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Abstract

Existing dichromatic color constancy approach com-
monly requires a number of spatial pixels which have high
specularity. In this paper, we propose a novel approach
to estimate the illuminant chromaticity of AC light source
using high-speed camera. We found that the temporal ob-
servations of an image pixel at a fixed location distribute
on an identical dichromatic plane. Instead of spatial pixels
with high specularity, multiple temporal samples of a pixel
are exploited to determine AC pixels for dichromatic plane
estimation, whose pixel intensity is sinusoidally varying
well. A dichromatic plane is calculated per each AC pixel,
and illuminant chromaticity is determined by the intersec-
tion of dichromatic planes. From multiple dichromatic
planes, an optimal illuminant is estimated with a novel MAP
framework. It is shown that the proposed method outper-
forms both existing dichromatic based methods and tempo-
ral color constancy methods, irrespective of the amount of
specularity.

1. Introduction

Color constancy is human’s inherent ability to adapt to
various changes of lighting condition [30]. Thanks to our
brain’s memory ability, human can easily discern the orig-
inal color of an object irrespective of illuminant condition
[26,29]. In contrast, for machine vision, a computational
color constancy technique is necessarily required to recover
the original color of an object because it does not have any
prior knowledge about neither reflectance of an object nor
illuminant color. Thus, color constancy plays a vital role
in machine vision, which contributes to image quality en-
hancement. There have been many color constancy algo-
rithms to improve color visual quality [1,3,7,9,11,17,34],
and most of these methods are typically classified into to
4 major categories: statistics-based, physics-based, gamut-
based, and learning-based methods.

Statistics-based methods have been most actively re-
searched. Due to their simple assumption of Lambertian re-
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Figure 1. Summary of the proposed method. The fast variations
of AC light source is captured with high-speed camera. An illu-
minant is estimated from multiple dichromatic planes, which are
obtained from temporal observations at a pixel.

flectance and low computational cost with quite high accu-
racy [6,19,39], it is even commonly used in digital camera
[43]. However, there is a critical drawback of these methods
that a scene must include various colors on target surfaces to
satisfy their statistical assumption [10,38,39]. On the other
hand, physics-based methods are more complex approach
to color constancy than statistics-based ones in that spec-
ularity (surface reflected light) is additionally considered
[36]. Their fundamental concept is based on the dichro-
matic reflection model, which represents the physical rela-
tionship between illuminant and object surface [13,38]. In
contrast with statistics-based methods, they work well with
monotonous surface color [11, 14,35]. However, since the
number of parameters in the dichromatic reflection model
is increased by adding the specular component, they be-
come a severe ill-posed problem, and thus commonly re-
quire additional assumption such as fixed parameter (com-
monly diffuse weight) and sufficient specularity. Gamut-
based methods [12, 16, 18] have also attracted many atten-
tions, but they require proper training data which are ap-
propriate for a target illuminant. Recently, there have been
proposed learning-based methods to use convolutional neu-
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ral network. They learn the plenty of filter parameters of
each layer given massive image-illuminant color pairs, and
draw an optimal solution [2,4,8,21,33]. However, their per-
formances highly depend on training data set, and still have
difficulty in solving a fundamental ill-posed problem clearly
such as discrimination between object reflectance and illu-
minant [4].

Thanks to the recent development of high-speed cam-
era, it has been just equipped with consumer devices such
as smartphone. It is expected that it will be popularly used
for consumer as well as industry in future because it makes
possible to capture minute variations of a scene, which is
imperceptible for human eyes [5,20]. In this paper, we pro-
pose a novel approach to exploit high-speed capture capa-
bility for color constancy. Alternative current (AC) electric
power is varying sinusoidally with time. For example, it
flickers 120 times per second for 60 Hz AC power. Light
sources powered by this alternating current make their in-
tensities fluctuate with an double AC frequency [44]. This
flickering of AC light source can be captured by high-speed
camera, and exploited as a powerful visual cue [37]. Pre-
vious dichromatic based single image methods use distinct
spatial pixels to obtain a dichromatic line or a plane. Their
performance significantly depends on the selection of spa-
tial pixels (so called specular pixels), which ideally have
identical diffuse and specular chromaticities. However, it
is difficult to extract specular region from an image. Es-
pecially they work poorly for non-specular images, which
commonly have low signal-to-noise ratio (SNR), leading to
low model estimation accuracy [38,46]. Existing dichro-
matic based temporal methods [31,48] exploit the RGB in-
tensity differences of adjacent frames to estimate illuminant
color. These method also require high-specularity because
a pixel with low intensity is prone to have many temporal
noises.

