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Abstract

Explicit representations of the global match distributions

of pixel-wise correspondences between pairs of images are

desirable for uncertainty estimation and downstream ap-

plications. However, the computation of the match den-

sity for each pixel may be prohibitively expensive due to

the large number of candidates. In this paper, we propose

Hierarchical Discrete Distribution Decomposition (HD3),

a framework suitable for learning probabilistic pixel corre-

spondences in both optical flow and stereo matching. We

decompose the full match density into multiple scales hi-

erarchically, and estimate the local matching distributions

at each scale conditioned on the matching and warping at

coarser scales. The local distributions can then be com-

posed together to form the global match density. Despite

its simplicity, our probabilistic method achieves state-of-

the-art results for both optical flow and stereo matching on

established benchmarks. We also find the estimated uncer-

tainty is a good indication of the reliability of the predicted

correspondences.

1. Introduction

Finding dense pixel correspondences between two im-

ages, typically for stereo matching or optical flow, is one of

the earliest problems studied in the computer vision litera-

ture. Dense correspondences have wide application includ-

ing for activity recognition [36], video interpolation [23],

scene geometry perception [13], and many others. Chal-

lenges when solving this problem include texture ambigu-

ity, complex object motion, illumination change, and entan-

gled occlusion estimation.

Classic approaches jointly optimize local texture match-

ing and neighbor affinity on images [17] possibly in a

coarse-to-fine fashion [6, 20, 42]. While these methods can

achieve impressive correspondence accuracy, the optimiza-

tion step may be too slow for downstream applications. Re-

cent works using deep convolutional networks (ConvNets)

have achieved similar or even better matching results with-

out an optimization step [10, 21, 40]. Pixel features learned

directly from correspondence supervision can capture both

local appearance and global context information due to the

large network receptive fields. With GPU acceleration, it is

possible to use these networks to regress the pixel displace-

ments in real time [10, 40].

However, the estimation uncertainty inherent in cor-

respondence estimation is neglected by displacement re-

gression approaches. Though post-hoc confidence mea-

sures [27, 29] can recover the uncertainty to some de-

gree, they are independent of model training; uncertainty

is ignored in the training process. Recognizing the miss-

ing uncertainty measures in optical flow methods, some

works [12, 43] propose probabilistic frameworks for joint

correspondence and uncertainty estimation. Due to con-

straints on computation and parameter number, they rely on

the local Gaussian noise assumption to represent the match

distribution. Consequently, they cannot model complicated

distributions on a large image area. Early works in stereo

matching show that we can build a complete match cost vol-

ume as a proxy to estimate the match density, but were not

applicable for high-resolution stereo matching nor general

optical flow due to the excessive amount of computation

needed for the complete cost volume.

In this work, we propose Hierarchical Discrete Distribu-

tion Decomposition (HD3), a general probabilistic frame-

work for match density estimation. We aim to find the dis-

crete distribution of possible correspondences with a large

support defined on the image grids for each pixel. We adopt

a general model to represent pixel-level match probabil-

ity without any parametric distribution assumption. The

model-inherent uncertainty measures can be naturally de-

rived from our estimated match densities.

HD3 decomposes the full match density into multiple

levels of local distributions similar to quadtrees. To extract

discriminative features for matching, we use networks with

Deep Layer Aggregation (DLA) [50] to build the multi-

scale feature pyramid. The DLA framework provides us

with feature networks of different computation-accuracy

trade-offs, which can be easily integrated with other recog-

nition tasks in complex applications. We estimate the match

density of the residual motion in each scale, conditioned on

match densities at coarser scales. We can propagate the con-

ditional information from previous levels to the prediction

at the current level through iterative feature warping and
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Figure 1: Illustration of HD3. We aim to estimate discrete match distribution in this work. For reducing the infeasible computation cost,

the overall distribution is decomposed into multiple scales hierarchically at learning time. The full match information can be recovered by

composing predictions from all levels. Please refer to Sec. 3.2 for more details.

density bypass connections. The multi-scale match densi-

ties can then be used to recover the complete match density.

We can easily convert between point estimates and match

densities to train our models on existing datasets with anno-

tations in the form of motion vectors.

We evaluate our framework extensively in two appli-

cations: stereo matching and optical flow. Our method

achieves state-of-the-art results on both the synthetic dataset

MPI Sintel [7] and the real dataset KITTI [13]. Our method

not only surpasses all two-frame based optical flow methods

by large margins but also beats some competitive scene flow

methods on both KITTI 2012 & 2015. We also evaluate our

uncertainty estimation and demonstrate the error-awareness

of our method in its predictions. Our code is available at

https://github.com/ucbdrive/hd3.

