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Abstract

Existing dichromatic color constancy approach com-

monly requires a number of spatial pixels which have high

specularity. In this paper, we propose a novel approach

to estimate the illuminant chromaticity of AC light source

using high-speed camera. We found that the temporal ob-

servations of an image pixel at a fixed location distribute

on an identical dichromatic plane. Instead of spatial pixels

with high specularity, multiple temporal samples of a pixel

are exploited to determine AC pixels for dichromatic plane

estimation, whose pixel intensity is sinusoidally varying

well. A dichromatic plane is calculated per each AC pixel,

and illuminant chromaticity is determined by the intersec-

tion of dichromatic planes. From multiple dichromatic

planes, an optimal illuminant is estimated with a novel MAP

framework. It is shown that the proposed method outper-

forms both existing dichromatic based methods and tempo-

ral color constancy methods, irrespective of the amount of

specularity.

1. Introduction

Color constancy is human’s inherent ability to adapt to

various changes of lighting condition [30]. Thanks to our

brain’s memory ability, human can easily discern the orig-

inal color of an object irrespective of illuminant condition

[26, 29]. In contrast, for machine vision, a computational

color constancy technique is necessarily required to recover

the original color of an object because it does not have any

prior knowledge about neither reflectance of an object nor

illuminant color. Thus, color constancy plays a vital role

in machine vision, which contributes to image quality en-

hancement. There have been many color constancy algo-

rithms to improve color visual quality [1, 3, 7, 9, 11, 17, 34],

and most of these methods are typically classified into to

4 major categories: statistics-based, physics-based, gamut-

based, and learning-based methods.

Statistics-based methods have been most actively re-

searched. Due to their simple assumption of Lambertian re-

Figure 1. Summary of the proposed method. The fast variations

of AC light source is captured with high-speed camera. An illu-

minant is estimated from multiple dichromatic planes, which are

obtained from temporal observations at a pixel.

flectance and low computational cost with quite high accu-

racy [6, 19, 39], it is even commonly used in digital camera

[43]. However, there is a critical drawback of these methods

that a scene must include various colors on target surfaces to

satisfy their statistical assumption [10,38,39]. On the other

hand, physics-based methods are more complex approach

to color constancy than statistics-based ones in that spec-

ularity (surface reflected light) is additionally considered

[36]. Their fundamental concept is based on the dichro-

matic reflection model, which represents the physical rela-

tionship between illuminant and object surface [13, 38]. In

contrast with statistics-based methods, they work well with

monotonous surface color [11, 14, 35]. However, since the

number of parameters in the dichromatic reflection model

is increased by adding the specular component, they be-

come a severe ill-posed problem, and thus commonly re-

quire additional assumption such as fixed parameter (com-

monly diffuse weight) and sufficient specularity. Gamut-

based methods [12, 16, 18] have also attracted many atten-

tions, but they require proper training data which are ap-

propriate for a target illuminant. Recently, there have been

proposed learning-based methods to use convolutional neu-
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ral network. They learn the plenty of filter parameters of

each layer given massive image-illuminant color pairs, and

draw an optimal solution [2,4,8,21,33]. However, their per-

formances highly depend on training data set, and still have

difficulty in solving a fundamental ill-posed problem clearly

such as discrimination between object reflectance and illu-

minant [4].

Thanks to the recent development of high-speed cam-

era, it has been just equipped with consumer devices such

as smartphone. It is expected that it will be popularly used

for consumer as well as industry in future because it makes

possible to capture minute variations of a scene, which is

imperceptible for human eyes [5,20]. In this paper, we pro-

pose a novel approach to exploit high-speed capture capa-

bility for color constancy. Alternative current (AC) electric

power is varying sinusoidally with time. For example, it

flickers 120 times per second for 60 Hz AC power. Light

sources powered by this alternating current make their in-

tensities fluctuate with an double AC frequency [44]. This

flickering of AC light source can be captured by high-speed

camera, and exploited as a powerful visual cue [37]. Pre-

vious dichromatic based single image methods use distinct

spatial pixels to obtain a dichromatic line or a plane. Their

performance significantly depends on the selection of spa-

tial pixels (so called specular pixels), which ideally have

identical diffuse and specular chromaticities. However, it

is difficult to extract specular region from an image. Es-

pecially they work poorly for non-specular images, which

commonly have low signal-to-noise ratio (SNR), leading to

low model estimation accuracy [38, 46]. Existing dichro-

matic based temporal methods [31, 48] exploit the RGB in-

tensity differences of adjacent frames to estimate illuminant

color. These method also require high-specularity because

a pixel with low intensity is prone to have many temporal

noises.

