
Coloring With Limited Data:

Few-Shot Colorization via Memory Augmented Networks

Seungjoo Yoo1

seungjooyoo@korea.ac.kr

Hyojin Bahng1

hjj552@korea.ac.kr

Sunghyo Chung1

s94021@korea.ac.kr

Junsoo Lee1

junsulee@korea.ac.kr

Jaehyuk Chang2

jaehyuk.chang@webtoonscorp.com

Jaegul Choo1

jchoo@korea.ac.kr

1 Korea University 2 NAVER WEBTOON Corp.

Abstract

Despite recent advancements in deep learning-based au-

tomatic colorization, they are still limited when it comes

to few-shot learning. Existing models require a significant

amount of training data. To tackle this issue, we present

a novel memory-augmented colorization model Memo-

Painter that can produce high-quality colorization with lim-

ited data. In particular, our model is able to capture rare

instances and successfully colorize them. We also propose a

novel threshold triplet loss that enables unsupervised train-

ing of memory networks without the need of class labels.

Experiments show that our model has superior quality in

both few-shot and one-shot colorization tasks.

1. Introduction

When Dorothy stepped into Land of Oz in the 1939

movie Wizard of Oz, a transition from black and white to vi-

brant colors makes it one of the most breathtaking moments

in the history of cinema. There is no doubt to colors being

an effective tool of expression, but they usually come at a

cost. Coloring images is one of the most laborious and ex-

pensive stages when making modern day animation movies

and comics. Automating the colorization process can help

to reduce both cost and time required in producing comics

or animated movies.

Despite advances in deep learning-based colorization

models [33, 7, 11, 34], they are still limited when it comes

to real-world applications like coloring animations and car-

toons. There exist two main problems that make it difficult

to use deep colorization models in real-world settings.

First, data for animations and cartoons are often lim-

ited, but training deep learning-based colorization models

requires a large amount of data. Cartoon images are diffi-

cult to create because they must be drawn and intricately

Figure 1. Not much data in your hands? Make the most out of your

limited data with our fully-automatic colorization model Mem-

oPainter. (Res-cGAN is MemoPainter without the memory net-

works.)

colored by hand. In contrast, obtaining real-world images is

easier because they can be taken by a camera and simply

converted to grayscale. This leads to cartoon data not being

as abundant as real-world images. Numerous existing col-

orization models are trained on real-world images, and their

111283

Figure 2. Dominant color effect commonly encountered by

deep colorization models. Deep colorization models tend to ig-

nore diverse colors present in a training set and opt to learn only

a few dominant colors. Using the most dominant color can be ef-

fective in minimizing the overall loss but yields unsatisfactory re-

sults. One can see that the outputs of [34] are dominated by the

most prevalent color (red).

application is mostly limited to coloring old legacy pho-

tographs. This task is no longer needed because modern-day

photographs are produced in color. Thus, learning to color

animations and cartoons with little data would allow a more

practical application of deep colorization models.

Second, existing colorization models ignore rare in-

stances present in data and opt to learn the most frequent

colors to generalize over the data. Remembering rare in-

stances is important when diverse characters appear in a

story that we want to color. Rare side characters will be

ignored by colorization networks and all side characters

will be colored similarly to the main character. Existing

colorization models suffer from the dominant color effect,

illustrated in Fig. 2. This effect occurs when a coloriza-

tion model only learns to color with a few dominant col-

ors present in the training set. This leads to existing models

being unable to preserve color identity, which we define as

the distinctive colors that separate a particular object class

from the other. An example of color identity can be found in

flowers. Different flower classes are distinguished by both

their color and shape (buttercups are yellow and roses are

red). Coloring in the most dominant color may succeed in

producing plausible and natural-looking outputs, but each

image loses its color identity.

We aim to alleviate these problems with our novel

memory-augmented colorization model MemoPainter. To

the best of our knowledge, there has been no colorization

networks augmented by external neural memory networks.

The main contributions of this paper include:

(1) Our model can learn to color with little data, allowing

one-shot or few-shot colorization. This is possible because

our memory networks extract and store useful color infor-

mation from a given training data. When an input is given

to our model, we can query our external memory networks

to extract color information relevant to coloring the input.