2. Related Work

Great efforts have been devoted to the problems of find-

ing dense correspondences in the past four decades. For a

thorough review, we refer to popular benchmarks includ-

ing Middlebury [4], MPI Sintel [7], and KITTI [32] bench-

marks for both the classical methods and the latest advances

in these areas. We will discuss the most related ideas in this

section.

Correspondence Estimation. Classical stereo matching

usually involves local correspondence extraction and semi-

global regularization [16]. On the other hand, optical flow

methods typically adopt MRFs [28] to jointly reason about

the displacements, occlusions, and symmetries [20, 46] for

tackling the more unconstrained and challenging 2D cor-

respondence problem. Despite the distinct differences be-

tween the search space dimensions, stereo matching and

optical flow share similar assumptions such as brightness

constancy and edge-preserving continuity [17, 34, 40].

With the success of deep learning, end-to-end mod-

els have been designed for these dense prediction tasks.

Benefiting from pretraining on a large corpus of synthetic

data [30], these methods achieve impressive results on par

with classical methods [10, 21]. Furthermore, recent ad-

vances emphasize the incorporation of classical principles

into network designs, such as pyramid matching, feature

warping, and contextual regularizer [19, 24, 40]. These im-

provements contribute to the superior performance of deep

learning models, allowing them to surpass classical meth-

ods. However, such learning methods neglect the model-

inherent uncertainty estimation, i.e. they are agnostic of the

prediction failure, which is quite important for applications

such as autonomous driving and medical imaging. In con-

trast, our work focuses on the probabilistic correspondence

estimation, which can naturally convey the confidence of

the predictions.

Uncertainty Measures. Various uncertainty measures have

been proposed for classical optical flow estimation. Bar-

ron et al. [5] proposed a simple method based on the in-

put data characteristics while ignoring the estimated optical

flow itself. Kondermann et al. [27] learned a probabilistic

flow model and obtained uncertainty estimation through hy-

pothesis testing. Mac Aodha et al. [29] trained a classifier

to assess the prediction quality in terms of end-point-error.

These methods either leverage only part of the input infor-

mation, such as images or predicted flow, for uncertainty

estimation, or require post-processing steps independent of

model inference itself.

Recently, Gast et al. [12] recognized the importance

of model-inherent uncertainty measures for deep networks.

They proposed probabilistic output layers and employed as-

sumed density filtering to propagate activation uncertainties

through the network. For computational tractability, they

assumed Gaussian noise and adopted a parametric distribu-

tion. Though it can be easily adapted for use with existing

regression networks, their performance is only competitive

with the deterministic counterparts. Our method provides

inherent uncertainty estimation as well as new state-of-the-
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Figure 2: Overview of our architecture. The submodule at the lth level is presented here. F l and F̃ l denotes the lth level of original

and warped pyramid features of image pair I . El

up denotes upsampled density embeddings between different levels as density bypass

connections. f l and gl denote motion vectors and pl corresponds to match density. Their conversion is fulfilled by our D2V and V2D

modules. For details please refer to our method part. This figure is best viewed in color.

art results for both optical flow and stereo matching.

Coarse-to-Fine. Because of the complexity of finding 2D

correspondences for each pixel in optical flow, it is natu-

ral to match the pixels from coarse to fine resolutions in

an image or feature pyramid. This method can be used ef-

fectively in the optimization methods [1, 2, 38] as well as

patch matching [18]. Its effectiveness is also verified by re-

cent deep learning approaches such as SpyNet [33], PWC-

Net [40], and LiteFlowNet [19]. We also estimate our hier-

archically decomposed match densities based on the feature

pyramid representation [50]. Our contribution lies in the de-

composition of the discrete probability distribution instead

of the feature representations.

3. Method

In this section, we discuss our probabilistic framework

for match density estimation. Without loss of generality,

we focus on solving 2D correspondences for optical flow in

this section, which can be easily adapted to the 1D case for

stereo matching.

3.1. Preliminary

We first introduce the notations and basic concepts used.

