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Abstract

Domain adaptation aims to transfer knowledge in the

presence of the domain gap. Existing domain adaptation

methods rely on rich prior knowledge about the relationship

between the label sets of source and target domains, which

greatly limits their application in the wild. This paper intro-

duces Universal Domain Adaptation (UDA) that requires no

prior knowledge on the label sets. For a given source label

set and a target label set, they may contain a common label

set and hold a private label set respectively, bringing up an

additional category gap. UDA requires a model to either (1)

classify the target sample correctly if it is associated with a

label in the common label set, or (2) mark it as “unknown”

otherwise. More importantly, a UDA model should work sta-

bly against a wide spectrum of commonness (the proportion

of the common label set over the complete label set) so that

it can handle real-world problems with unknown target label

sets. To solve the universal domain adaptation problem, we

propose Universal Adaptation Network (UAN). It quantifies

sample-level transferability to discover the common label set

and the label sets private to each domain, thereby promoting

the adaptation in the automatically discovered common label

set and recognizing the “unknown” samples successfully. A

thorough evaluation shows that UAN outperforms the state

of the art closed set, partial and open set domain adaptation

methods in the novel UDA setting.

1. Introduction

Deep learning has boosted the progress of computer vi-

sion and improved state of the art performance on diverse

vision tasks such as image classification [13], object detec-

tion [30] and semantic segmentation [12]. However, the

remarkable efficacy of deep learning algorithms highly relies

on abundant labeled training data, which requires tedious

labor work on collecting labeled data. Given a large-scale
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Open Set DA (Busto et al. 2017) Open Set DA (Saito et al. 2018)
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Figure 1. Universal Domain Adaptation (UDA) and existing domain

adaptation settings with respect to label sets of source and target

domains (blue shades indicate shared labels). Only UDA is able to

deal with the setting that the label set of target domain is unknown.

unlabeled dataset, it is usually prohibitive to annotate enough

training data such that we can train a deep learning model

that generalizes well. An alternative is to leverage off-the-

shelf labeled data from a related domain (source domain) to

improve the model for the domain of interest (target domain).

The target domain may contain data collected by different

sensors, from different perspectives or under different illumi-

nation conditions compared with the source domain, leading

to large domain gap. Domain adaptation [33] aims to min-

imize the domain gap and successfully transfer the model

trained on the source domain to the target domain.

Existing domain adaptation methods tackle the domain

gap either by learning domain invariant feature representa-

tion, by generating features/samples for target domains or by

transforming samples between domains through generative
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models. They suppose that label sets are identical across

domains, as shown in Figure 1 (closed set domain adapta-

tion). This simplified scenario focuses on the fundamental

problem of domain adaptation and provides insightful ideas

for future research. Recent works try to relax the assumption

by proposing open set domain adaptation [28, 35] and partial

domain adaptation [2, 45]. As shown in Figure 1, partial

domain adaptation [2, 45] requests that the source label set

contains the target label set while Busto et al. [28] introduces

“unknown” classes in both domains, and assumes common

classes between two domains are known in the training phase.

Modified open set domain adaptation by Saito et al. [35]

removes data of source unknown classes such that the source

label set is a subset of the target label set. Luo et al. [24]

allows partly shared label sets and requires some labeled

data in the target domain, where the target label set is known.

These works constitute valuable advances towards practical

domain adaptation.

Practical scenarios are way more complicated and these

assumptions are easily violated. For example, labeled an-

imals from different datasets are easily accessible. But if

we want to recognize animals in the wild, we are exposed

to two challenges: (1) The background may deviate from

those in the training data, leading to large domain gap; (2)

Some native species do not exist in the training data, in the

meantime, animal species in the deployed environment may

not cover all the training species because training data is too

diverse, leading to large category gap. In summary, the rela-

tionship of label sets between the source and target domains

is unknown in the presence of a large domain gap. If the

source label set is large enough to contain the target label set,

partial domain adaptation methods are good choices; if the

source label set is contained in the target label set or common

classes are known, open set domain adaptation methods are

good choices. In a general scenario, however, we cannot

select the proper domain adaptation method because no prior

knowledge about the target domain label set is given.

For this purpose, we propose a generalized setting, termed

Universal Domain Adaptation (UDA). In UDA, given a

labeled source domain, for any related target domain, regard-

less of how its label set differs from that of the source domain,

we need to classify its samples correctly if it belongs to any

class in the source label set, or mark it as“unknown” other-

wise. The word “universal” indicates that UDA imposes no

prior knowledge on the label sets.