In this paper, we propose a novel temporal color con-
stancy method. With multiple high-speed observations at
a pixel on temporal domain, it attempts to find an optimal
solution for ill-posed dichromatic equation. The sinusoidal
variation of AC light intensity enables us to obtain multiple
distinct reflectances at the same location of a scene during
a short time interval. In contrast with previous dichromatic
model based methods, the proposed method does not re-
quire a high-specularity region, and does not assume that
the diffuse weight of the dichromatic model is fixed. These
assumptions have been a critical limitation for practical use
so far. We analyzed the temporal variations of dichromatic
model parameters, and actually observed that both diffuse
and specular weights are dynamic under time-varying AC
light. This means that under AC light sources, the dichro-
matic model should be described by an original plane rather
than a projected line. Inspired by this observation, we first
determine a set of AC pixels which are the pixels with si-

nusoidally varying intensity. The AC pixel is much more
common than specular one, and it can be easily determined
due to its periodic intensity property. Note that dichromatic
based illuminant estimation is very sensitively affected by
the specularity of pixel samples in existing methods. Pixel
intensities on temporal domain are modeled by a sinusoidal
curve using Gauss-Newton method, and a number of closely
fit pixels are selected as an AC pixel. A dichromatic plane
is estimated in a least-square way for each AC pixel. From
those AC pixels, we obtain dichromatic planes, and a candi-
date illuminant is obtained by calculating the intersection of
a pair of dichromatic planes. This candidate illuminant esti-
mation is performed for all dichromatic plane pairs. Finally,
an optimal illuminant is estimated by the proposed maxi-
mum a posterioi (MAP) framework. This MAP estimation
is formulated by incorporating the physical and statistical
properties of illuminants, which are actually directional ac-
curacy (likelihood) and Planckian locus distance (prior con-
straint). Through a MAP formulation with both properties,
physical and statistical advantages are optimally combined
to produce an accurate estimation of illuminant.

The contributions of the paper are summarized as fol-
lows:
e Under AC illuminants, high-speed camera can capture the
fast variations of illuminant intensity. We analyzed the vari-
ations of image pixel on temporal domain, and exploit them
to accurately estimate a dichromatic plane, which makes it
easy to estimate an optimal illuminant of a scene.
e Due to sinusoidally time-varying property of a pixel, we
can easily select a AC pixel which contributes to estimate
an accurate dichromatic plane. Also, it is easy to denoise it
by a sinusoidal modeling. This AC pixel is easy to find and
is more common than specular one.
e We propose a new MAP estimation framework to de-
termine an optimal illuminant from multiple dichromatic
planes. It incorporates the physical property and statistical
prior of illuminants.

2. Dichromatic Based Illuminant Estimation

In dichromatic reflection model, reflected light from an
inhomogeneous object is composed of diffuse and specu-
lar reflections, since refractive index is different between
surfaces and bodies (cause diffuse reflection), and between
surfaces and the air (cause specular reflection) [36]. Thus, it
is composed of both diffuse and specular components, and
represented by the weighted sum of chromaticity and illu-
minant as given by

I.=mgA.+msle, c€rg,b (1)
where A, and I, are diffuse and illuminant (specular) chro-
maticitiy, respectively. In (1), mg and m, are diffuse and
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Figure 2. Variations of diffuse and specular weights. (a) Relative
temporal variations and (b) their relationship. As shown in (b),
mgq and m have a non-linear relationship, thus dichromatic model
should span a plane rather than a line.

specular weights, respectively, which are defined as:

md:deBi; ms=wsZGi (2)

where wg and w are parameters to indicate the geometric
dependence of the reflectance, and they are actually deter-
mined by the angle between surface normal and incident
light direction. Both )~ B; and > G; are related to the in-
tensity of incident light. Also, > B; and > G; reflect dif-
fuse albedo and Fresnel reflectance, respectively [23,42].

In color constancy, dichromatic model is used to separate
illuminant chromaticity, I, from reflected light.