Given a pair of images I = {I1, I2}, we denote the mo-

tion field as f = {fij} where fij = (uij , vij)
T for pixels

(i, j), i = 1, . . . , n, j = 1, . . . ,m. In contrast to Wan-

nenwetsch et al. [43] where {fij} are continuous, we treat

them as discrete random variables. We call their density

functions match densities. We use p(f |I) to denote the joint

probability distribution of {fij}. For brevity, we omit the

conditional I in the following discussion when there is no

ambiguity. Finally, we introduce a ×2 upsampling operator

ϕ and an opposite downsampling operator ϕ−1.

3.2. Match Density Decomposition

The main challenge of estimating the full match den-

sity is the prohibitive computational cost. Assume we have

an image with size 1000 × 1000 and displacement range

[−50, 50]. The cardinality of {fij} would be 106 and the

support size of each fij could be 104. In this case, the en-

tire distribution volume would have 10 billion cells, which

is intractable to generate.

Our key observation is that the full match density can be

decomposed hierarchically into multiple levels of distribu-

tions. Fig. 1 provides an intuitive illustration. Let us con-

sider multi-scale motion fields {f l} (l = 0, . . . , L), where

higher level f l has half of the resolution of the lower level

f l+1 and fL is identical as f . We introduce a transformation

gl = f l − ϕ(f l−1) to shift the absolute multi-scale motion

fields to residual ones. We can recover the original motion

field f from {gl} (l = 0, . . . , L) via

f =

L
∑

l=0

ϕL−l(gl). (1)

Naturally, we have the decomposition of p(f) as

p(f) =
∑

{gl}∈F

L
∏

l=0

p(gl|Gl−1), (2)

where Gl = {gs}ls=0, and F is the set of all possible {gl}
that satisfies Eq. 1. Therefore, we can in turn estimate the

decomposed match densities p(gl|Gl−1) and recover full
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match density p(f) through Eq. 2 afterward. The benefit

of adopting such decomposition lies in that match density

p(gl|Gl−1) actually has quite low variance, i.e. probabili-

ties concentrate on a small subset R′
gl of the entire support

Rgl . Without loss of much information, we can focus on

solving p(gl|Gl−1) with gs ∈ R′
gs for s = 0, . . . , l − 1.

Consequently, for maximizing the posterior distribution

p(f), we achieve satisfactory approximation through max-

imizing each of the decomposed match densities. We will

discuss our selection of support subsets in the next section.

3.3. Learning Decomposed Match Density

Our objective becomes estimating multi-scale decom-

posed match densities p(gl|Gl−1). We propose to learn

such information through multiple levels of ConvNets. At

each level, a ConvNet is designed to estimate the decom-

posed match density. Note that gl is conditioned on Gl−1,

while theoretically we can sample gs ∈ Gl−1 according to

predicted densities at coarser levels.

In this section, we first discuss how to transform point es-

timate into match density, which is adopted for generating

our distribution supervision for each level. Let us consider

a general motion vector fij ∈ f and its density function

p(fij). As stated in Sec. 3.2, we prefer p(fij) to possess

a low variance, which would greatly reduce the computa-

tion cost through our decomposition. We observe that real-

valued fij uniquely falls into a 2 × 2 window Wij in the

image grid. This inspires us to splat the bilinear weights of

fij w.r.t. coordinates in Wij to p(fij). Concretely, for any

d ∈ Z
2, we have

P(fij = d) =

{

0 d /∈ Wij

ρ(fij − d̃) d ∈ Wij ,
(3)

where ρ(·) means the product of elements in the vector, and

d̃ is the diagonal opposite coordinate of d in Wij . We call

such conversion as V2D (see Fig. 3), which depicts our as-

sumption for the ground-truth match density.

As seen from Eq. 3, the support of p(fij) is indeed Wij

which has a maximum size of 4. Ideally, we can sample

gs ∈ Gl−1 in a quadtree fashion during estimating the

match density of gl. However, such computation is still

heavy for both training and evaluation. For trade-off, we can

discard samplings with minor probabilities. A trivial prac-

tice is always taking argmax at each level. As a substitu-

tion, we propose local expectation to further reduce the loss

of information. Specifically, for any general match density

p(fij), we define W ∗
ij as the 2 × 2 window over which the

integral of p(fij) maximizes among all candidate windows.