(2) Our model can capture images of rare classes and

suffer less from the dominant color effect, which previous

methods have not been able to accomplish.

(3) We present a novel threshold triplet loss, which al-

lows training of memory networks in an unsupervised set-

ting. We do not need labeled data for our model to success-

fully colorize images.

2. Related Work

Deep Learning-Based Colorization. Existing coloriza-

tion methods [33, 34, 11] use deep neural networks to im-

prove colorization performance. Zhang et al. [33] train con-

volutional neural networks and re-weights the loss function

at training time to emphasize rare colors, yielding more vi-

brant results. Zhang et al. [34] incorporate local and global

color hint information to increase colorization performance,

which enables interactive colorization during test time. Isola

et al. [11] use conditional generative adversarial networks

to improve colorization performance as well as other image-

to-image translation tasks. Although existing deep coloriza-

tion methods produce high-quality results, they inevitably

require large-scale data to train the deep neural networks.

However, preparing abundant training data for real-world

applications such as animation colorization is highly ex-

pensive as they need to be produced by professional ani-

mators. Moreover, deep colorization networks are success-

ful on average(i.e., successful in coloring prominent objects

yet failing in coloring rare instances). No previous studies

have tackled few-shot colorization on rare instances, which

is the main focus of this work.

Memory Networks. Several approaches have augmented

neural networks with an external memory module to store

critical information over long periods of time. It has been

applied to solve algorithmic problems [6], perform natural-

language question answering [28, 15, 17], and allow life-

long and one-shot learning, especially in remembering rare

events [12]. Other approaches have applied memory net-

works to store image data, specifically for image caption-

ing [22, 23], summarization [13], image generation [14],

and video summarization [16]. We are the first to augment

colorization networks with memory networks to allow few-

shot learning in image colorization.

Conditional Generative Adversarial Networks. Gener-

ative adversarial networks (GANs) [5] have achieved re-

markable success in image generation. The key to its suc-

cess lies in its adversarial loss, where the discriminator

tries to distinguish between real and fake images while

the generator tries to fool the discriminator by producing

realistic fake images. Several studies leverage conditional

GANs in order to generate samples conditioned on the

class [18, 20, 21], text description [25, 31, 29], domain in-

formation [3, 24], input image [11, 30], or color features [2].

211284

Figure 3. Our proposed MemoPainter model. Our model consists of memory networks and colorization networks. During training,

memory networks learn to retrieve a color feature that best matches the ground-truth color feature of the query image, while the colorization

networks learn to effectively inject the color feature to the target grayscale image. During test time, we retrieve the top-1 color feature from

our memory and give it as a condition to the trained generator.

In this paper, we adopt the adversarial loss conditioned on

a grayscale image and its color feature extracted from our

memory module to generate colored images indistinguish-

able from real images.

3. Proposed Method

As illustrated in Fig. 3, our model MemoPainter is com-

posed of two networks: memory networks and coloriza-

tion networks. MemoPainter is the first model to augment

colorization networks with memory to remember rare in-

stances and produce high-quality colorization with limited

data. Our memory networks are distinguished from pre-

vious approaches by how its key and value memory are

constructed. We also introduce a new threshold triplet loss

(TTL), which allows unsupervised training of memory net-

works without additional class label information. Finally,

our colorization networks utilize adaptive instance normal-

ization (AdaIN) [9] to boost colorization performance.

3.1. Memory Networks

We construct memory networks to store three different

types of information: key memory, value memory, and age.

A key memory K stores information about spatial features

of input data. The key memory is used to compute the co-

sine similarity with input queries. A value memory V stores

color features which are later used as the condition for the

colorization networks. Both memory components are ex-

tracted from the training data. An age vector A keeps track

of the age of items stored in memory without being used.

Our entire memory structure M can be denoted as

M = (K1, V1, A1), (K2, V2, A2), ..., (Km, Vm, Am), (1)

where m represents the memory size. Our memory net-

works are inspired by the previously proposed architec-

ture [12].

A query q is constructed by first passing the input image

X through ResNet18-pool5 layers [8] pre-trained on Ima-

geNet [4]. It is denoted as Xrp5 ∈ R
512. We use feature vec-

tors from pooling layers to summarize spatial information.