Spatial Image Color Constancy Existing dichromatic
model based illuminant estimation methods can be classi-
fied into line-based [14,25,38,46] and plane-based [13,35,
40,41] methods. In these methods, they commonly gather
a group of distinct spatial pixels which are assumed to have
identical A and I, and estimate multiple lines or planes for
an illuminant estimation. If m4 (A, — I'.) is constant on a
uniform surface, a dichromatic plane (which corresponds
to (1)) can be projected into a line. In inverse intensity
chromaticity (IIC) space [38], RGB chromaticity (defined
as o, = Z{CI'i) can be represented by linear relationship be-
tween inverse intensity of each channel and specular chro-
maticity, as expressed by

1
Uc*plz:lc

+ T 3)

where p; = mgq (A, —T.). Inspired by IIC, Woo et al.
[46] proposed the inverse intensity red chromaticity (IIRC)
space. They show that the target specular chromaticity (cor-
responding to I'; in (3)) is on the line drawn by selected
specular pixels in IIRC space. These line-based methods
can reduce the complexity of dichromatic model by project-
ing 2D plane into a 1D line. However, they commonly re-
quire so many specular pixels on uniform surfaces because
myg 1s assumed to be constant. In other words, if illumi-
nant intensity varies or pixels from the surfaces with dis-

tinct geometry are selected together, they work poorly be-
cause these spatial pixels have different my. If pixels which
have different my are selected, the IIC model in (3) draws
a curved line rather than a straight one, and the curvedness
of the dichromatic line hinders accurate illuminant estima-
tion. Note that the direction of a dichromatic line domi-
nantly determines illuminant color, and even a marginal er-
ror in the line direction estimation can result in large dis-
crepancy to a ground truth illuminant. Furthermore, the di-
rection of a dichromatic line is susceptible to noises of sam-
ple data which can severely twisted it. Dichromatic plane
approaches have a similar problem with linear model be-
cause plane should be estimated from distinct spatial pixels
which are assumed to have identical diffuse and specular
chromaticities. It is difficult to select those pixels, and it is
more complex and more sensitive to noise due to increased
dimension. Thus, it has not been actively researched re-
cently.

Temporal Image Color Constancy There have been pro-
posed few dichromatic based temporal color constancy
methods for image sequences [31, 48]. Their key con-
cept is that mg in (1) does not change between adjacent
frames, based on the observation that incident illuminant in-
tensity and surface geometry are usually kept unchanged on
temporal domain (represented as mq (t) = mgq (t + At)).
Thus, by calculating the difference of pixel intensities of
two neighboring frames, specular chromaticity can be esti-
mated under the assumption that specular and diffuse chro-
maticity do not vary with time. This is given by

LAY L.t AL(Y)
T omg (t+ A —mg (1) Amg (1)

“)

Even though Amy (t) is still unknown, the specular
chromaticity I'. can be easily calculated by normalizing
AT (t). This approach is simple and has merit of fast im-
plementation, but works poorly under less-specular because
pixels in less-specular regions have relatively low SNR.
Since AI. (t) is commonly very small, noise can be a se-
rious obstacle, especially for noise-prone shooting environ-
ments such as low light and high frame rate (or short expo-
sure time), which results in low SNR.

The diffuse and specular weights in (1) are actually vary-
ing under typical indoor environments. To confirm this
variations, we capture the white color checker with 150
fps. Then, diffuse and specular chromaticities are calcu-
lated from the color checker image sequence, based on the
prior knowledge that the white color checker is achromatic.
Dichromatic model, (1) can be re-written by the form of
matrix-vector product as:

Ir Ar Tg m
Lo | = [Ae To (md> 5)
Ip Ap Tp s
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Figure 3. Summary of the proposed method. We analyzed the minute temporal intensity variations captured by high-speed image, and

exploit to obtain accurate dichromatic plane for illuminant estimation.

By applying the pseudo inverse to (5), the variations of
mg and mg can be easily estimated. As shown in Fig.
2, both mg and m, are dynamic because they reflect the
time-varying intensity of the incident light. If geometry of
image pixel also varies with time by moving light source
or camera, they fluctuate more dynamically. As far as we
know, these properties have been neglected so far, not be-
ing dealt with seriously. Based on this observation, the
proposed method considers mg and mg as variable, and at-
tempts to estimate dichromatic plane by actively exploiting
time-varying AC light source.