We only retain the probabilities of p(fij) in W ∗
ij and nor-

malize it into p∗(fij). The local expectation is defined as

E[fij ] w.r.t. p∗(fij). In the following, we use expectation to

denote local expectation by default. We call this conversion

D2V

-1

(0.5, 0.25)

1

-1

1

0 1-1

1

0

-1

0 0.2 0

0.2 0.2 0.4

0 0 0

V2D

-1

(0.6, -0.5)

1

-1

1

0

-1

0 1-1

1 0 0 0

0 0.2 0.3

0 0.2 0.3

Figure 3: Conversion between motion vectors and match densi-

ties. The support is taken as 3× 3 here for illustration.

D2V (see Fig. 3). Therefore, at each level, instead of ex-

haustive sampling we always take the max posterior of gl as

E[gl], and we only estimate p(gl|G(l−1)∗) (plres for short in

the following) in each level, where G(l−1)∗ = {E[gs]}l−1
s=0.

This enables us to get rid of expensive training and test time

sampling.

3.4. Network Architecture Design

Finally, we discuss the network architecture design for

estimating the decomposed match densities. We achieve

this objective via stacking multiple levels of ConvNets,

which we call density decoders {Dl}. Dl infers the match

density plres in its respective level l. A single level of the

entire network is illustrated in Fig. 2. In the following, we

discuss the details of our subnetworks.

The architecture design of our density decoder Dl is

motivated by the close relationship between the targeted

output plres and the similarity information between image

pairs, or their embedded representations. Our match den-

sity estimation operates on multi-scale feature embeddings

{F l
1, F

l
2}, which are extracted via a DLA [50] network over

{I1, I2}. Affinity information can be obtained through the

correlation [10] of feature embeddings between different

frames. For performing long-range correlation and impos-

ing conditional priors from previous levels, we always warp

the feature F l
2 according to ϕ(E[f l−1]) before correlation.

The cost volume is concatenated with F l
1, ϕ(E[f l−1]), and

the upsampled density embedding El−1
up from the previous

level, then fed into our density decoder Dl. The decoder Dl

produces the density embedding, from which we obtain the

match density via a classifier. Also, we upsample the den-
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Figure 4: Visualized stereo results on the validation set of FlyingThings3D. Cold colors in the error map denote correct predictions while

warm colors mean the contrary. Our network gives accurate results in most regions, while errors tend to occur at boundaries and occlusions.

sity embedding to El
up and feed it to the next level as density

bypass connections. Both of the pyramid feature extractor

and the density decoder are jointly trained in an end-to-end

manner.

At inference time, we calculate E[gl] from each pre-

dicted plres and compose them via Eq. 1 to produce the point

estimate of f . While during training time, we downsample

the ground-truth motion field into f lgt. The residual motion

w.r.t. ϕ(E[f l−1]) is converted into plgt. The entire training

loss comes in the form of Kullback−Leibler divergence

L =
∑

l

∑

g∈R
gl

plgt(g)(log p
l
gt(g)− log plres(g)). (4)

4. Experiments

HD3 provides hierarchically decomposed match densi-

ties. It can be used for different tasks, such as stereo match-

ing and optical flow. The probability of point estimates can

be used as uncertainty estimation. It is hard to evaluate the

quality of the learned distribution directly, but we can inves-

tigate its performance being applied to these specific tasks.

4.1. Implementation Details

Network Variants. We can apply our models to stereo

matching and optical flow. The networks are called HD3S

and HD3F. The two variants differ slightly: we adopt 1D

correlation for HD3S and 2D correlation for HD3F. The cor-

relation range is always 4 for both tasks at different levels,

which is consistent with the size of match density support.

Since we treat stereo matching as 1D flow estimation, we

clip the positive values in converted point estimates at each

level for HD3S. The pyramid level is set to 5 for HD3F and

6 for HD3S based on experiment results.

Module Details. We select DLA-34-Up [50] as our pyra-

mid feature extractor, because it can achieve competitive se-

mantic segmentation accuracy on small datasets with much

less computation than the deeper alternatives. The features

at the coarsest level are ×64 downsampled. The density

decoder Dl consists of two residual blocks plus one aggre-

gation node [15, 50], except for the last level when it is ful-

filled via a dilated convolutional network [49] as a context

module. We adopt batch normalization [22] in all of our

models to stabilize the training. Predictions are upsampled

from the lowest level with highest output resolution to full

resolution during evaluation.