For instance, a rose should be perceived as the same rose re-

gardless of where it is spatially positioned in an image. We

pass the feature representation through a linear layer with

learnable parameters W ∈ R
512×512 and b ∈ R

512. Finally,

we normalize the vector to construct our query q as

q = WXrp5 + b, q =
q

‖q‖
, (2)

where ‖q‖
2
= 1. Given q, the memory networks compute

311285

the k nearest neighbors with respect to cosine similarity be-

tween the query and the keys di = q ·K [i], i.e.,

NN(q,M) = argmaxi q ·K [i],

(n1, ..., nk) = NNk(q,M),
(3)

and returns the nearest value V [n1], which is later used as

the condition for the colorization networks.

Color Features. We leverage two variants to represent

color information stored in value memory: color distribu-

tions and RGB color values. The former has the form of

color distributions over 313 quantized color values, denoted

as Cdist ∈ R
313. It is computed by converting an input RGB

image to the CIE Lab color space and quantizing the ab

values into 313 color bins. We use the previously proposed

parametrization [33] to quantize ab values. Color distribu-

tions are suitable for images with diverse colors and intri-

cate drawings.

The second variant we use is a set of ten dominant RGB

color values of an image denoted as CRGB ∈ R
10×3, which

is extracted from input images by utilizing a tool called

Color Thief. 1 Using CRGB as color features works better

in one-shot colorization settings, as neural networks seem

to learn easily and fast from direct RGB values than from

complex color distribution information. In short, our value

memory is represented as

V = Cdist or CRGB . (4)

The color information extracted in the above-described

manner is later used as a condition given to our colorization

networks. Even though either or both of the variants can be

used, we will use the notation Cdist for value memory in

subsequent equations, so as not to confuse the reader.

Threshold Triplet Loss for Unsupervised Training.

Previously proposed triplet losses [26, 12] aim to make

images of the same classes (positive neighbors) closer to

each other while making images of different classes (nega-

tive neighbors) further away. Likewise, we adopt the triplet

loss to maximize similarity between the query and positive

key and minimize similarity to the negative key. An existing

supervised triplet loss [12] introduces the smallest index p

where V [np] has the same class label as an input query q.

This would make np a positive neighbor of q. A negative

neighbor of q will be defined as the smallest index b where

V [nb] has a different class label from our query q.

However, this supervised triplet loss requires class label

information, leading to its limited applicability in our set-

ting as such information is not available in most data for

colorization tasks. For instance, it would be almost impos-

sible to label every single frame of an animation with its

1http://lokeshdhakar.com/projects/color-thief/

Figure 4. How our model works during test time. The top-1

color feature from our memory is retrieved and given as the con-

dition to our trained generator.

class label (i.e., whether a particular character, object, or

background appears in a given frame).

To solve this issue, we extend the existing method and

propose a threshold-based triplet loss applicable to fully un-

supervised settings. Given two images with similar spatial

features, we assume that if the distance between their color

features are within a certain threshold, then they are more

likely to be in the same class than those images with dif-

ferent color distributions. We introduce this threshold as

a hyperparameter denoted as δ. As the distance measure

Cdist between two color features, we compute the sym-

metric KL divergence of their color distributions over quan-

tized ab values. For CRGB , we compute color distance us-

ing CIEDE2000 [27] by converting RGB values to CIE Lab

values. In our unsupervised triplet loss setting, we newly

define a positive neighbor np as the memory slot with the

smallest index where the distance between V [np] and cor-

rect desired value v (i.e., the color feature of the query im-

age) is within a color threshold δ, i.e.,

KL(V [np] ‖ v) < δ. (5)

Similarly, we define a negative neighbor nb as the mem-

ory slot with the smallest index where the distance between

V [np] and v exceeds δ, i.e.,

KL(V [nb] ‖ v) > δ. (6)

Finally, the threshold triplet loss is defined as

Lt(q,M, δ) = max(q ·K[nb]− q ·K[np] + α, 0). (7)

This triplet loss minimizes distance between the positive

key and the query while maximizing distance between the

negative key and the query.

