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Abstract

In this paper, we propose a novel indirect monocular

SLAM algorithm called “VITAMIN-E,” which is highly ac-

curate and robust as a result of tracking extremely dense

feature points. Typical indirect methods have difficulty in

reconstructing dense geometry because of their careful fea-

ture point selection for accurate matching. Unlike conven-

tional methods, the proposed method processes an enor-

mous number of feature points by tracking the local ex-

trema of curvature informed by dominant flow estimation.

Because this may lead to high computational cost during

bundle adjustment, we propose a novel optimization tech-

nique, the ”subspace Gauss–Newton method”, that signifi-

cantly improves the computational efficiency of bundle ad-

justment by partially updating the variables. We concur-

rently generate meshes from the reconstructed points and

merge them for an entire 3D model. The experimental

results on the SLAM benchmark dataset EuRoC demon-

strated that the proposed method outperformed state-of-the-

art SLAM methods, such as DSO, ORB-SLAM, and LSD-

SLAM, both in terms of accuracy and robustness in trajec-

tory estimation. The proposed method simultaneously gen-

erated significantly detailed 3D geometry from the dense

feature points in real time using only a CPU.

1. Introduction

Simultaneous localization and mapping (SLAM) is a key

technology for applications such as autonomous systems

and augmented reality. Whereas LiDAR-based SLAM[34,

11, 25] is well established and widely used in autonomous

vehicles, visual SLAM with a monocular camera does not

provide sufficient accuracy and robustness, particularly re-

garding dense map reconstruction, to replace LiDAR-based

SLAM. Although some visual SLAM algorithms that use

stereo cameras[7, 32], RGB-D cameras[12, 14, 33], and in-

ertial sensors[20, 18, 2, 28, 19] have achieved high perfor-

Figure 1. Dense geometry reconstruction with VITAMIN-E on

EuRoC V101. (https://youtu.be/yfKccCmmMsM)

mance, these methods are based on pure monocular SLAM;

hence, improving monocular SLAM is important.

Monocular SLAM methods can be classified into two

types: direct methods and indirect methods.

Direct methods: Direct methods estimate camera poses

and reconstruct the scene by minimizing the photometric

error defined as a sum of the intensity difference between

each pixel in the latest image and the reprojection of the

color / monochrome 3D map. Direct methods, such as LSD-

SLAM[5], SVO[9], and DSO[6], process almost all pixels

in incoming images. They do not require exact pixel corre-

spondences among multiple views unlike indirect methods,

which leads to denser map reconstruction. However, direct

methods are susceptible to image noise, luminance fluctu-

ation, and lens aberration because they directly use pixel

intensities. To overcome this drawback, Bergmann et al.[1]

proposed a normalization method against luminance fluctu-

ation and a calibration method for lens aberration. As an-

other approach, Zhang et al.[35] proposed an auto-exposure

method that is suitable for direct methods.

Indirect methods: Indirect methods minimize the ge-

ometric error between observed 2D feature points and re-
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Figure 2. Overview of the proposed monocular SLAM.

projections of the corresponding 3D points. As a re-

sult of the use of feature descriptors, indirect methods

such as PTAM[15] and ORB-SLAM[21] are robust against

brightness changes and image noise. Additionally, indirect

methods explicitly establish feature point correspondences;

hence, outliers are easily removed using RANSAC[8] or

M-estimation[27]. This characteristic, however, can be a

drawback: Indirect methods carefully select stable feature

points, thus the reconstructed 3D map tends to be sparse and

does not provide detailed geometry. Densification methods,

such as PMVS[10] and the extension L-PMVS[26], might

be useful for obtaining dense geometry; however, they are

offline methods and not applicable in real time.

In this paper, we propose the novel VIsual Track-

ing And MappINg with Extremely dense feature points,

“VITAMIN-E,” which is highly precise, robust, and dense

because of the tracking of a large number of feature points.