Training Details. We train our models on 8 GPUs with-

out synchronized batch normalization. The weights of pyra-

mid feature extractor are initialized from the ImageNet pre-

trained model. The network is optimized by Adam [25],

where β1 = 0.9, β2 = 0.999. For all of our pretraining

experiments on synthetic datasets, models are trained for

200 epochs, and the learning rate is decayed by 0.5 every

30 epochs after 70 epochs for 4 times in total. As for data

augmentation, besides random cropping, we adopt random

resizing and color perturbation [31] during the fine-tuning

stage, and introduce random flipping for optical flow exper-

iments. The dense and sparse annotations, as supervision

at different scales, are bilinearly downsampled and average

pooled from the ground-truth map respectively. In this sec-

tion, unless otherwise stated, confidence maps are obtained

through aggregating the probabilities within W ∗
i of the last

level match density, and uncertainty maps are the opposite.

4.2. Stereo Matching

To evaluate the performance of our HD3S model, we

benchmark our result on the KITTI stereo dataset [13]. Due

to the limited amount of training data in KITTI, we pretrain

our model on the FlyingThings3D dataset [30].

FlyingThings3D. We use the FlyingThings3D dataset as
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Image 1 Image 2 Ground Truth Prediction Error Map Confidence Map

Figure 5: Qualitative multi-scale flow result on the validation set of FlyingThings3D dataset. Bilinearly downsampled raw images, coarser

level flows, error maps and confidence maps are enlarged via nearest neighbor upsampling for visualization purpose. Our network gives

precise predictions in most regions, while occasionally presents confusion in occluded regions and disappearing parts.

KITTI 2012 KITTI 2015 Time

Methods Out-Noc Out-All D1-bg D1-fg D1-all (s)

SPS-st [46] 3.39 4.41 3.84 12.67 5.31 2.00

Displets v2 [14] 2.37 3.09 3.00 5.56 3.43 265

MC-CNN-acrt [51] 2.43 3.63 2.89 8.88 3.88 67.0

SGM-Net [35] 2.29 3.50 2.66 8.64 3.66 67.0

L-ResMatch [37] 2.27 3.40 2.72 6.95 3.42 48.0

GC-Net [24] 1.77 2.30 2.21 6.16 2.87 0.90

EdgeStereo [39] 1.73 2.18 2.27 4.18 2.59 0.27

PDSNet [41] 1.92 2.53 2.29 4.05 2.58 0.50

PSMNet [8] 1.49 1.89 1.86 4.62 2.32 0.41

SegStereo [47] 1.68 2.03 1.88 4.07 2.25 0.60

HD3S (Ours) 1.40 1.80 1.70 3.63 2.02 0.14

Table 1: Stereo matching results on KITTI test set. All of the num-

bers denote percentages of disparity outliers. The official leader-

board ranks methods according to “Out-Noc” for KITTI 2012 and

“D1-all” for KITTI 2015.

training data. Following the training protocol of the orig-

inal FlowNet2 model [21], we use a subset of the dataset

which omits some extremely hard samples. We train our

model with a batch size of 32 and an initial learning rate of

2×10−4. The image crop size is 320×896. Qualitative ex-

amples, as well as the confidence maps, are shown in Fig. 4.

We find low confidence correlates well with prediction er-

rors, which generally occurs at boundaries and occlusions.

KITTI. During fine-tuning stage, we leverage the available

394 image pairs from KITTI 2012 & 2015 as training data.

Training is performed for 2000 epochs, with batch size 16
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Figure 6: Example stereo error maps on KITTI 2015 test set. We

contrast our method with GC-Net [24]. Orange corresponds to

erroneous prediction. This figure is best viewed in color.

and image crop size 320 × 896. The initial learning rate is

1× 10−5 and decayed by 0.5 at the 1000th and the 1500th
epoch.

As shown in Tab. 1, our method achieves the lowest per-

centages of disparity outliers in both non-occluded (Out-

Noc) and total regions (Out-All), background (D1-bg) and

foreground regions (D1-fg), among all of the competitive

baselines on both datasets. We also hold the lowest infer-

ence time for processing a standard KITTI stereo pair. Note

that we do not leverage the entire Scene Flow dataset [30]

for training as [8, 24], nor do we utilize additional seman-

tic or edge cues as in [39, 47]. Qualitative comparisons are
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Training Test Time

Methods Clean Final Clean Final (s)