411286

Memory Update. Our memory M is updated after a new

query q is introduced to the networks. The memory gets up-

dated as follows, depending on whether the color distance

between the top-1 value V [n1] and the correct value v (i.e.,

the color feature of the new query image) is within the color

threshold.

(i) If the distance between V [n1] and v is within the color

threshold, we update the key by averaging K[n1] and q and

normalizing it. The age of n1 is also reset to zero. In detail,

the update when KL(V [n1] ‖ v) < δ is written as

K[n1]←
q +K[n1]

‖ q +K[n1] ‖
, A[n1]← 0. (8)

(ii) If the distance between V [n1] and v exceeds the color

threshold δ, this indicates that there exists no memory slot

that matches v in our current memory. Thus, (q, v) will be

newly written in the memory. We randomly choose one of

the memory slots with the oldest age (i.e., the least recently

used one), denoted as nr, and replace that slot with (q, v).
We also reset its age to 0. In detail, when KL(V [n1] ‖ v) >
δ, the update is performed as

K[nr]← q, V [nr]← vq, A[nr]← 0. (9)

3.2. Colorization Networks

Objective Function. Our colorization networks are con-

ditional generative adversarial networks that consist of a

generator G and a discriminator D. The discriminator tries

to distinguish real images from colored outputs using a

grayscale image and a color feature as a condition, while

the generator tries to fool the discriminator by producing

a realistic colored image given a grayscale input X and a

color feature C. A smooth L1 loss between the generated

output G(x,C) and the ground-truth image y is added to

the generator’s objective function, i.e.,

LsL1(y, ŷ) =

{

1

2
(y − ŷ)2 for |y − ŷ| ≤ δ

δ |y − ŷ| − 1

2
δ2 otherwise.

(10)

This encourages the generator to produce outputs that do

not deviate too far from the ground-truth image. Our full

objective function for D and G can be written as

LD = Ex∼Pdata
[logD(x,C, y)]

+Ex∼Pdata
[log(1−D(x,C,G(x,C)))],

(11)

LG = Ex∼Pdata
[log(1−D(x,C,G(x,C)))]

+LsL1(y,G(x,C)).
(12)

During training, we extract the color feature from the

ground-truth image to train G and D. During the test time,

we utilize the color value retrieved from the memory net-

works and feed it as the condition to the trained G, as shown

in Fig. 4. We adapt the architecture of our generator net-

works from [11] and that of the discriminator from [2].

Figure 5. Colorization results using the top-3 memory slots.

The memory networks can retrieve appropriate color features for

a given input. Different memory slots may be used to produce di-

verse results. All other samples in the paper are colored using the

top-1 memory slot.

Colors as style. Style transfer is a task of transferring a

style of a reference image to a target image. Colorization

can be viewed as style transfer, where instead of a particu-

lar style, color features are transferred to a target grayscale

image. We will regard color as a style and from this per-

spective, we use AdaIN, which has shown success in style

transfer, to effectively inject color information. We compute

the affine parameters used in the AdaIN module by directly

feeding the color feature to our own parameter-regression

networks, i.e.,

AdaIN(z, C) = γ

(

z − µ(z)

σ(z)

)

+ β, (13)

where z is the activation of the previous convolutional layer,

which is first normalized. Then it is scaled by γ and shifted

by β, which are parameters generated by a multilayer per-

ceptron adapted from [10]. Compared to existing coloriza-

tion models [2, 34] that incorporate color conditions via a

simple element-wise addition, AdaIN allows the model to

produce vivid colorizations as shown in Fig. 6.

4. Experiments

Our experiments consist of an ablation study on memory

networks, analysis on the threshold triplet loss, and both

quantitative and qualitative comparisons on three baseline

models.

4.1. Qualitative Evaluation

4.1.1 Datasets

We perform experiments on five different datasets and com-

pare our model performance on diverse settings (abundant

data, few-shot, and one-shot).

Oxford102 Flower Dataset. The Flower dataset [19] con-

sists of 102 flower classes. Each class has 40 to 258 images.

The class labels are not used in our experiments.