Indirect methods are inherently robust against noise, illumi-

nation change, and outliers as a result of the use of feature

descriptors. Retaining this advantage, we reconstruct de-

tailed 3D maps by establishing dense point correspondence.

The contributions of this study are as follows: We first in-

troduce a new dense feature point tracking algorithm based

on dominant flow estimation and curvature extrema tracing.

This allows VITAMIN-E to process an enormous number of

feature points; however, the need to maintain them simulta-

neously might lead to a high computational cost. There-

fore, we also introduce a novel optimization technique,

called subspace Gauss–Newton method, for bundle adjust-

ment. The optimization technique significantly improves

the efficiency of bundle adjustment by partially updating the

variables. Moreover, VITAMIN-E generates meshes from

the reconstructed feature points and integrates them using

a truncated signed distance function (TSDF)[22, 30, 24].

Compared with not only conventional indirect methods but

also state-of-the-art direct methods, VITAMIN-E provides

highly detailed 3D geometry as shown in Figure 1 in real

time using only a CPU

2. Dense Feature Point Tracking

2.1. Feature Point Tracking

Indirect methods that use image descriptors can be un-

stable because of incorrect feature point correspondences.

They build feature point correspondences between multi-

ple views by matching the descriptors. Extracting consis-

tent descriptors over multiple frames, however, becomes

difficult because descriptors vary as the monocular camera

changes its pose. Methods such as the KLT tracker[29] that

continuously track feature points while updating the feature

descriptors might be useful for overcoming the problem.

However, because the tracked positions drift as a result of a

minute change of feature descriptors, the correspondences

over multiple views tend to be incorrect. These problems

originate with the use of feature descriptors.

Rather than associating feature points based on descrip-

tors, VITAMIN-E tracks the local extrema of curvature in

incoming images. In the proposed method, feature points

denote the extrema of curvature on image intensities. Let

f(x, y) be an image, then curvature κ of image f is as fol-
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lows:

κ = f2
y fxx − 2fxfyfxy + f2

xfyy, (1)

where fx represents the partial derivative of f with respect

to x, which can be obtained using a Sobel operator or sim-

ilar technique. VITAMIN-E builds point correspondences

over multiple images by tracking the local maximum point

of curvature κ(x, y, t), which is the extension of κ to time

domain t. Figure 2(a) shows an example scene from which

a large number of extrema of curvature κ are extracted.

Whereas conventional indirect methods rely only on fea-

ture points with a large curvature to obtain stable correspon-

dences, the proposed method tracks all detected extrema to

reconstruct detailed geometry.

2.2. Dominant Flow Estimation

After detecting the extrema of curvature, the proposed

method estimates a dominant flow that represents the av-

erage of optical flow over the images, which provides a

good initial value to extrema tracking and makes it signif-

icantly stable, as explained later. Specifically, we deter-

mine the corresponding feature pairs between current and

previous images using the BRIEF[4] feature. Because we

only have to identify coarse feature pairs over consecu-

tive frames at this moment, feature matching is performed

on low-resolution images, subsampled to 1/6 of the former

size.

Then, we fit the affine transformation model y = Ax+b

to the feature pairs. x and y denote the position of a fea-

ture point in the previous and current frame, respectively,

and A and b represent a matrix of 2 × 2 and a 2D transla-

tion, respectively. A and b are obtained by minimizing cost

function E using the Gauss–Newton method:

E =
N
∑

i

ρ (∥yi − (Axi + b) ∥2) , (2)

where N and ρ denote the total number of corresponding

points and a kernel function for M-estimation, respectively.

The following Geman–McClure kernel with scale parame-

ter σ is used in VITAMIN-E :

ρ(x) =
x2

x2 + σ2
. (3)

As a result of M-estimation, the dominant flow repre-

sented by A and b can be estimated stably, even for low-

resolution images, and it allows us to roughly predict the

position of feature points in the next frame. Note that

VITAMIN-E does not rely on conventional feature match-

ing in its core but only for prior information for dense ex-

trema tracking, as described in the next section. Whereas

conventional feature matching has difficulty in making all

feature points couple correctly between consecutive frames,

affine transformation is easily obtained when at least three

correspondences are given.