3. The Proposed Method

Assuming static video, specular and diffuse chromatic-
ities are kept unchanged for entire video (unless the illu-
minant color is changed) in dichromatic model, (1). On
the other hand, the weights mg and mg are varying with
time due to the varying intensity of AC incident light. Thus,
on temporal domain, RGB intensity vectors of a fixed pixel
location are exist on identical dichromatic plane (which is
spanned by A and T'), and their temporal locations are de-
termined by m4 and ms. We observe these temporal loca-
tion variations of a AC pixel, and exploit it to estimate the
accurate dichromatic plane. Multiple dichromatic planes
are estimated from a number of AC pixels, and the illumi-
nant color can be estimated from their intersections. How-
ever, it is challenging to estimate dichromatic plane accu-
rately due to inherent low light noise of high-speed image
caused by short exposure time. Thus, as shown in Fig.
3, we first determine a set of AC pixels, whose intensities

are sinusoidally varying with time and contain much less
noise. And then, dichromatic plane is estimated per AC
pixel, based on its temporal intensity variations. Finally, a
set of candidate illuminant vectors are extracted by calcu-
lating the intersection of each dichromatic plane pairs. The
optimal illuminant is estimated using MAP estimation.

Note that the proposed method can be identically applied
to dynamic video using motion estimation as [31,48]. How-
ever, it is not dealt with in our paper because estimation
accuracy of dynamic video depends on the performance of
motion estimation.

3.1. Selection of AC Pixel

In this subsection, we determine a number of AC pix-
els from input high-speed frames to estimate a dichromatic
plane. An AC pixel is defined by a pixel whose intensity
varies sinusoidally with time just like AC light variations.
If multiple observations of a pixel on temporal domain are
fit into a sinusoidal curve, it becomes an AC pixel. A high-
speed image is inherently prone to noise very well due to
its short exposure time. By exploiting the periodic property
of an AC pixel, we can easily remove the effect of temporal
noise. This noise-free AC pixel plays a vital role to estimate
a dichromatic plane accurately.

The mean intensity of three RGB channels, which is ex-
pressed as I, = (Ir + I¢ + Ip) /3, can be modeled as
sinusoidal curve with additional offset. It is represented as

Im (t) ~ f (Lﬂ) = Am sin (47Tfact/fcam + (b) + Off (6)

where A, is the maximum variation of AC light, ¢ is phase,
fac 1s the frequency of AC current (e.g., typically 50 or 60
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Figure 4. A sinusoidal model fit of an AC pixel. Note that iteration
converges with ¢ < 0.03 seconds.

Hz), feam is capture frame rate, and off is a DC offset. 3 is
a collection of parameters in (6), and is a parameter vector
which is given by 8 = (Ap, ¢ oﬁ‘)T. Since f (t,3) is a
nonlinear function of ¢, 3 can be iteratively estimated using
Gauss-Newton method. Gauss-Newton method is used to
find a minimum of a non-linear function, and has an advan-
tage in computation complexity because it does not require
second or higher order derivatives [45].

In our work, we aim to minimize the squared error be-
tween I,,, (t) and f (¢,3), which is represented by r (3).
Thus, we select a 3 which minimize the squared error

r(8)" r(B)as

8= srgmine B r(B) = argmin S I (t) = f(1.3))?

(N
where r is an error vector between I,,, (¢) and f (¢, 3) from
t=t; to t. It is given by

I (t1) = f (1, 8)
r(8) = : (®)
Im. (tN) - f (h\/'?ﬂ)

The parameter vector 3 is iterativey updated by minimizing

r'r as shown in right-bottom graph in Fig. 4. In our diverse

experiments, (3 converges as fast as within 60 iterations.
Finally, the temporal error of a pixel is calculated to de-

termine a AC pixel for dichromatic plane estimation.
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Figure 5. Examples of plane estimation. For temporal observa-
tions of the three test pixels (denoted by green circle) in the top-
left image, their dichromatic planes (green plane in the plot) are
estimated. Blue line denotes a RGB direction of each temporal
sample. Irrespective of the extent of specularity, a dichromatic
plane is estimated well in that it contains most of blue lines.

where 3 (1) denote the first element of 3.