Monster Dataset. 1,315 images are collected from the

trailer of the movie Monsters, Inc. [1] to perform coloriza-

511287

Figure 6. Comparison to baselines on multiple datasets. We compare our model with other colorization and image translation models:

from left, Deep Priors [34], CIC [33], and Pix2pix [11]. Our model particularly excels at capturing and remembering objects that appear

only a few times in a training set. The character in the first row is originally green, but he is drenched in pink paint in one scene. Other

models color this character in green, but our model MemoPainter succeeds in remembering and coloring a scene where he is not green.

Our model works even in settings with extremely limited data, where only one data item per class (last row) is available. In this one-shot

learning setting, only our model manages to produce vibrant outputs.

tion on animations. An image frame is extracted every two

seconds to reduce excessive redundancy in the dataset.

Yumi Dataset. We collect 9,955 images of the cartoon

Yumi’s Cells 2 to perform colorization on cartoons. It con-

sists of images from 329 episodes, and each image is a sin-

gle frame from of a sequence of each episode.

Superheroes Dataset. We collect images of superhero

characters to perform few-shot colorization. It consists su-

2https://comic.naver.com/webtoon/list.nhn?titleId=651673

perhero images from seven categories with less than five

images per category.

Pokemon Dataset. We utilize the Pokemon dataset 3 for

one-shot colorization, which consists of 819 classes with a

single image per class. Additional images are crawled from

the internet to construct the test set.

3https://www.kaggle.com/kvpratama/pokemon-images-dataset

611288

Figure 7. Analysis on memory networks. We apply our model to a wide variety of datasets to show its applicability to different types of

images ranging from diverse cartoons to real-world images. Our model shows superior performance especially in few-shot settings (first

and third rows) when compared to our colorization networks (Res-cGAN) without memory networks. Colorization networks find it difficult

to produce outputs with vivid color.

4.1.2 Analysis on Memory Networks

We run an ablation study to analyze the effect of augment-

ing colorization networks with memory. As shown in Fig. 7,

we compare our proposed model MemoPainter against our

colorization networks (Res-CGAN) without memory aug-

mentation. Our memory-augmented networks are able to

produce superior results on a wide variety of datasets from

diverse cartoons to real-world images. In particular, it can

accurately color an image even with only a single or few

instances. Even though Res-cGAN produces high-quality

colorization in most cases, it fails to preserve the ground-

truth color of rare instances or completely fails in one-shot

learning settings (e.g., results on the Pokemon dataset).

Moreover, an analysis on two hyperparameters (memory

size and color threshold) is shown in Fig. 9. Performance

is measured by comparing average Learned Perceptual Im-

age Patch Similarity(LPIPS) [32]. Results show that LPIPS

scores are stable across a wide range of hyperparameters

and the model does not overfit to a particular color thresh-

old or memory size.

4.1.3 Analysis on Threshold Triplet Loss (TTL)

The assumption behind the threshold triplet loss is that those

images with (i) similar spatial features (i.e., the k nearest

neighbors) and (ii) similar color features (i.e., color dis-

Figure 8. Validation of our assumption on threshold triplet loss.

We demonstrate the corresponding images of the top-3 color fea-

tures retrieved from our memory networks. By using the threshold

triplet loss, our memory networks are trained to retrieve color fea-

tures highly relevant to the content of the query image.

tance within a particular threshold) are likely to be in the

same class. To confirm our assumption, we demonstrate the

corresponding images of the top-3 color features retrieved

from our memory networks during training. In this setting,

we do not update the keys in the case KL(V [n1] ‖ v) < δ,

so as to show its corresponding image. As shown in Fig. 8,

we can see that the corresponding images of the top-3 color

features have the same class as the query image. In partic-

ular, examples in the first row show that the top-3 images

share the same character as well as similar clothes, objects,

and backgrounds. This shows that TTL allows our memory

711289

Figure 9. Analysis of memory size and color threshold. LPIPS

scores are similar across various hyperparameters of the memory

networks. Quality drops (high LPIPS) only with excessively small

or large hyperparameters.

networks to retrieve color features relevant to the content of

the query image, being able to color rare instances even if it

was presented just once in the training data.

We also quantitatively validate the assumption of TTL by

measuring the classification accuracy, evaluating whether

the class of the images corresponding to the top-1 mem-

ory slot and the ground-truth label of the query are identi-

cal. During training, we additionally save the query’s class

to compute classification accuracy. At test time, we com-

pute the accuracy by computing the percentage of queries

that has the same class as the top-1 memory slot. As an up-

per bound of our unsupervised method, we use a supervised

version of our model. This version stores class values in the

value memory and updates memory as presented by the life-

long memory module made for few-shot classification [12].