2.3. Curvature Extrema Tracking

VITAMIN-E tracks feature points by tracing the extrema

of image curvature by making use of the dominant flow. Be-

cause it depends only on extrema instead of feature descrip-

tors used in conventional indirect methods, VITAMIN-E is

free from the variation of feature descriptors caused by im-

age noise or illumination changes, which makes VITAMIN-

E highly robust.

According to the dominant flow represented by A and b,

we first predict a current position x̄t1 of tracking point xt0 :

x̄t1 = Axt0 + b. (4)

Next, prediction x̄t1 is corrected to xt1 by maximizing eval-

uation function F :

F = κ (xt1 , t1) + λw
(

∥xt1 − x̄t1
∥2
)

, (5)

where κ stores the curvature in each pixel, and w(x) =
1 − ρ(x) and λ denote an evaluation function and weight

for the prediction, respectively. The maximization is per-

formed using the hill climbing method, with x̄t1 as the ini-

tial position. Specifically, maximum point xt1 is obtained

by iterating the hill climbing method in eight neighboring

pixels at each step until it reaches the local maximum value

of F . Function w prevents the maximization process from

falling into wrong extrema, thereby playing a regularization

role.

Note that extrema tracking can easily fall into local so-

lutions because there are many extrema in image curvature

and it is almost impossible to distinguish them without any

descriptors. However, the prediction according to the dom-

inant flow boosts the accuracy of extrema tracking and en-

ables it to approach the optimal solution.

3. Bundle Adjustment for Dense Tracking

3.1. Bundle Adjustment

Bundle adjustment iteratively adjusts the reconstructed

map by minimizing reprojection errors. Given the i-th 3D

point pi, the j-th camera’s rotation Rj and translation tj ,

and the 2D position uij of pi observed in the j-th camera

frame, the objective function is formulated as follows:

E =
N
∑

i

M
∑

j

ρ
(

∥uij − φ
(

RT
j (pi − tj)

)

∥2
)

, (6)

where N and M are the numbers of feature points and

camera poses respectively, φ denotes the 3D-2D projec-

tion function, and ρ is a kernel function for M-estimation.

Specifically, optimal camera variables cj = (Rj , tj) and

pi are obtained by applying the Gauss–Newton method to

Equation 6, which results in iteratively solving the follow-

ing equations:

Hδx = −g, x = x+ δx, (7)
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where x = (c1, · · · , cM ,p1, · · · ,pN )T , and H and g rep-

resent the Hessian matrix and gradient around x of E, re-

spectively. H and g can be represented by the camera vari-

able cj block and the feature point variable pi block as fol-

lows:

H =

[

Hcc Hcp

HT
cp Hpp

]

, g =

[

gc
gp

]

. (8)

Hessian matrix H in bundle adjustment has a unique struc-

ture: Hcc and Hpp are sparse matrices with only diagonal

elements in block units, whereas Hcp is a dense matrix. Ef-

ficient solutions that focus on this unique structure are the

keys to developing highly precise and robust visual SLAM.

State-of-the-art monocular SLAM methods, such as

ORB-SLAM[21] and DSO[6], solve Equation 7 by decom-

posing it using the Schur complement matrix instead of di-

rectly solving it:

(

Hcc −HcpH
−1
pp HT

cp

)

δxc = −gc +HcpH
−1
pp gp, (9)

Hppδxp = −gp −HT
cpδxc, (10)

where xc = (c1, · · · , cM )T and xp = (p1, · · · ,pN )T .

The decomposition allows us to solve bundle adjustment

faster. The number of camera variables M is remarkably

smaller than that of feature point variables, and the inverse

matrix of Hpp can be easily calculated because it has only

diagonal components; thus, the Schur complement matrix
(

Hcc −HcpH
−1
pp HT

cp

)

whose size is M×M is significantly

tiny compared with the original H , and the inverse matrix

is rapidly computable.

