each attribute separately during the training procedure. As

shown in Fig. 5 (b), the attributes, e.g., surfer, standing,

young and on, will be measured individually regardless of

the speech order, similar as the multi-label classification for

attribute recognition of objects.

The subsequent LSTM layer (refined stage) is sup-

posed to serve as the fine-grained decoders for the coarse

regional descriptions generated by the preceding one

(coarse stage). The hidden vectors of LSTM cells pro-

duced by the coarse stage are taken as the disambiguating

cues to the refined stage. The outputs of global and neigh-

boring branches at the coarse stage are used as the inputs

of the respective branches directly at the refined stage. The

adaptive fusion of these three branches at the coarse stage

is fed as the input at the refined stage. Meanwhile, these

vectors are used for coarse-level attribute prediction. The

connection of the branches at the multiple stages is shown

in the Fig. 4(d). The final outputs of the word decoder at the

refined stage are the generated descriptions for the target re-

gion. Meanwhile, these outputs are used for the fined-level

attribute prediction as well.

These linguistic attributes are predicted from the out-

puts of the LSTMs during the training procedure and the

unsolved problem here is how to get the ground-truth lin-

guistic attributes. In our work, the hierarchical linguistic at-

tributes are obtained by itemizing the sentences in the train-

ing split with natural language processing toolkit (NLTK).

1) Fined-level attributes A1 for refined stage. We distill

the linguistic knowledge from the training annotations (sen-

tences or phrases) to individual keywords/attributes, by the

speech toolkit from NLTK , as shown in Fig. 6. The refer-

ence sentences are parsed into four groups by the part-of-

speech, i.e., nouns, adjectives, verbs and prepositions from

the following aspects respectively: (1) The noun words are

usually the labels of objects or scenes, e.g., person, bus,

sidewalk and etc.; (2) adjectives represent attributes or sta-

tus, e.g., young, black; (3) verbs are meanings of actions

or interactions, e.g., standing, talks; (4) prepositions for re-

lations or spatiality, e.g., behind. The fined-level attributes

like surfer and standing are used at the latter stage for the

exact information extraction.

2) Coarse-level attributes A2 for coarse stage. We use

the high-level semantically clustered attributes, e.g., per-

son, stand to stand for the major information. We observe

that labels with the same concept may have different sin-

gular and plural forms or different participles, e.g., persons

versus person, talks versus talking. These words are nor-

malized to a unified format by NLTK Lemmatizer, e.g., talk

from talks and talking. Furthermore, labels having closer

semantic correlation (e.g., girl and man are hyponyms of

person) need to be distinguished from other semantic con-

cepts like cloth, as shown in the top panel of Fig. 6. There-

fore, we cluster the labels with their semantical similarities

computed by Leacock-Chodorow distance [31]. We find a

threshold of 0.85 is well-suited for splitting semantic con-

cepts. The coarse-level items like person and stand are used

at the preceding stage for the key information extraction.

4. Experiments

4.1. Experiment Settings

Dataset. Visual Genome (VG) region captioning

dataset [21] is used as the evaluation benchmark in our ex-

periments. For fair comparisons, we use the dataset of ver-

sion 1.0 and the same train/validation/test splits as in [20],

i.e., 77398 images for training and 5000 images each as-

signed for validation and test.

Evaluation Metric. Following [20], the mean Average Pre-

cision (mAP) are measured across a range of thresholds

for both accurate localization and language description, in-

spired by the evaluation metrics in object detection [11, 23]

and image captioning [3]. For localization, intersection

over union (IoU) thresholds .3, .4, .5, .6, .7 are used while

METEOR [3] score thresholds 0, .05, .1, .15, .2, .25 used
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for language similarity. The average precision is measured

across all pairwise settings, i.e., (IoU, METEOR), of these

methods and report the mean AP (mAP), which means the

mAP is computed for different IoU thresholds for localiza-

tion accuracy, and different METEOR score thresholds for

language similarity, then averaged as the final score.

To isolate the accuracy of language in the predicted cap-

tions without localization, the predicted captions are eval-

uated neglecting their spatial positions. Following [20],

the references of each prediction are generated by merg-

ing ground truth across each image into a bag of reference

sentences. Apart from the mAP score introduced above, the

METEOR score will be reported as the auxiliary evalua-

tion metric, denoted as METEOR. Note that the references

from all regions in an image only offer the global and coarse

ground truth descriptions.