In this paper, we propose a novel temporal color con-

stancy method. With multiple high-speed observations at

a pixel on temporal domain, it attempts to find an optimal

solution for ill-posed dichromatic equation. The sinusoidal

variation of AC light intensity enables us to obtain multiple

distinct reflectances at the same location of a scene during

a short time interval. In contrast with previous dichromatic

model based methods, the proposed method does not re-

quire a high-specularity region, and does not assume that

the diffuse weight of the dichromatic model is fixed. These

assumptions have been a critical limitation for practical use

so far. We analyzed the temporal variations of dichromatic

model parameters, and actually observed that both diffuse

and specular weights are dynamic under time-varying AC

light. This means that under AC light sources, the dichro-

matic model should be described by an original plane rather

than a projected line. Inspired by this observation, we first

determine a set of AC pixels which are the pixels with si-

nusoidally varying intensity. The AC pixel is much more

common than specular one, and it can be easily determined

due to its periodic intensity property. Note that dichromatic

based illuminant estimation is very sensitively affected by

the specularity of pixel samples in existing methods. Pixel

intensities on temporal domain are modeled by a sinusoidal

curve using Gauss-Newton method, and a number of closely

fit pixels are selected as an AC pixel. A dichromatic plane

is estimated in a least-square way for each AC pixel. From

those AC pixels, we obtain dichromatic planes, and a candi-

date illuminant is obtained by calculating the intersection of

a pair of dichromatic planes. This candidate illuminant esti-

mation is performed for all dichromatic plane pairs. Finally,

an optimal illuminant is estimated by the proposed maxi-

mum a posterioi (MAP) framework. This MAP estimation

is formulated by incorporating the physical and statistical

properties of illuminants, which are actually directional ac-

curacy (likelihood) and Planckian locus distance (prior con-

straint). Through a MAP formulation with both properties,

physical and statistical advantages are optimally combined

to produce an accurate estimation of illuminant.

The contributions of the paper are summarized as fol-

lows:

• Under AC illuminants, high-speed camera can capture the

fast variations of illuminant intensity. We analyzed the vari-

ations of image pixel on temporal domain, and exploit them

to accurately estimate a dichromatic plane, which makes it

easy to estimate an optimal illuminant of a scene.

• Due to sinusoidally time-varying property of a pixel, we

can easily select a AC pixel which contributes to estimate

an accurate dichromatic plane. Also, it is easy to denoise it

by a sinusoidal modeling. This AC pixel is easy to find and

is more common than specular one.

• We propose a new MAP estimation framework to de-

termine an optimal illuminant from multiple dichromatic

planes. It incorporates the physical property and statistical

prior of illuminants.

2. Dichromatic Based Illuminant Estimation

In dichromatic reflection model, reflected light from an

inhomogeneous object is composed of diffuse and specu-

lar reflections, since refractive index is different between

surfaces and bodies (cause diffuse reflection), and between

surfaces and the air (cause specular reflection) [36]. Thus, it

is composed of both diffuse and specular components, and

represented by the weighted sum of chromaticity and illu-

minant as given by

Ic = mdΛc +msΓc, c ∈ r, g, b (1)

where Λc and Γc are diffuse and illuminant (specular) chro-

maticitiy, respectively. In (1), md and ms are diffuse and
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Figure 2. Variations of diffuse and specular weights. (a) Relative

temporal variations and (b) their relationship. As shown in (b),

md and ms have a non-linear relationship, thus dichromatic model

should span a plane rather than a line.

specular weights, respectively, which are defined as:

md = wd

∑

Bi, ms = ws

∑

Gi (2)

where wd and ws are parameters to indicate the geometric

dependence of the reflectance, and they are actually deter-

mined by the angle between surface normal and incident

light direction. Both
∑

Bi and
∑

Gi are related to the in-

tensity of incident light. Also,
∑

Bi and
∑

Gi reflect dif-

fuse albedo and Fresnel reflectance, respectively [23, 42].

In color constancy, dichromatic model is used to separate

illuminant chromaticity, Γc, from reflected light.