Equation 9 is also called marginalization. When regard-

ing Hcc−HcpH
−1
pp HT

cp as a new H and gc−HcpH
−1
pp gp as

a new g, the decomposition is equivalent to eliminating all

feature point variables p from cost function E. State-of-the-

art SLAMs make themselves efficient using the marginal-

ization technique to prevent the increase in computational

cost caused by a large number of variables.

However, in the case of maintaining thousands of fea-

ture points in every frame, as in the dense extrema tracking

in VITAMIN-E, the size of matrix H fundamentally can-

not be made sufficiently small because variable elimination

is applicable only to old variables unrelated to the current

frame for stability. Moreover, the size of the Schur comple-

ment matrix is proportional to the number of feature points;

thus, the calculation cost of bundle adjustment over tens of

thousands points, where the size of H is 100,000 × 100,000

or more, becomes too high to run bundle adjustment in real

time.

3.2. Subspace Gauss–Newton Method

To deal with the explosion in the size of H , we propose

a novel optimization technique called the “subspace Gauss–

Newton method.” It partially updates variables rather than

updating all of them at once, as in Equations 9 and 10, by

decomposing these equations further as follows:

Hciciδxci = −

(

gci +
i−1
∑

l=1

Hclciδxcl+

M
∑

r=i+1

Hcicrδxcr +
N
∑

j=1

Hcipj
δxpj

)

, (11)

Hpjpj
δxpj

= −

(

gpj
+

j−1
∑

l=1

Hplpj
δxpl

+

N
∑

r=j+1

Hpipr
δxpr

+
M
∑

i=1

HT
cipj

δxci

)

. (12)

Equation 11 updates δxci of a camera variable, and Equa-

tion 12 δxpj
of a feature point variable. Hcici , Hcipj

,

and Hpjpj
are matrices of 6 × 6, 6 × 3, and 3 × 3, re-

spectively. The subspace Gauss–Newton method iteratively

solves Equations 11 and 12 until δxci and δxpj
converge,

respectively.

These formulae are extensions of the Gauss–Seidel

method, which is an iterative method to solve a linear sys-

tem of equations, and equivalent to solving the Gauss–

Newton method by fixing all variables except the variables

to be optimized. The advantage of the proposed subspace

Gauss–Newton method is that it does not require a large

inverse matrix, unlike Equation 9, but instead, only an in-

verse matrix of 6 × 6 at most. Additionally, as in ORB-

SLAM[21] and DSO[6], further speedup is possible by ap-

propriately performing variable elimination that sets most

elements of Hcc and Hpp to zero. Because the proposed

optimization method limits the search space in the Gauss–

Newton method to its subspace, we call it the “subspace

Gauss–Newton method.” 1

4. Dense Reconstruction

A large number of accurate 3D points are generated in

real time with VITAMIN-E as a result of the dense extrema

tracking and subspace Gauss–Newton method described in

previous sections. This leads not only to point cloud gener-

ation but also allows further dense geometry reconstruction

that cannot be achieved by conventional indirect methods.

Meshing and Noise Removal: We first project the 3D

points onto an image and apply Delaunay triangulation to

generate triangular meshes. Then, We use NLTGV mini-

mization proposed by Greene et al[23] to remove noise on

the meshes. NLTGV minimization allows us to smooth the

meshes, thereby retaining local surface structures, unlike

1 Alternating optimization, such as our method, has been used in some

contexts[36][31]. See the supplementary information for details of the

novel aspect of our method.
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typical mesh denoising methods such as Laplacian smooth-

ing. Figure 2(c) shows example results of Delaunay trian-

gulation and smoothing with NLTGV minimization.

Mesh Integration in TSDF: Finally, we integrate the

meshes in a TSDF to reconstruct the entire geometry of the

scene. The TSDF represents an object shape by discretizing

the space into grids that store the distance from the object

surface, and can merge multiple triangular meshes by stor-

ing the average value of distances from the meshes to each

grid.