Implementation Details. We use VGG-16 [21] pretrained

on ImageNet [8] as the network backbone. In Fig.2, we

use 6 LSTM cells in total, i.e., one LSTM for local, neigh-

boring, global features respectively at each stage. The

newly-introduced layers and LSTM cells are randomly ini-

tialized and our proposed CAG-Net is end-to-end trained.

The implementations are based on Faster RCNN [29] using

Caffe [18], and the networks are optimized via stochastic

gradient descent (SGD) with base learning rate as 0.001.

The input image is re-sized to have a longer side of 720 pix-

els and 256 proposals are sampled per image in each for-

ward pass of training. The LSTM cell for sequential model-

ing has 512 hidden nodes. The most 10, 000 frequent words

in the training annotations are remained as the vocabulary

and other words are collapsed into a special <UNK> token

under the same conditions as in [34]. Following [20], we

discard all sentences with more than 10 words (7% of anno-

tations), that is the time length of the LSTMs is 10.

The losses of our framework are from two aspects: 1)

Location: Smooth ℓ1 loss for bounding box regression

(Lbbox) and softmax loss for binary foreground/background

classifier (Lcls), 2) Caption: Cross entropy loss of sentences

for description generation (Lsent), following [34] and bi-

nary cross entropy loss for linguistic attribute recognition

(Lattr) . The total loss function is L = Lsent + αLbbox +
βLcls + γLattr, where α = 0.1, β = 0.1 and γ = 0.01 in

our experiments with the empirical values.

In evaluation, we follow the settings of [20] for fair com-

parisons. 300 proposals with the highest predicted confi-

dence are remained after non-maximum suppression (NMS)

with IoU threshold 0.7. We use efficient beam-1 search to

produce region descriptions, where the word with the high-

est confidence is selected at each time step. With another

round NMS with IoU threshold 0.3, the remaining regions

and their generated descriptions are used for the final eval-

uation. To establish an upper bound regardless of region

proposals, we evaluate the models on ground truth bound-

Methods
RPN GT

mAP METEOR mAP METEOR

CAG-Net 10.51 0.279 36.29 0.316

T-LSTM [34] 9.31 0.275 33.58 0.307

FCLN [20] 5.39 0.273 27.03 0.305

Table 1. Quantitative results on Visual Genome comparing with

state-of-the-art methods, T-LSTM [34] and FLCN [20]. Results in

bold indicate the best performance. The metrics on T-LSTM, i.e.,

METEOR, are not provided in the paper and we measure these

metrics using the model provided by the authors.

Methods CAG-Net L+G+N L+G L

mAP
RPN 10.51 9.55 7.97 6.31

GT 36.29 33.50 31.77 26.70

Table 2. Ablation study on CAG-Net compared the variants of the

contextual cue integration module, i.e., 1) L, local cue without

neighboring nor global features, 2) L+G, local and global cue in-

tegration and 3) L+G+N, local, global and neighboring integration

without stacking contextual cue integration modules. Results in

bold indicate the best performance.

ing boxes as well, marked as GT in the tables.

4.2. Comparison with State­of­the­Art Methods

We quantitatively compare the performances of the pro-

posed Context and Attribute Grounding Dense Captioning

(CAG-Net) model with the previous state-of-the-arts, i.e.,

FCLN[20] and T-LSTM [34]. FCLN [20] introduces a fully

differentiable layer for dense localization. The captioning

per region is generated solitarily without any message pass-

ing from the contextual features. T-LSTM [34] designs net-

work structures that incorporate two novel parts: joint in-

ference for accurate localization and context fusion with the

global scene for accurate description regardless of the inter-

actions among the relative regions.

The comparison experiments use the same settings as the

prior arts, shown in Tab. 1. The CAG-Net significantly out-

performs these methods by achieving a gain on mAP score

from 9.31% to 10.51% using RPN and from 33.58% to

36.29% using the ground truth bounding boxes compared

to the previous state-of-the-art, T-LSTM [34]. The per-

formance gains are mainly from the benefits of attribute

grounded coarse-to-fine description generation using the

contextual feature extractor and message integration among

the regions. The proposed CAG-Net presents a strong ca-

pability in capturing the correlation among relative regions

and generating more accurate descriptions.

It is observed that the METEOR scores of different meth-

ods are approximate while the mAP scores have a large

margin. That is because that the METEOR score for the

predicted caption is calculated by using all ground truth de-

scriptions of all the regions in the image as the references.