Spatial Image Color Constancy Existing dichromatic

model based illuminant estimation methods can be classi-

fied into line-based [14, 25, 38, 46] and plane-based [13, 35,

40, 41] methods. In these methods, they commonly gather

a group of distinct spatial pixels which are assumed to have

identical Λ and Γ, and estimate multiple lines or planes for

an illuminant estimation. If md (Λc − Γc) is constant on a

uniform surface, a dichromatic plane (which corresponds

to (1)) can be projected into a line. In inverse intensity

chromaticity (IIC) space [38], RGB chromaticity (defined

as σc =
Ic∑
Ii

) can be represented by linear relationship be-

tween inverse intensity of each channel and specular chro-

maticity, as expressed by

σc = pl
1

∑

Ic
+ Γc (3)

where pl = md (Λc − Γc). Inspired by IIC, Woo et al.

[46] proposed the inverse intensity red chromaticity (IIRC)

space. They show that the target specular chromaticity (cor-

responding to Γc in (3)) is on the line drawn by selected

specular pixels in IIRC space. These line-based methods

can reduce the complexity of dichromatic model by project-

ing 2D plane into a 1D line. However, they commonly re-

quire so many specular pixels on uniform surfaces because

md is assumed to be constant. In other words, if illumi-

nant intensity varies or pixels from the surfaces with dis-

tinct geometry are selected together, they work poorly be-

cause these spatial pixels have different md. If pixels which

have different md are selected, the IIC model in (3) draws

a curved line rather than a straight one, and the curvedness

of the dichromatic line hinders accurate illuminant estima-

tion. Note that the direction of a dichromatic line domi-

nantly determines illuminant color, and even a marginal er-

ror in the line direction estimation can result in large dis-

crepancy to a ground truth illuminant. Furthermore, the di-

rection of a dichromatic line is susceptible to noises of sam-

ple data which can severely twisted it. Dichromatic plane

approaches have a similar problem with linear model be-

cause plane should be estimated from distinct spatial pixels

which are assumed to have identical diffuse and specular

chromaticities. It is difficult to select those pixels, and it is

more complex and more sensitive to noise due to increased

dimension. Thus, it has not been actively researched re-

cently.

Temporal Image Color Constancy There have been pro-

posed few dichromatic based temporal color constancy

methods for image sequences [31, 48]. Their key con-

cept is that md in (1) does not change between adjacent

frames, based on the observation that incident illuminant in-

tensity and surface geometry are usually kept unchanged on

temporal domain (represented as md (t) = md (t+∆t)).
Thus, by calculating the difference of pixel intensities of

two neighboring frames, specular chromaticity can be esti-

mated under the assumption that specular and diffuse chro-

maticity do not vary with time. This is given by

Γc =
Ic (t+∆t)− Ic (t)

ms (t+∆t)−ms (t)
=

∆Ic (t)

∆ms (t)
(4)

Even though ∆ms (t) is still unknown, the specular

chromaticity Γc can be easily calculated by normalizing

∆Ic (t). This approach is simple and has merit of fast im-

plementation, but works poorly under less-specular because

pixels in less-specular regions have relatively low SNR.

Since ∆Ic (t) is commonly very small, noise can be a se-

rious obstacle, especially for noise-prone shooting environ-

ments such as low light and high frame rate (or short expo-

sure time), which results in low SNR.

The diffuse and specular weights in (1) are actually vary-

ing under typical indoor environments. To confirm this

variations, we capture the white color checker with 150

fps. Then, diffuse and specular chromaticities are calcu-

lated from the color checker image sequence, based on the

prior knowledge that the white color checker is achromatic.

Dichromatic model, (1) can be re-written by the form of

matrix-vector product as:





IR
IG
IB



 =





ΛR ΓR

ΛG ΓG

ΛB ΓB





(

md

ms

)

(5)
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Figure 3. Summary of the proposed method. We analyzed the minute temporal intensity variations captured by high-speed image, and

exploit to obtain accurate dichromatic plane for illuminant estimation.

By applying the pseudo inverse to (5), the variations of

md and ms can be easily estimated. As shown in Fig.

2, both md and ms are dynamic because they reflect the

time-varying intensity of the incident light. If geometry of

image pixel also varies with time by moving light source

or camera, they fluctuate more dynamically. As far as we

know, these properties have been neglected so far, not be-

ing dealt with seriously. Based on this observation, the

proposed method considers md and ms as variable, and at-

tempts to estimate dichromatic plane by actively exploiting

time-varying AC light source.