Note that the model fit error in (9) should be normalized
by the estimated sinusoidal amplitude for fair comparison
irrespective of pixel intensity. These AC pixels can be de-
noised easily and accurately with a sinusoidal model, and it
can contribute to estimate more accurate dichromatic plane.
It is enough to guarantee that multiple observations of an
AC pixel are from the same surface (or reflectance). Thus,
it does not require any specularity on a pixel. Note that AC
pixels are automatically determined from an input image by
choosing a pixel with low fitting error of (9).

3.2. Estimation of Dichromatic Plane

In previous subsection, a number of AC pixels are deter-
mined, and each AC pixel has /N different observations at
distinct time. A dichromatic plane is estimated from these
N temporal observations for a given AC pixel (see Fig. 5).
For k-th AC pixel, its N observed RGB pixels are on the
same plane, Py, based on the dichromatic model. If the
RGB values of an AC pixel are denoted as z, y, z, the
dichromatic plane Py is expressed by

Pr:agx+bry+cp, =2 (10)
where vy, = (a by ck;)T denotes the normal vector of the
dichromatic plane P.

To estimate the dichromatic plane, normal vector vy

should be first determined optimally as follows:

tNn

\A/']C = argmin Z (Zt — (akl‘t + bkyt + Ck))Q

Ve g=ty

(1)
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Figure 7. Angular error accuracy of the proposed method with (a)
various FPS and (b) number of temporal observations (150 fps).

where v, is an optimal solution to be best-fit. Its least-
square solution, is given by
v=(ATA)'ATb (12)

where A and b are composed of temporal observations of
RGB intensities, and are given by

Lty Yty 1 2ty
Tt Yt 1 Zte

e b=| (13)
Tty Ytn 1 Ztn

Then, the k-th plane error is calculated as

Fpi= (A% ~b) (A% —b)  (14)
miN
Note that in (14), least-square error is divided by mean
intensity I,,, to neglect the intensity level of a pixel. We
discard the planes which have high Ep, because they are
likely to have many noises.

3.3. Illuminant Estimation

Using the plane error measured of (14), NN, accurate
dichromatic planes are selected among multiple candidates.
Note that a single dichromatic plane is derived per each AC
pixel. Theoretically, all dichromatic planes should share a
common intersection. However, all dichromatic planes may
not meet at a fixed point actually due to noise and the ac-
curacy of dichromatic model. Thus, we first calculate an
intersection for a pair of dichromatic planes, and this is for
all combinations, »,C2. In other words, x,C2 number of
candidate illuminants is estimated. In this subsection, we
propose a Bayesian framework to determine an optimal il-
luminant from C5 intersections.

To obtain an optimal illuminant from dichromatic planes,
we adopts a MAP. Given all estimated planes, P, the opti-
mal illuminant should maximize the posteriori probability
p (T'|P), and posteriori probability can be decomposed into
the product of likelihood and prior probability as

Np
' = argmaxp (T|P) = argmax H p(PT)p((T) (15)
r roo

Since all dichromatic planes estimated for an input scene
should share a common illuminant vector, I', we can obtain
the illuminant by calculating the intersection of dichromatic
planes. In our work, an optimal illuminant is estimated from
Ny, (which is equal to y, C5) plausible candidate illumi-
nants. Then, (15) can be re-written as

NP
= argmax H p (PelTi)p (T3) (16)
FiE{FlaFZf" 7FNL} k=1

Taking logarithm to the right side of (16), it is rewritten by:

NP
r= argmax Zlnp(PkH‘i) + NpyInp (I;)
FiE{F17F27"' TN } k=1
A7)
I is estimated by maximizing the posterior probability of
the illuminant I' given multiple observations of dichro-
matic planes. Inspired by the previous combinational meth-
ods which exploit both physical and statistical properties
[34,35], the proposed framework includes both properties.
For likelihood probability, it should reflect the relation-
ship between candidate illuminant and the plane. Given I';,
the accuracy of k-th plane Pj can be measured by the an-
gle between I'; and the normal vector of a chromatic plane,
vg. Ideally, both directions should be orthogonal, and their
angular error is converted into the probability as follows

1 v T,
p (Px|T;) = exp (— cos ( - )) (18)
(PrlT) o R T

where the weight is controlled by plane error £, j in (14).