These references are coarse and may not be accurate for a

certain region. In the following ablation study (Sec. 5), we

mainly focus on the comparison of mAP scores.
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person are in a row.

people are in the field

two people are riding horses
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a black bench

a metal fence

a metal rack

a metal basket 

a steel basket

a white cake

a white frosting

a donut with pink frosting

pieces of apple

sliced up apple pieces

a brown bag

a baseball glove

a brown baseball glove

a brown glove of the player

a brown glove of the pitcher

a black box

a wooden  door

a black tv

a black tv on the table

a black tv on the desk

Figure 7. Qualitative results of CAG-Net compared with variants of different module configurations on VG dataset, i.e., (a) L(Local Cue),

(b) L+G (Local and Global Integration), (c) L+G+N (CCI) (Local, Global and Neighboring Integration).

5. Ablation Study

5.1. CAG­Net

Attribute Grounded Caption Generator with Contex-

tual Cues. To demonstrate the benefits of multi-scale con-

texts and attribute grounded captioning module, we com-

pare the results of CAG-Net in Fig. 4 (d) with the variants by

removing individual cue step by step, i.e., 1) L, local cue as

the baseline without either contextual neighboring or global

features as shown in Fig. 4 (a), 2) L+G, local and global cue

integration without contextual neighboring cues in Fig. 4

(b) and 3) L+G+N, local, global and neighboring integra-

tion without stacking contextual cue integration modules in

Fig. 4 (c), defined as CCI in Sec 3.2. The quantitative results

are reported in Tab. 2.

Compare with basic L, the mAP of L+G+N can be im-

proved from 6.31% to 9.55% using RPN and from 26.70%
to 33.50% using ground truth boxes by involving contextual

feature extractor and message integration while the mAP of

L+G which only includes the global cues achieves 7.97%
using RPN and 31.77% using ground truth bounding boxes.

The significant improvement demonstrates the importances

of contextual cue integration between multi-scale contexts

and individual regions for region generation and the con-

textual cues, i.e., global and neighboring make a certain

contribution to improving the final performances. Further-

more, with the assistance of the linguistic attribute losses,

the mAP of CAG-Net achieves 10.51% in mAP using RPN

by a gain of 0.96% compared to L+G+N (CCI) while a gain

of 1.79% using the ground truth bounding boxes. No doubt

that the generated descriptions are more accurate and rich

for the regions when adopting attribute grounded coarse-to-

fine captioning module.

The qualitative results are shown in Fig. 7. The descrip-

tions directly generated by the target regions are fallible due

to lack of enough visual information, e.g., mistaking the

baseball glove for a brown bag, the apple pieces for a white

CAG-Net

Methods (A2,A1)(A1,A1) (A2,A2) (1k, 1k) (−,−) CCI

mAP
RPN 10.51 9.93 9.99 9.95 9.59 9.55

GT 36.29 34.98 35.17 35.02 33.78 33.50

Table 3. Ablation study on CAG-Net compared the variants of

linguistic attribute losses, i.e., 1) (A2,A1), with the proposed

coarse-to-fine attributes, 2) (A1,A1), only with the fined-level

attributes A1, 3) (A2,A2), only with the coarse-level attributes

A2, 4) (1k, 1k), replacing the proposed attributes with the top 1k
attributes, 5) (−,−), stacked structure without any attributes, 6)

CCI, just one stage without attributes. Results in bold are the best.

cake and the steel basket for black bench. The involved

global cues of the image also lead to deviation, e.g., the

tv in the room is mistakenly predicted as a wooden door,

although positive effect sometimes, e.g., the glove is ac-

curately predicted with the assistance of the global image

feature. Furthermore, the coarse-to-fine generation module

will reinforce more rich descriptions a black tv on the table

compared with individual module a black tv shown in the

figure. The results shows the excellent performance of the

proposed context and attribute grounded generation struc-

ture for dense captioning.

Linguistic Attribute Losses. To demonstrate the benefits

of the proposed linguistic attribute losses, we compare the

performances of CAG-Net with the variants of linguistic at-

tributes by 1) “(−,−)”, removing all the auxiliary linguistic

attribute losses in the framework, 2) “(A1,A1)”, only with

the fined-level attributes A1 at two stages, 3) “(A2,A2)”,

only with the coarse-level attributes A2 at two stages, 4)

“(1k,1k)”, replacing the proposed linguistic attributes with

the top 1k attributes (the top 1k most frequent words in the

vocabulary) at two stages.