3. The Proposed Method

Assuming static video, specular and diffuse chromatic-

ities are kept unchanged for entire video (unless the illu-

minant color is changed) in dichromatic model, (1). On

the other hand, the weights md and ms are varying with

time due to the varying intensity of AC incident light. Thus,

on temporal domain, RGB intensity vectors of a fixed pixel

location are exist on identical dichromatic plane (which is

spanned by Λ and Γ), and their temporal locations are de-

termined by md and ms. We observe these temporal loca-

tion variations of a AC pixel, and exploit it to estimate the

accurate dichromatic plane. Multiple dichromatic planes

are estimated from a number of AC pixels, and the illumi-

nant color can be estimated from their intersections. How-

ever, it is challenging to estimate dichromatic plane accu-

rately due to inherent low light noise of high-speed image

caused by short exposure time. Thus, as shown in Fig.

3, we first determine a set of AC pixels, whose intensities

are sinusoidally varying with time and contain much less

noise. And then, dichromatic plane is estimated per AC

pixel, based on its temporal intensity variations. Finally, a

set of candidate illuminant vectors are extracted by calcu-

lating the intersection of each dichromatic plane pairs. The

optimal illuminant is estimated using MAP estimation.

Note that the proposed method can be identically applied

to dynamic video using motion estimation as [31,48]. How-

ever, it is not dealt with in our paper because estimation

accuracy of dynamic video depends on the performance of

motion estimation.

3.1. Selection of AC Pixel

In this subsection, we determine a number of AC pix-

els from input high-speed frames to estimate a dichromatic

plane. An AC pixel is defined by a pixel whose intensity

varies sinusoidally with time just like AC light variations.

If multiple observations of a pixel on temporal domain are

fit into a sinusoidal curve, it becomes an AC pixel. A high-

speed image is inherently prone to noise very well due to

its short exposure time. By exploiting the periodic property

of an AC pixel, we can easily remove the effect of temporal

noise. This noise-free AC pixel plays a vital role to estimate

a dichromatic plane accurately.

The mean intensity of three RGB channels, which is ex-

pressed as Im = (IR + IG + IB) /3, can be modeled as

sinusoidal curve with additional offset. It is represented as

Im (t) ≈ f (t,β) = Am sin (4πfact/fcam + φ) + off (6)

where Am is the maximum variation of AC light, φ is phase,

fac is the frequency of AC current (e.g., typically 50 or 60
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Figure 4. A sinusoidal model fit of an AC pixel. Note that iteration

converges with t < 0.03 seconds.

Hz), fcam is capture frame rate, and off is a DC offset. β is

a collection of parameters in (6), and is a parameter vector

which is given by β =
(

Am φ off
)T

. Since f (t,β) is a

nonlinear function of t, β can be iteratively estimated using

Gauss-Newton method. Gauss-Newton method is used to

find a minimum of a non-linear function, and has an advan-

tage in computation complexity because it does not require

second or higher order derivatives [45].

In our work, we aim to minimize the squared error be-

tween Im (t) and f (t,β), which is represented by r (β).
Thus, we select a β which minimize the squared error

r (β)
T
r (β) as

β̂ = argmin
β

r (β)
T
r (β) = argmin

β

tN
∑

t=t1

(Im (t)− f (t,β))
2

(7)

where r is an error vector between Im (t) and f (t,β) from

t=t1 to tN . It is given by

r (β) =







Im (t1)− f (t1,β)
...

Im (tN )− f (tN ,β)






(8)

The parameter vector β is iterativey updated by minimizing

r
T
r as shown in right-bottom graph in Fig. 4. In our diverse

experiments, β converges as fast as within 60 iterations.

Finally, the temporal error of a pixel is calculated to de-

termine a AC pixel for dichromatic plane estimation.

ET =
r

(

β̂
)T

r

(

β̂
)

β̂ (1) tN
(9)

Figure 5. Examples of plane estimation. For temporal observa-

tions of the three test pixels (denoted by green circle) in the top-

left image, their dichromatic planes (green plane in the plot) are

estimated. Blue line denotes a RGB direction of each temporal

sample. Irrespective of the extent of specularity, a dichromatic

plane is estimated well in that it contains most of blue lines.

where β̂ (1) denote the first element of β̂.