5. Experimental Results

5.1. Setup

We evaluated the performance of the proposed

VITAMIN-E on the visual SLAM benchmark EuRoC[3]. 2

The dataset was created using flying drones equipped with

a stereo camera and an IMU in an indoor environment,

and provided ground truth of trajectories obtained by a

Leica MS 50 laser tracker and Vicon motion capture. Eu-

RoC is also well-known for data variations, with different

difficulties ranked by the movement speed and lighting con-

ditions. In this experiment, we compared results obtained

using VITAMIN-E and other monocular SLAM methods,

DSO[6], ORB-SLAM[21], and LSD-SLAM[5], using

only the left images of the stereo camera in the EuRoC

dataset. Note that because VITAMIN-E and DSO[6] do

not include loop closing and relocalization, these functions

in ORB-SLAM[21] and LSD-SLAM[5] were disabled to

evaluate performance fairly. Similar evaluations can be

found in the papers on DSO[6] and SVO[9].

VITAMIN-E ran on a Core i7-7820 HQ without any

GPUs, threading each process for real time processing. Ini-

tialization was performed using essential matrix decompo-

sition. Bundle adjustment is significantly sensitive to the

initial value of the variable. In VITAMIN-E, we initialized

the camera variables using P3P[17, 13] with RANSAC[8]

and feature point variables using triangulation. Note that

the proposed bundle adjustment ran so fast that we applied

it to every frame rather than each key frame as in ORB-

SLAM and DSO. To manage the TSDF, OpenChisel[16]

was used in our implementation because of its ability to

handle a TSDF on a CPU.

5.2. Evaluation Criteria

The evaluation on EuRoC was performed according to

the following criteria:

Localization success rate: We defined the localization

success rate as Ns

N
, where Ns and N denote the number of

images that were successfully tracked and the images in the

entire sequence, respectively. If the success rate was less

2 See the supplementary information for experimental results on other

datasets.

than 90%, we regarded the trial as a failure. When local-

ization failed even once, the methods could not estimate the

camera position later because loop closing and relocaliza-

tion were disabled in this experiment. Therefore, robustness

greatly contributed to the success rate.

Localization accuracy: The localization accuracy was

computed by scaling the estimated trajectories so that the

RMSE from ground truth trajectories was minimized be-

cause scale is not available in monocular SLAM. Note that

we did not evaluate the accuracy when the success rate was

less than 90% because the RMSE of very short trajectories

tends to have an unfairly high accuracy.

Number of initialization retries: Initialization plays an

important role in monocular visual SLAM and significantly

affects the success rate. Because different methods have dif-

ferent initialization processes, the number of initialization

retries in each method is not directly comparable, but can

be a reference regarding whether the method has a weak-

ness in initialization in certain cases.

5.3. Results and Discussion

Table 1 shows the experimental results. The results were

obtained by applying each method to the image sequences

in EuRoC five times, and Table 1 shows the average val-

ues and the standard deviations of the aforementioned cri-

teria. Bold font is used to emphasize the highest accuracy

in each sequence. Regarding LSD-SLAM, the results of ini-

tialization retries are not included in the table because LSD-

SLAM did not have a re-initialization function and failed to

initialize in any sequences. We thus manually identified the

frame for which the initialization worked well in each trial,

so the number of retries of LSD-SLAM was excluded from

the evaluation.

The EuRoC image sequences MH01, MH02, MH04,

MH05, V101, V201, and V202 are relatively easy cases

for visual SLAM because the camera motion is relatively

slow and the illumination does not change frequently. By

contrast, the camera moves fast in MH03, V102, V103, and

V203, and additionally the lighting conditions dynamically

change in V102, V103, and V203. Furthermore, in V203,

the exposure time is so long that we can see severe mo-

tion blur in the image sequence, particularly in an extremely

dark environment.