Prior information in the MAP framework typically in-
cludes the ideal property of estimate. Planckian locus is
adopted as a prior of illuminant. The possible illuminants
in the real world are commonly well-represented by black
body radiators. In chromaticity space, black body radiators
make a locus according to the varying temperature, which
is called Planckian locus [22,28]. A candidate illuminant
is orthogonally projected into Planckian locus on the CIE
1960 uv chromaticity space, and its Euclidean distance is
converted into the prior probability as follows

p(L'i) =exp <d“”AE)P)> (19)
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Table 1. Angular error comparisons with various single image methods for specular video (150 fps).

Method Mean | Median | Trimean | Best-25% | Worst-25%

Gray world 4.87 4.50 5.46 2.22 8.26

Max-RGB [24] 1642 | 15.14 17.40 9.65 24.45

Statistics-based | Shades of gray [15] 5.11 3.39 6.92 2.09 10.87
1% order grey edge [43] 9.51 9.24 11.35 242 17.88

2" order grey edge [43] 14.27 14.94 16.11 5.15 2391

Grey pixels [47] 7.99 6.98 9.03 4.58 13.20

Pixel gamut [16] 8.19 8.06 9.00 3.84 13.31

Gamut-based 1% order gradient gamut [18] 6.39 5.82 7.11 3.18 10.63

2" order gradient gamut [18] | 7.84 8.18 8.53 3.30 11.72

IIC [38] 7.22 6.91 7.87 3.73 11.39

Physics-based CLS [25] 9.01 8.55 10.12 3.48 15.39
ICC [46] 3.78 2.15 6.61 0.79 10.12

Proposed 2.47 1.93 3.12 0.50 5.12

(ambient)  AC LED, incandescent + DC LED (ambient)

I\

2 fluorescents (green, white)+DC LED (ambient) Incandescent
Figure 8. Visual results of the proposed method with various light

sources.

where )\, is a smoothing parameter, and d,,, (I';) is Eu-
clidean projection distance between I'; and Planckian locus
on CIE 1960 uv chromaticity space.

We aim to find a optimal illuminant which minimizes the
MAP estimation of (17) from candidate illuminants. It is
worth noting that \; controls the importance between like-
lihood and prior.

4. Experimental Results

To evaluate the proposed method, we produced 80 high-
speed raw videos, which were captured using Sentech STC-
MCS43U3V high-speed vision camera. Exposure time is
set to half the number of frames per second, which is usu-
ally used (e.g. 1/150 sec for 75 fps). Each raw frame is nor-
malized and demosaiced to apply color constancy. To con-
vince that the proposed method works well irrespective of
the amount of specularity, the test video sequences are cate-
gorized into specular (55% of total) and non-specular (45%
of total) by the extent of specularity in videos. They are
composed of various natural objects such as plastic, textile,
metal, rubber, stones, and fruit (see Fig. 6). We regularly se-
lect 60 AC pixels among all to estimate a dichromatic plane
(Np=60). The ground truth chromaticity of illuminant is
calculated by averaging the chromaticities of the reference

white of a color checker. Angular error e is used to evaluate
the quantitative performance and is given by

r, I

p—T (20)
I, |2

€ = arccos

where I is a ground truth chromaticity.

Performance with Frame Rate To capture the fast AC
variations of illuminant, the capture frame rate should ex-
ceed the frequency of illuminant. To avoid aliasing, it
should be twice the Nyquist frequency for the case of un-
known f,. [27,32]. However, it can be configured below
the Nyquist frequency under the assumption of known f,..
Fig. 7 (a) shows the angular error accuracy with various fps.
When the frame rate is lower then 100 fps, the angular error
of the proposed method is rather high because the variation
of illuminant intensity becomes indistinguishable by insuf-
ficient number of samples. When the frame rate is over 100,
the performance of the proposed method increased rapidly.
We can see that the angular error performance is saturated
when the frame rate is over 200 fps, which is still below the
Nyquist frequency (240 Hz).

Fig. 7 (b) shows the angular error of the proposed
method with the number of temporal observations. With the
number of temporal observation, the accuracy of the pro-
posed method increases until saturated. Note that the 15
temporal observations are made for 0.1 sec with 150 fps.