Note that the model fit error in (9) should be normalized

by the estimated sinusoidal amplitude for fair comparison

irrespective of pixel intensity. These AC pixels can be de-

noised easily and accurately with a sinusoidal model, and it

can contribute to estimate more accurate dichromatic plane.

It is enough to guarantee that multiple observations of an

AC pixel are from the same surface (or reflectance). Thus,

it does not require any specularity on a pixel. Note that AC

pixels are automatically determined from an input image by

choosing a pixel with low fitting error of (9).

3.2. Estimation of Dichromatic Plane

In previous subsection, a number of AC pixels are deter-

mined, and each AC pixel has N different observations at

distinct time. A dichromatic plane is estimated from these

N temporal observations for a given AC pixel (see Fig. 5).

For k-th AC pixel, its N observed RGB pixels are on the

same plane, Pk, based on the dichromatic model. If the

RGB values of an AC pixel are denoted as x, y, z, the

dichromatic plane Pk is expressed by

Pk : akx+ bky + ck = z (10)

where vk = (ak bk ck)
T

denotes the normal vector of the

dichromatic plane Pk.

To estimate the dichromatic plane, normal vector vk

should be first determined optimally as follows:

v̂k = argmin
vk

tN
∑

t=t1

(zt − (akxt + bkyt + ck))
2

(11)
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Figure 6. An test images extracted from videos in our laboratory

setting.
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Figure 7. Angular error accuracy of the proposed method with (a)

various FPS and (b) number of temporal observations (150 fps).

where v̂k is an optimal solution to be best-fit. Its least-

square solution, is given by

v̂ =
(

A
T
A
)−1

A
T
b (12)

where A and b are composed of temporal observations of

RGB intensities, and are given by

A =











xt1 yt1 1
xt2 yt2 1

...

xtN ytN 1











b =











zt1
zt2
...

ztN











(13)

Then, the k-th plane error is calculated as

EP,k =
1

ImtN
(Av̂k − b)

T
(Av̂k − b) (14)

Note that in (14), least-square error is divided by mean

intensity Im, to neglect the intensity level of a pixel. We

discard the planes which have high EP , because they are

likely to have many noises.

3.3. Illuminant Estimation

Using the plane error measured of (14), Np accurate

dichromatic planes are selected among multiple candidates.

Note that a single dichromatic plane is derived per each AC

pixel. Theoretically, all dichromatic planes should share a

common intersection. However, all dichromatic planes may

not meet at a fixed point actually due to noise and the ac-

curacy of dichromatic model. Thus, we first calculate an

intersection for a pair of dichromatic planes, and this is for

all combinations, Np
C2. In other words, Np

C2 number of

candidate illuminants is estimated. In this subsection, we

propose a Bayesian framework to determine an optimal il-

luminant from Np
C2 intersections.

To obtain an optimal illuminant from dichromatic planes,

we adopts a MAP. Given all estimated planes, P, the opti-

mal illuminant should maximize the posteriori probability

p (Γ|P), and posteriori probability can be decomposed into

the product of likelihood and prior probability as

Γ̂ = argmax
Γ

p (Γ|P) = argmax
Γ

Np
∏

k=1

p (Pk|Γ) p (Γ) (15)

Since all dichromatic planes estimated for an input scene

should share a common illuminant vector, Γ, we can obtain

the illuminant by calculating the intersection of dichromatic

planes. In our work, an optimal illuminant is estimated from

NL (which is equal to Np
C2) plausible candidate illumi-

nants. Then, (15) can be re-written as

Γ̂ = argmax
Γi∈{Γ1,Γ2,··· ,ΓNL}

Np
∏

k=1

p (Pk|Γi) p (Γi) (16)

Taking logarithm to the right side of (16), it is rewritten by:

Γ̂ = argmax
Γi∈{Γ1,Γ2,··· ,ΓNL}

Np
∑

k=1

ln p (Pk|Γi) +Np ln p (Γi)

(17)

Γ̂ is estimated by maximizing the posterior probability of

the illuminant Γ given multiple observations of dichro-

matic planes. Inspired by the previous combinational meth-

ods which exploit both physical and statistical properties

[34, 35], the proposed framework includes both properties.

For likelihood probability, it should reflect the relation-

ship between candidate illuminant and the plane. Given Γi,

the accuracy of k-th plane Pk can be measured by the an-

gle between Γi and the normal vector of a chromatic plane,

vk. Ideally, both directions should be orthogonal, and their

angular error is converted into the probability as follows

p (Pk|Γi) = exp

(

−
1

Ep,k

cos

(

v̂k · Γi

‖v̂k‖‖Γi‖

))

(18)

where the weight is controlled by plane error Ep,k in (14).