Although our model is not specifically made for classifica-

tion tasks, Table 2 shows that our unsupervised model (first

row) retrieves the memory with the same class as accurately

as the supervised method (second row) across a different

number of classes and training sets.

4.1.4 Qualitative Comparisons

We qualitatively compare MemoPainter with three base-

lines: Deep Priors [34], CIC [33], and Pix2pix [11]. Fig. 6

shows qualitative results on multiple datasets. It shows that

our model particularly excels at coloring rare instances in

a training set. The Result from the monster dataset (first

row) shows a rare scene where the main character (origi-

nally green) is drenched in pink paint. Although other mod-

els color this character in green, MemoPainter is able to re-

member this rare instance and color the character properly.

Similarly, results from both the second and the fourth rows

show that our model is able to remember rare classes along

with minor details (i.e., even the clothes, objects, and back-

grounds in a cartoon frame) while every other baseline fails

to do so. Furthermore, our model is capable of producing

high-quality results in both few-shot and one-shot learning

settings compared to existing methods. Our model success-

fully produces accurate colorization given extremely lim-

ited data, e.g., given less than five training images per class

One-shot Few-shot

User-study LPIPS User-study LPIPS

Ours 75% 8.48 71% 1.34

CIC 10% 9.89 7% 1.80

Pix2pix 5% 13.47 16% 2.34

Deep Prior 10% 19.26 4% 2.03

Table 1. Quantitative comparisons with the state-of-the-art.

User study (higher is better) and LPIPS perceptual distance met-

ric [32] (lower is better) shows superiority of our method.

5-way 15-way

5-shot 10-shot 5-shot 10-shot

Ours (Unsup.) 87.50% 87.50% 69.44% 70.83%

Ours (Sup.) 91.66% 87.50% 72.22% 75.00%

Table 2. Classification accuracy of the threshold triplet loss.

(third row) or only a single data item per class (last row). In

both cases, MemoPainter is the only model that can consis-

tently produce accurate and vibrant colorization results.

4.1.5 Quantitative Evaluation

To quantitatively evaluate colorization quality, we conduct

a user study with 30 participants, each answering 40 ques-

tions. We give a random source image and its corresponding

colored outputs from our model and baselines. We then ask

which generated output has the highest quality while main-

taining the color identity of the source image (e.g., Hulk is

green). We also compare the LPIPS distance [32] which is

closer to human perception unlike MSE-based metrics. We

compute the average LPIPS between the input image and its

corresponding colored image. Table 1 shows that our model

is superior to the state-of-the-art across both measures.

5. Conclusions

Results of this paper suggest that colorization networks

with memory networks are a promising approach for prac-

tical applications of colorization models. We stress the im-

portance of colorization models working with little data so

that they can be used in coloring animations and cartoons.

MemoPainter works on a wide variety of images, thus bear-

ing great potentials in various applications that require few-

shot colorization.

Acknowledgements. This work was partially supported

by the National Research Foundation of Korea (NRF)

grant funded by the Korean government (MSIP) (No.

NRF2016R1C1B2015924). We thank all researchers at

NAVER WEBTOON Corp., especially Sungmin Kang.

Jaegul Choo is the corresponding author.

811290

References

[1] Monsters, inc. 5

[2] H. Bahng, S. Yoo, W. Cho, D. K. Park, Z. Wu, X. Ma, and

J. Choo. Coloring with words: Guiding image colorization

through text-based palette generation. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

431–447, 2018. 2, 5

[3] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo.

Stargan: Unified generative adversarial networks for multi-

domain image-to-image translation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018. 2

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 248–255. Ieee, 2009. 3

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information

Processing Systems, pages 2672–2680, 2014. 2

[6] A. Graves, G. Wayne, and I. Danihelka. Neural turing ma-

chines. arXiv preprint arXiv:1410.5401, 2014. 2

[7] S. Guadarrama, R. Dahl, D. Bieber, M. Norouzi, J. Shlens,

and K. Murphy. Pixcolor: Pixel recursive colorization.