PatchBatch [11] - - 5.79 6.78 50.0

EpicFlow [34] - - 4.12 6.29 15.0

CPM-flow [18] - - 3.56 5.96 4.30

FullFlow [9] - 3.60 2.71 5.90 240

FlowFields [2] - - 3.75 5.81 28.0

MRFlow [44] 1.83 3.59 2.53 5.38 480

FlowFieldsCNN [3] - - 3.78 5.36 23.0

DCFlow [45] - - 3.54 5.12 8.60

SpyNet-ft [33] (3.17) (4.32) 6.64 8.36 0.16

FlowNet2 [21] 2.02 3.14 3.96 6.02 0.12

FlowNet2-ft [21] (1.45) (2.01) 4.16 5.74 0.12

LiteFlowNet [19] 2.52 4.05 - - 0.09

LiteFlowNet-ft [19] (1.64) (2.23) 4.86 6.09 0.09

PWC-Net [40] 2.55 3.93 - - 0.03

PWC-Net-ft [40] (2.02) (2.08) 4.39 5.04 0.03

HD3F (Ours) 3.84 8.77 - - 0.08

HD3F-ft (Ours) (1.70) (1.17) 4.79 4.67 0.08

Table 2: Average EPE results on MPI Sintel dataset. “-ft” means

finetuning on the Sintel training set and numbers in the parenthesis

are results on data the method has been trained on.

shown in Fig. 6. Our method exhibits better performance

in regions with complex and ambiguous textures. This indi-

cates the effectiveness of hierarchical match density learn-

ing based on pyramid feature representations, which ex-

hibits robustness to local noise.

4.3. Optical Flow

We pretrain our HD3F on synthetic data from Fly-

ingChairs [10] and FlyingThings3D [21], then investigate

the effectiveness of our model on established optical flow

benchmarks including MPI Sintel [7] and KITTI [13].

FlyingChairs. We train our network on FlyingChairs with

batch size 64 and initial learning rate 4× 10−4. Images are

randomly resized and cropped to 384 × 512 patches. We

find larger crop size can improve the network performance.

FlyingThings3D. We further fine-tune the model on the

FlyingThings3D data, the same subset in our stereo match-

ing experiments, with batch size 32, learning rate 4× 10−5

and image crop size 384 × 832. We visualize examples of

multi-scale predictions in Fig. 5. The results indicate that

our model is able to progressively refine the prediction from

coarse to fine scales. Though we adopt the discrete distri-

bution, our model can still capture very detailed displace-

ments.

MPI Sintel. Finally, we fine-tune our model on MPI Sin-

tel [7] for 1200 epochs with batch size 32 and image crop

size 384 × 768. The initial learning rate is 2 × 10−5 and

KITTI 2012 KITTI 2015

Methods AEPE AEPE F1-Noc AEPE F1-all F1-all

train test test train train test

EpicFlow [34] - 3.8 7.88% - - 26.29%

FullFlow [9] - - - - - 23.37%

PatchBatch [11] - 3.3 5.29% - - 21.07%

FlowFields [2] - - - - - 19.80%

DCFlow [45] - - - - 15.09% 14.83%

MirrorFlow [20] - 2.6 4.38% - 9.93% 10.29%

PRSM [42] - 1.0 2.46% - - 6.68%

SpyNet-ft [33] (4.13) 4.7 12.31% - - 35.07%

FlowNet2 [21] 4.09 - - 10.06 30.37% -

FlowNet2-ft [21] (1.28) 1.8 4.82% (2.30) (8.61%) 10.41%

LiteFlowNet [19] 4.25 - - 10.46 29.30% -

LiteFlowNet [19] (1.26) 1.7 - (2.16) (8.16%) 10.24%

PWC-Net [40] 4.14 - - 10.35 33.67% -

PWC-Net-ft [40] (1.45) 1.7 4.22% (2.16) (9.80%) 9.60%

HD3F (Ours) 4.65 - - 13.17 23.99% -

HD3F-ft (Ours) (0.81) 1.4 2.26% (1.31) (4.10%) 6.55%

Table 3: Optical flow results on KITTI dataset. “-ft” means fine-

tuning on the KITTI training set. Numbers in parenthesis are re-

sults on data the network has been trained on.
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Figure 7: Example flow error maps on KITTI 2015 test set. We

compare our method with PWC-Net [40]. Orange corresponds to

erroneous prediction. This figure is best viewed in color.

decayed by 0.5 at the 600th and the 900th epoch. Though

the dataset provides training data of different subsets (clean

& final passes), we only adopt the final pass as training data

rendered with motion blur, defocus blur, and atmospheric

effects. As shown in Tab. 2, we can obtain the lowest av-

erage EPE in the final pass, and compelling results on the

clean pass, though our model does not see the clean pass

data during training. In the model generalization experi-

ment, our pretrained HD3F estimates the flow accurately

near the occlusion boundary, resulting in the lowest out-
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Figure 8: Example confidence maps of our predictions and error

maps w.r.t. ground-truth. In confidence maps, white colors mean

confident predictions while dark colors denote uncertain ones. In

the error maps, warmer colors indicate inaccurate predictions.

lier percentage on KITTI (see the “HD3F (Ours)” entry in

Tab. 3). The metric of EPE emphasizes large motion error.