Prior information in the MAP framework typically in-

cludes the ideal property of estimate. Planckian locus is

adopted as a prior of illuminant. The possible illuminants

in the real world are commonly well-represented by black

body radiators. In chromaticity space, black body radiators

make a locus according to the varying temperature, which

is called Planckian locus [22, 28]. A candidate illuminant

is orthogonally projected into Planckian locus on the CIE

1960 uv chromaticity space, and its Euclidean distance is

converted into the prior probability as follows

p (Γi) = exp

(

−
duv (Γi)

λb

)

(19)
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Table 1. Angular error comparisons with various single image methods for specular video (150 fps).

Method Mean Median Trimean Best-25% Worst-25%

Statistics-based

Gray world 4.87 4.50 5.46 2.22 8.26

Max-RGB [24] 16.42 15.14 17.40 9.65 24.45

Shades of gray [15] 5.11 3.39 6.92 2.09 10.87

1st order grey edge [43] 9.51 9.24 11.35 2.42 17.88

2nd order grey edge [43] 14.27 14.94 16.11 5.15 23.91

Grey pixels [47] 7.99 6.98 9.03 4.58 13.20

Gamut-based

Pixel gamut [16] 8.19 8.06 9.00 3.84 13.31

1st order gradient gamut [18] 6.39 5.82 7.11 3.18 10.63

2nd order gradient gamut [18] 7.84 8.18 8.53 3.30 11.72

Physics-based

IIC [38] 7.22 6.91 7.87 3.73 11.39

CLS [25] 9.01 8.55 10.12 3.48 15.39

ICC [46] 3.78 2.15 6.61 0.79 10.12

Proposed 2.47 1.93 3.12 0.50 5.12

Figure 8. Visual results of the proposed method with various light

sources.

where λb is a smoothing parameter, and duv (Γi) is Eu-

clidean projection distance between Γi and Planckian locus

on CIE 1960 uv chromaticity space.

We aim to find a optimal illuminant which minimizes the

MAP estimation of (17) from candidate illuminants. It is

worth noting that λb controls the importance between like-

lihood and prior.

4. Experimental Results

To evaluate the proposed method, we produced 80 high-

speed raw videos, which were captured using Sentech STC-

MCS43U3V high-speed vision camera. Exposure time is

set to half the number of frames per second, which is usu-

ally used (e.g. 1/150 sec for 75 fps). Each raw frame is nor-

malized and demosaiced to apply color constancy. To con-

vince that the proposed method works well irrespective of

the amount of specularity, the test video sequences are cate-

gorized into specular (55% of total) and non-specular (45%

of total) by the extent of specularity in videos. They are

composed of various natural objects such as plastic, textile,

metal, rubber, stones, and fruit (see Fig. 6). We regularly se-

lect 60 AC pixels among all to estimate a dichromatic plane

(Np=60). The ground truth chromaticity of illuminant is

calculated by averaging the chromaticities of the reference

white of a color checker. Angular error e is used to evaluate

the quantitative performance and is given by

e = arccos





Γg · Γ̂

‖Γg‖
∥

∥

∥Γ̂
∥

∥

∥



 (20)

where Γg is a ground truth chromaticity.

Performance with Frame Rate To capture the fast AC

variations of illuminant, the capture frame rate should ex-

ceed the frequency of illuminant. To avoid aliasing, it

should be twice the Nyquist frequency for the case of un-

known fac [27, 32]. However, it can be configured below

the Nyquist frequency under the assumption of known fac.

Fig. 7 (a) shows the angular error accuracy with various fps.

When the frame rate is lower then 100 fps, the angular error

of the proposed method is rather high because the variation

of illuminant intensity becomes indistinguishable by insuf-

ficient number of samples. When the frame rate is over 100,

the performance of the proposed method increased rapidly.

We can see that the angular error performance is saturated

when the frame rate is over 200 fps, which is still below the

Nyquist frequency (240 Hz).

Fig. 7 (b) shows the angular error of the proposed

method with the number of temporal observations. With the

number of temporal observation, the accuracy of the pro-

posed method increases until saturated. Note that the 15

temporal observations are made for 0.1 sec with 150 fps.