Even for the challenging environments, VITAMIN-E

never lost localization and outperformed other SLAM meth-

ods, DSO, ORB-SLAM, and LSD-SLAM, both in terms of

accuracy and robustness, as shown in Table 1. Particularly,

in the sequences that contain fast camera motion, such as

V102 and V103, the proposed method was superior to the

existing methods. The reconstruction results are shown in

Figures 3 and 4. Despite the proposed VITAMIN-E suc-

cessfully generating dense and accurate geometry compared

with its competitors, it performed equally fast on a CPU, as
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Table 1. Experimental results : localization success or failure [✓ or ×], localization accuracy [cm], localization success rate [%], and

number of initialization retries.

Sequence name Our method DSO[6] ORB-SLAM[21] LSD-SLAM[5]

(no. of images) w/o loop closure w/o loop closure

MH01 easy ✓ 12.9 ± 0.5 cm ✓ 6.0 ± 0.8 cm ✓ 5.2 ± 1.1 cm × (44.9 ± 7.2) cm

(3682) 100.0 ± 0.0 % 100.0 ± 0.0 % 97.7 ± 1.6 % 28.9 ± 23.6 %

0 ± 0 0 ± 0 19 ± 11 −

MH02 easy ✓ 8.8 ± 0.5 cm ✓ 4.2 ± 0.2 cm ✓ 4.1 ± 0.4 cm × (58.3 ± 6.9) cm

(3040) 100.0 ± 0.0 % 100.0 ± 0.0 % 92.4 ± 1.1 % 73.0 ± 1.5 %

0 ± 0 0 ± 0 56 ± 6 −

MH03 medium ✓ 10.6 ± 1.3 cm ✓ 21.1 ± 0.9 cm × (4.5 ± 0.4) cm × (266.2 ± 61.3) cm

(2700) 100.0 ± 0.0 % 100.0 ± 0.0 % 48.9 ± 0.8 % 28.4 ± 20.7 %

0 ± 0 0 ± 0 0 ± 0 −

MH04 difficult ✓ 19.3 ± 1.6 cm ✓ 20.3 ± 1.0 cm ✓ 33.6 ± 9.4 cm × (136.4 ± 114.3) cm

(2033) 100.0 ± 0.0 % 95.7 ± 0.0 % 95.2 ± 0.8 % 27.2 ± 7.0 %

0 ± 0 5 ± 0 6 ± 1 −

MH05 difficult ✓ 14.7 ± 1.1 cm ✓ 10.2 ± 0.6 cm ✓ 14.9 ± 4.6 cm × (27.4 ± 16.4) cm

(2273) 100.0 ± 0.0 % 95.5 ± 0.0 % 90.0 ± 4.0 % 22.7 ± 0.5 %

0 ± 0 2 ± 0 18 ± 5 −

V101 easy ✓ 9.7 ± 0.2 cm ✓ 13.4 ± 5.8 cm ✓ 8.8 ± 0.1 cm × (20.0 ± 22.8) cm

(2911) 100.0 ± 0.0 % 100.0 ± 0.0 % 96.6 ± 0.0 % 11.6 ± 11.2 %

0 ± 0 0 ± 0 1 ± 0 −

V102 medium ✓ 9.3 ± 0.6 cm ✓ 53.0 ± 5.5 cm × (14.5 ± 11.7) cm × (67.0 ± 14.0) cm

(1710) 100.0 ± 0.0 % 100.0 ± 0.0 % 52.0 ± 3.3 % 15.2 ± 0.1 %

0 ± 0 0 ± 0 17 ± 4 −

V103 difficult ✓ 11.3 ± 0.5 cm ✓ 85.0 ± 36.4 cm × (37.2 ± 20.7) cm × (29.3 ± 2.0) cm