This influence makes our pretrained HD3F achieve higher

EPE on MPI Sintel (see the “HD3F (Ours)” entry in Tab. 2).

KITTI. Alternatively, we can finetune our pretrained model

on KITTI dataset. We follow the configurations of our

stereo experiment. Tab. 3 summarize the results. We can

obtain the lowest F1-Noc on KITTI 2012 test set and the

lowest F1-all on KITTI 2015 test set. At the time of writ-

ing, HD3F outperforms all two-frame optical flow methods

by large margins on both KITTI 2012 & 2015. It even

surpasses some competitive scene flow methods such as

PRSM [42], which use additional stereo data. This reveals

the suitability of our probabilistic method in challenging

real-world cases. We show qualitative comparisons against

PWC-Net in Fig. 7. Our method appear to have advantages

in estimating many thin structures.

4.4. Uncertainty Estimation

We also conduct quantitative analysis of uncertainty es-

timation. We compute the log likelihoods of our network

predictions and compare HD3F with probabilistic flow net-

works [12]. FlowNetDropOut uses variational Gaussian

dropout layers [26]. While FlowNetProbOut replaces deter-

ministic outputs with probabilistic output layers. FlowNe-

tADF propagates uncertainty through the entire network us-

ing ADF. During the evaluation, we recover the full match

density through composing the multi-scale match densi-

ties. This can be achieved through iteratively sampling from

coarse to fine, and we assume a discrete non-uniform distri-

bution for sampling outside W ∗
i (see Sec. 3.3). As shown

in Tab. 4, HD3F achieves the best average log likelihoods

against all of the baselines.

Furthermore, we measure the reliability of network pre-

diction based on uncertainty. We treat predictions with un-

certainty greater than a certain threshold (σ = 0.3) as out-

Methods Sintel clean Sintel final Chairs

FlowNetDropOut [12] -7.106 -10.820 -6.176

FlowNetProbOut [12] -6.888 -7.621 -3.591

FlowNetADF [12] -3.878 -4.186 -3.348

HD3F(Ours) -1.487 -1.821 -0.872

Table 4: Average log likelihoods of probabilistic flow methods on

MPI Sintel training set and FlyingChairs test set.

Classes Methods
Noc All

IoU Acc IoU Acc

Outlier
Consistency 17.5 64.9 23.3 81.9

Ours 37.6 57.8 44.1 76.4

Inlier
Consistency 84.2 85.8 75.6 76.9

Ours 96.1 97.8 91.8 93.7

Mean
Consistency 50.9 75.4 49.5 79.4

Ours 66.9 77.8 68.0 85.1

Table 5: Classification result of inlier and outlier predictions on

KITTI 2015 training set. Noc denotes evaluation only in the non-

occluded area, while All denotes evaluation in the overall region.

liers and compare such criterion with the forward-backward

consistency check [48] which is popularly adopted for point

estimate. Both methods use the same HD3F model for in-

ference. As shown in Tab. 5, our uncertainty estimation

gives the highest mean IoU and mean accuracy in both non-

occluded and overall regions. Fig. 8 presents visualization

of the confidence and error maps. We can observe the posi-

tive correlation between our estimated uncertainty and pre-

diction error.

5. Conclusion

We proposed Hierarchical Discrete Distribution Decom-

position (HD3) for estimating the match density. Our ap-

proach decomposed the match density into multiple scales

and learned the decomposed match densities in an end-to-

end manner. The predicted match densities can be converted

into point estimates, while providing model-inherent uncer-

tainty measures at the same time. Our experiments demon-

strated the advantages of our method on established bench-

marks.

In the future, we hope to integrate more information into

our framework such as the pixel assignment probabilities

from segmentation. Currently, we do not consider relation-

ships between match densities of adjacent pixels, but this

may help remove match uncertainty in challenging cases.
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