Comparisons with Single Image Methods To represent

the video performance of single image methods, we sam-

pled 10 frames from video regularly. Then, their angular

errors are averaged to represent a video performance. Since

an uniform AC light source is considered, our experimental

setup is wrapped up with matte cloth to avoid the effect of

external ambient light. The number of temporal observa-

tions is 100, which is less than 1 sec. We compare the pro-

posed method to several state-of-the-art methods including
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Table 2. Angular error comparisons with various single image methods for non-specular video (150 fps).

Method Mean Median Trimean Best-25% Worst-25%

Statistics-based

Gray world 4.20 3.24 4.99 1.61 8.16

Max-RGB [24] 11.76 12.27 12.86 5.22 18.51

Shades of gray [15] 3.82 2.92 4.60 1.47 7.25

1st order grey edge [43] 4.07 2.69 5.68 1.34 9.03

2nd order grey edge [43] 5.43 3.86 7.35 2.17 11.80

Grey pixels [47] 6.32 5.79 6.75 3.76 9.51

Gamut-based

Pixel gamut [16] 6.75 5.67 8.16 1.89 13.19

1st order gradient gamut [18] 11.74 12.58 12.46 6.59 15.85

2nd order gradient gamut [18] 12.37 12.76 12.72 8.41 15.63

Physics-based

IIC [38] 9.03 8.22 9.95 4.47 14.47

CLS [25] 9.01 6.20 11.26 2.60 18.43

ICC [46] 4.16 3.68 5.40 1.06 8.18

Proposed 2.58 2.37 3.00 0.94 4.60

statistics-based, gamut-based, and physics-based methods.

We classify our test videos into specular and non-specular

videos, and evaluate each separately. Table 1 and 2 compare

the proposed method with existing color constancy methods

for a single image. The proposed method outperforms all

existing methods. Especially, the performance of the pro-

posed method is outstanding with worst-25% angular error,

which is almost half of the second best methods. Compared

to existing methods, the proposed method works well with

specular as well as non-specular image.

Comparisons with Temporal Method The proposed

method is compared with existing temporal method, which

is dichromatic model in (4) (introduced in [31,48]). To con-

duct fair comparisons, 60 identical pixels are used, and prin-

cipal component analysis is exploited to estimate illuminant

in temporal method of (4). Table 3 summarizes the angular

error performance of the proposed method. The proposed

method shows the lower angular error, which is attributed

to noise-robust characteristics of the proposed method.

Evaluation with various light sources We evaluate the

proposed method with various combinations of light

sources (as shown in Fig. 8) and the public DELIGHT [37].

Our fitting model in (6) are applied to both our experiment

setting and DELIGHT. For evaluation with DELIGHT, its

bulb response values are resampled to 60 Hz (originally 50

Hz). Note that the amplitude of sinusoidal variations are

normalized to 1 for fair comparison. Table 4 shows that our

model in (6) is well-fit to both data, independent of bulb

types. Visual results of the proposed method are evaluated

as shown in Fig. 8. With various environments under mixed

AC light or ambient light, the proposed method works well.

5. Conclusions

We proposed a novel temporal color constancy method

for AC light sources. Under AC light source, the intensities

Table 3. Angular error comparisons with temporal method for

high-speed video (150 fps).

Specular Non-specular

Method Mean Median Mean Median

Temporal 5.42 5.02 6.55 3.94

Proposed 2.47 1.93 2.58 2.37

Table 4. Mean squared error of our fitting method with DELIGHT

dataset (top) and our experiment setting (bottom).

Data Incan Fluor LED

DELIGHT 0.00001 0.00013 0.00045

Ours 0.00026 0.00047 0.00021

of a pixel (named by AC pixel) is time-varying with a fre-

quency identical to AC electric power. This periodic time-

varying property helps a dichromatic plane to be estimated

accurately. A variety of experiments show that the pro-

posed method can estimate an illuminant accurately, leading

to better color constancy. Also, the proposed method out-

performs existing dichromatic based methods and tempo-

ral color constancy methods, irrespective of the amount of

specularity. In this paper, only a static scene is considered

for experiments in order to avoid the effect of object mo-

tion. It would be possible to compensate motion by align-

ment between neighboring frames. It may take some time

to acquire temporal pixel samples for dichromatic plane es-

timation, and this may be constrained by fast object motion.

Higher speed capability can decrease the time length of AC

pixels, resulting in less sensitive to object motion. It will be

further investigated thoroughly.
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