Comparisons with Single Image Methods To represent
the video performance of single image methods, we sam-
pled 10 frames from video regularly. Then, their angular
errors are averaged to represent a video performance. Since
an uniform AC light source is considered, our experimental
setup is wrapped up with matte cloth to avoid the effect of
external ambient light. The number of temporal observa-
tions is 100, which is less than 1 sec. We compare the pro-
posed method to several state-of-the-art methods including
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Table 2. Angular error comparisons with various single image methods for non-specular video (150 fps).

Method Mean | Median | Trimean | Best-25% | Worst-25%

Gray world 4.20 3.24 4.99 1.61 8.16

Max-RGB [24] 11.76 | 12.27 12.86 5.22 18.51

Statistics-based | Shades of gray [15] 3.82 2.92 4.60 1.47 7.25
1% order grey edge [43] 4.07 2.69 5.68 1.34 9.03
2" order grey edge [43] 5.43 3.86 7.35 2.17 11.80

Grey pixels [47] 6.32 5.79 6.75 3.76 9.51
Pixel gamut [16] 6.75 5.67 8.16 1.89 13.19

Gamut-based | 1% order gradient gamut [18] | 11.74 | 12.58 12.46 6.59 15.85
2" order gradient gamut [18] | 12.37 12.76 12.72 8.41 15.63
IIC [38] 9.03 8.22 9.95 4.47 14.47

Physics-based CLS [25] 9.01 6.20 11.26 2.60 18.43
ICC [46] 4.16 3.68 5.40 1.06 8.18

Proposed 2.58 2.37 3.00 0.94 4.60

statistics-based, gamut-based, and physics-based methods.
We classify our test videos into specular and non-specular
videos, and evaluate each separately. Table 1 and 2 compare
the proposed method with existing color constancy methods
for a single image. The proposed method outperforms all
existing methods. Especially, the performance of the pro-
posed method is outstanding with worst-25% angular error,
which is almost half of the second best methods. Compared
to existing methods, the proposed method works well with
specular as well as non-specular image.

Comparisons with Temporal Method The proposed
method is compared with existing temporal method, which
is dichromatic model in (4) (introduced in [31,48]). To con-
duct fair comparisons, 60 identical pixels are used, and prin-
cipal component analysis is exploited to estimate illuminant
in temporal method of (4). Table 3 summarizes the angular
error performance of the proposed method. The proposed
method shows the lower angular error, which is attributed
to noise-robust characteristics of the proposed method.

Evaluation with various light sources We evaluate the
proposed method with various combinations of light
sources (as shown in Fig. 8) and the public DELIGHT [37].
Our fitting model in (6) are applied to both our experiment
setting and DELIGHT. For evaluation with DELIGHT, its
bulb response values are resampled to 60 Hz (originally 50
Hz). Note that the amplitude of sinusoidal variations are
normalized to 1 for fair comparison. Table 4 shows that our
model in (6) is well-fit to both data, independent of bulb
types. Visual results of the proposed method are evaluated
as shown in Fig. 8. With various environments under mixed
AC light or ambient light, the proposed method works well.

5. Conclusions

We proposed a novel temporal color constancy method
for AC light sources. Under AC light source, the intensities

Table 3. Angular error comparisons with temporal method for
high-speed video (150 fps).

Specular \ Non-specular
Method Mean \ Median \ Mean \ Median
Temporal | 5.42 5.02 6.55 3.94
Proposed | 2.47 1.93 2.58 2.37

Table 4. Mean squared error of our fitting method with DELIGHT
dataset (top) and our experiment setting (bottom).

Data Incan Fluor LED
DELIGHT | 0.00001 | 0.00013 | 0.00045
Ours 0.00026 | 0.00047 | 0.00021

of a pixel (named by AC pixel) is time-varying with a fre-
quency identical to AC electric power. This periodic time-
varying property helps a dichromatic plane to be estimated
accurately. A variety of experiments show that the pro-
posed method can estimate an illuminant accurately, leading
to better color constancy. Also, the proposed method out-
performs existing dichromatic based methods and tempo-
ral color constancy methods, irrespective of the amount of
specularity. In this paper, only a static scene is considered
for experiments in order to avoid the effect of object mo-
tion. It would be possible to compensate motion by align-
ment between neighboring frames. It may take some time
to acquire temporal pixel samples for dichromatic plane es-
timation, and this may be constrained by fast object motion.
Higher speed capability can decrease the time length of AC
pixels, resulting in less sensitive to object motion. It will be
further investigated thoroughly.
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