(2149) 100.0 ± 0.0 % 100.0 ± 0.0 % 65.5 ± 8.8 % 11.0 ± 0.1 %

0 ± 0 0 ± 0 56 ± 26 −

V201 easy ✓ 7.5 ± 0.4 cm ✓ 7.6 ± 0.5 cm ✓ 6.0 ± 0.1 cm × (131.3 ± 20.4) cm

(2280) 100.0 ± 0.0 % 100.0 ± 0.0 % 95.2 ± 0.0 % 74.1 ± 8.9 %

0 ± 0 0 ± 0 0 ± 0 −

V202 medium ✓ 8.6 ± 0.7 cm ✓ 11.8 ± 1.4 cm ✓ 12.3 ± 2.7 cm × (42.1 ± 9.2) cm

(2348) 100.0 ± 0.0 % 100.0 ± 0.0 % 99.5 ± 1.2 % 11.3 ± 0.2 %

0 ± 0 0 ± 0 0 ± 0 −

V203 difficult ✓ 140.0 ± 5.2 cm ✓ 147.5 ± 6.6 cm × (104.3 ± 64.0) cm × (17.7 ± 1.6) cm

(1922) 100.0 ± 0.0 % 100.0 ± 0.0 % 16.8 ± 15.9 % 11.9 ± 0.2 %

0 ± 0 0 ± 0 233 ± 123 −

Table 2. Average tracking time per frame in each method.

Our method DSO ORB-SLAM LSD-SLAM

36 msec/frame 53 msec/frame 25 msec/frame 30 msec/frame

Table 3. Average computation time for each process of VITAMIN-E. Whereas the front-end processes ran in parallel for each frame, the

back-end processes for generating the 3D mesh model were performed at a certain interval.

Front-end Back-end

Feature tracking Localization & mapping Meshing & denoising TSDF updating & marching cubes TSDF updating & marching cubes

(low-resolution; voxel size ≃ 15 cm) (high-resolution; voxel size ≃ 2.5 cm)

36 msec/frame 25 msec/frame 45 msec/frame 175 msec/time 4000 msec/time

shown in Tables 2 and 3. Note that the smaller the size of

the voxel in a TSDF for a detailed 3D model, the higher the

computational cost.

The high accuracy and robustness of VITAMIN-E de-

rives from tracking a large number of feature points and

performing bundle adjustment for every frame. Sharing re-

projection errors among variables is important for accurate

monocular SLAM, and the proposed method efficiently dif-

fuses errors to an enormous number of variables via fast

bundle adjustment. Simultaneously, it prevents localization

failure caused by losing sight of some feature points by han-

dling a large number of feature points.

6. Conclusion

In this paper, we proposed a novel visual SLAM method

that reconstructs dense geometry with a monocular cam-

era. To process a large number of feature points, we pro-

posed curvature extrema tracking using the dominant flow

between consecutive frames. The subspace Gauss–Newton

method was also introduced to maintain an enormous num-

ber of variables by partially updating them to avoid a large
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Figure 3. Reconstruction results : (a) dense extrema tracking in real time, (b) reconstructed 3D points, (c) mesh models, and (d) normal

maps generated with the proposed dense geometry reconstruction in different sized TSDF voxels, and reconstructed 3D points in the same

scenes with (e) ORB-SLAM and (f) DSO.

inverse matrix calculation in bundle adjustment. More-

over, supported by the accurate and dense point clouds,

we achieved highly dense geometry reconstruction with

NLTGV minimization and TSDF integration.

VITAMIN-E is executable on a CPU in real time, and it

outperformed state-of-the-art SLAM methods, DSO, ORB-

SLAM, and LSD-SLAM, both in terms of accuracy and ro-

bustness on the EuRoC benchmark dataset. Performance

should be improved when loop closing is introduced in

VITAMIN-E, and fusing IMU data would also be effective

to stably estimate the camera pose for challenging environ-

ments such as EuRoC V203.
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Figure 4. Chronological RMSEs of estimated trajectories on EuRoC V102, V103, and MH03, and the reconstructed point clouds in each

scene: VITAMIN-E successfully estimated the camera trajectories despite a drastic depth change, nearly pure camera rotation, rapid camera

motion, and severe lighting conditions, whereas the competitors suffered from them and resulted in large trajectory errors or completely

getting lost.
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