BMVC, 2017. 1

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–

778, 2016. 3

[9] X. Huang and S. J. Belongie. Arbitrary style transfer in real-

time with adaptive instance normalization. In ICCV, pages

1510–1519, 2017. 3

[10] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal

unsupervised image-to-image translation. ECCV, 2018. 5

[11] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks. The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 1, 2, 5, 6, 8

[12] Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio. Learning to

remember rare events. International Conference on Learning

Representations, 2017. 2, 3, 4, 8

[13] B. Kim, H. Kim, and G. Kim. Abstractive Summariza-

tion of Reddit Posts with Multi-level Memory Networks. In

NAACL-HLT, 2019. 2

[14] Y. Kim, M. Kim, and G. Kim. Memorization precedes

generation: Learning unsupervised gans with memory net-

works. International Conference on Learning Representa-

tions, 2018. 2

[15] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury,

I. Gulrajani, V. Zhong, R. Paulus, and R. Socher. Ask me

anything: Dynamic memory networks for natural language

processing. In International Conference on Machine Learn-

ing, pages 1378–1387, 2016. 2

[16] S. Lee, J. Sung, Y. Yu, and G. Kim. A memory network

approach for story-based temporal summarization of 360

videos. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1410–1419, 2018. 2

[17] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and

J. Weston. Key-value memory networks for directly reading

documents. Proceedings of the 2016 Conference on Empiri-

cal Methods in Natural Language Processing, 2016. 2

[18] M. Mirza and S. Osindero. Conditional generative adversar-

ial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[19] M.-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In Proceedings of the

Indian Conference on Computer Vision, Graphics and Image

Processing, 2008. 5

[20] A. Odena. Semi-supervised learning with generative adver-

sarial networks. arXiv preprint arXiv:1606.01583, 2016. 2

[21] A. Odena, C. Olah, and J. Shlens. Conditional image

synthesis with auxiliary classifier gans. arXiv preprint

arXiv:1610.09585, 2016. 2

[22] C. C. Park, B. Kim, and G. Kim. Attend to you: Personalized

image captioning with context sequence memory networks.

2017. 2

[23] C. C. Park, B. Kim, and G. Kim. Towards personalized image

captioning via multimodal memory networks. IEEE transac-

tions on pattern analysis and machine intelligence, 2018. 2

[24] A. Pumarola, A. Agudo, A. Martinez, A. Sanfeliu, and

F. Moreno-Noguer. Ganimation: Anatomically-aware facial

animation from a single image. In Proceedings of the Eu-

ropean Conference on Computer Vision (Proceedings of the

European Conference on Computer Vision (ECCV)), 2018. 2

[25] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and

H. Lee. Generative adversarial text-to-image synthesis. In

Proceedings of The 33rd International Conference on Ma-

chine Learning (ICML), 2016. 2

[26] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 815–823, 2015. 4

[27] G. Sharma, W. Wu, and E. N. Dalal. The ciede2000 color-

difference formula: Implementation notes, supplementary

test data, and mathematical observations. Color Research

& Application, 30(1):21–30, 2005. 4

[28] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end mem-

ory networks. In Advances in neural information processing

systems, pages 2440–2448, 2015. 2

[29] Q. H. H. Z. Z. G. X. H. X. H. Tao Xu, Pengchuan Zhang. At-

tngan: Fine-grained text to image generation with attentional

generative adversarial networks. 2018. 2

[30] D. K. P. I. S. J. C. Wonwoong Cho, Sungha Choi. Image-to-

image translation via group-wise deep whitening and color-

ing transformation. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2019. 2

[31] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and

D. Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks. In Pro-

ceedings of the IEEE International Conference on Computer

Vision (ICCV), 2017. 2

[32] R. Zhang. The unreasonable effectiveness of deep features

as a perceptual metric. The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018. 7, 8

911291

[33] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-

tion. In European Conference on Computer Vision (ECCV),

pages 649–666. Springer, 2016. 1, 2, 4, 6, 8

[34] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and

A. A. Efros. Real-time user-guided image colorization with

learned deep priors. SIGGRAPH, 2017. 1, 2, 5, 6, 8

1011292