The results are shown in Tab. 3 and CAG-Net with the

proposed coarse-to-fine linguistic attributes is denoted as

“(A2,A1)”. Compared with “CCI”, CAG-Net without any

attributes (denoted as “(−,−)” in Tab.3) gets the approx-

imate results because the navie stacking description gen-
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Methods Random Nearest SG FC AVE MAX

mAP
RPN 8.626 9.144 9.315 8.132 7.981 8.024

GT 32.274 33.411 33.412 30.272 29.937 30.121

Table 4. Results of Contextual Feature Extractor with different

settings. “Random” means selecting the contextual neighboring

regions randomly from all the regions in the image. “Nearest”

means selecting the relative regions from the nearest ones sorted

by the IoU scores. “SG” means fusing these neighboring regions

with similarity graph. “FC” means fusing k-sorted neighboring

regions with fully connected layer. “AVE” means average-pooling

of k-sorted neighboring regions. “MAX” means max-pooling of

k-sorted neighboring regions.

eration modules cannot significantly improve the perfor-

mance although with more parameters. In contrast, the at-

tribute grounded structure with the proposed coarse-to-fine

attributes can achieve a gain from 9.59% to 10.51%(using

RPN) and from 33.78% to 36.29% (using ground truth

boxes) because of the auxiliary hierarchical supervision of

the proposed linguistic attribute losses. Furthermore, to

evaluate the effectiveness of the coarse-to-fine structure, we

compare CAG-Net, i.e., “(A2,A1)”, with the variants of

different linguistic attributes, i.e., ‘(A1,A1)”, “(A2,A2)”
and “(1k, 1k)”. Without the coarse-to-fine strategy at two

stages, the stacked structures with different attributes can-

not achieve as good performance as CAG-Net both using

RPN and using ground truth bounding boxes. It is signif-

icant that the proposed linguistic attribute losses from the

coarse to fine stage can improve the description generation

of target regions.

5.2. Contextual Feature Extractor

In this section, we compare the performances of Contex-

tual Feature Extractor (CFE) with variants by changing one

of the hyper-parameters or settings step by step to explore

the best practice of the proposed contextual feature extrac-

tor. As for the generation structure, we use CCI instead of

CAG-Net due to the faster speed and less computation cost.

Contextual Feature Extractor of k-nearest neighboring

regions performs best. To explore the benefits of similarity

graph in Contextual Feature Extractor in our framework, we

replace the similarity graph in the CCI shown in Fig. 4 (c)

with 1) “FC”, the fully-connected layer, 2) “MAX”, max-

pooling layer, 3) “AVE”, average-pooling layer after con-

catenating all the feature vectors of k neighboring regions.

The results are shown in Tab. 4. The similarity graph oper-

ation can improve all the evaluation metrics compared with

the simple fully-connected/ max-pooling/ average-pooling

operation after concatenating all the feature vectors of k
neighboring regions. That’s because the similarity graph

not only includes the visual features of k neighboring re-

gions but also utilizes the relation between the target re-

gion and the neighboring region. Furthermore, Tab. 4 shows

k 10 20 30 50 100

mAP
RPN 8.915 9.144 9.109 8.804 8.749

GT 33.260 33.412 33.411 33.389 33.089

Table 5. Results with different numbers of k-nearest regions

for neighboring features in the Contextual Feature Extractor.

The results are reported when hyper-parameter k is set as

10, 20, 30, 50, 100 respectively.

that the nearest-neighbor regions (“Nearest”) perform better

than the regions randomly-selected from all the regions in

the image (“Random”) due to more correlated regions in-

volved in the description generation.

Contextual Feature Extractor with hyper-parameter

k = 20 outperforms others. The number of neighbor-

ing regions is worth investigating because it can be used

to find a trade-off between the effective message passing

and the noises from non-correlated proposals in the im-

age. We validate the number of neighboring regions among

10, 20, 30, 50 and 100 of CCI. The results are reported in

Tab. 5. We adopt k as 20 for further experiments for the

best performance (9.144%) on mAP considering region lo-

calization and description jointly.

6. Conclusion

In this paper, we propose a novel end-to-end frame-

work for dense captioning, named as Context and Attribute

Grounded Dense Captioning (CAG-Net) by utilizing the vi-

sual information of both the target region and multi-scale

contextual cues, i.e., global and neighboring. The proposed

contextual feature extractor exploits the message passing

between the target region and k-nearest neighboring regions

in the image while the attribute grounded contextual cue

integration modules reinforce rich and accurate description

generation. To enhance the description generation for the

regions, we extract linguistic attributes from the reference

sentences as the auxiliary supervision at each stage during

the training process. Extensive experiments demonstrate

the respective effectiveness and significance of the proposed

CAG-Net on the challenging large-scale VG dataset.
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