UDA poses two major technical challenges for designing

domain adaptation models in the wild. (1) Since we know

nothing about the target label set, we cannot decide which

part of the source domain should be matched to which part

of the target domain. If we naively match the entire source

domain with the entire target domain, mismatching of dif-

ferent label sets will deteriorate the model. (2) The model

should be able to mark target samples as “unknown” if they

do not belong to any class in the source label set. Since there

are no labeled training data for these classes, by no means

the classifier can tell their detailed category.

To address Universal Domain Adaptation, we propose

Universal Adaptation Network (UAN), equipping with a

novel criterion to quantify the transferability of each sample.

The criterion integrates both the domain similarity and the

prediction uncertainty of each sample into a sample-level

weighting mechanism. With the transferability-enhanced

UAN model, the samples coming from the common label

set between the source and target domains are automatically

detected and matched while the target samples coming from

the target private label set can be successfully marked by a

rejection pipeline as “unknown” class.

The main contributions of this paper are:

(1) We introduce a more practical Universal Domain

Adaptation (UDA) setting that imposes no prior knowledge

on the label sets of source and target domains. This is impor-

tant considering that we do not have access to target labels

in unsupervised domain adaptation and sometimes it is even

impossible to know the target label set, not to mention how

it overlaps with the source label set.

(2) We study the performance of existing domain adap-

tation methods under a variety of UDA settings including

closed set, partial and open set domain adaptation. Methods

tailored to specific settings do not work well in UDA. This

highlights the need for a UDA-friendly model.

(3) We propose Universal Adaptation Network (UAN), an

end-to-end solution, which exploits both the domain similar-

ity and the prediction uncertainty of each sample to develop

a weighting mechanism for discovering label sets shared by

both domains and promote common-class adaptation. Em-

pirical results show that UAN works stably across different

UDA settings and outperforms existing methods.

2. Related Work

We briefly review recent domain adaptation methods in

this section. According to the constraint on the label set

relationship between domains, these methods fall into closed

set domain adaptation, partial domain adaptation, or open

set domain adaptation.

2.1. Closed Set Domain Adaptation

Closed set domain adaptation focuses on mitigating the

impact of the domain gap between source and target do-

mains. Solutions to closed set domain adaptation mainly fall

into two categories: feature adaptation and generative model.

Feature adaptation methods diminish the feature distribution

discrepancy between source and target domains by minimiz-

ing well-defined statistical distances on feature distributions.

Early shallow adaptation methods [33, 7, 27, 5, 46, 42] usu-

ally provide insights in developing modern deep adaptation

methods [38, 21, 6, 11, 39, 23, 37, 34, 22], while other
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deep adaptation methods further explore architecture de-

signs [19, 43, 36, 26, 20, 41, 16, 47, 25, 4, 18]. Tzeng et al.

[38] and Long et al. [21] first proposed to minimize Max-

imum Mean Discrepancy (MMD) of deep features across

domains. Long et al. [23] further exploits a residual trans-

fer structure and introduces entropy minimization on target

data. Zellinger et al. [44] enables distribution alignment by

optimizing Central Moment Discrepancy (CMD). Haeusser

et al. [11] constructs a bipartite graph to force feature distri-

bution alignment within clusters. Bhushan et al. [1] enables

domain adaptation by minimizing Earth Mover’s Distance

(EMD) between distributions. Meanwhile, with significant

advances made in image synthesis by Generative Adversarial

Nets [8], methods that match feature distributions by gener-

ative models are proposed. They learn a domain classifier

to discriminate features from source and target domains and

force the feature extractor to confuse the domain classifier

in an adversarial learning paradigm [6, 39, 37].

Methods based on generative models synthesize labeled

target samples as data augmentation and match domains in

both pixel and feature levels [19, 36, 16, 20, 26, 17, 41].

With the impressive results of Cycle-Consistent Generative

Adversarial Network [48] in image translation, CycleGAN-

based domain adaptation methods have been studied recently

[15, 32]. These methods usually transform source images

into target-like images and vice versa with CycleGAN, then

train the classifiers for each domain respectively with source

images and transformed images.

Attempts for closed set domain adaptation focus on solv-

ing fundamental problems in distribution matching and pro-

vide a solid basis for the extension of domain adaptation.

2.2. Partial Domain Adaptation

The presence of Big Data gives rise to partial domain

adaptation (PDA) [2, 45, 3], which transfers a learner from a

big source domain to a small target domain. The label set of

the source domain is supposed to be large enough to contain

the target label set. To solve partial domain adaptation, Cao

et al. [2] utilizes multiple domain discriminators with class-

level and instance-level weighting mechanism to achieve

per-class adversarial distribution matching. Zhang et al. [45]

constructs an auxiliary domain discriminator to quantify the

probability of a source sample being similar to the target

domain. Cao et al. [3] further improves PDA by employing

only one adversarial network and jointly applying class-level

weighting on the source classifier.

Efforts for partial domain adaptation push well-studied

domain adaptation problem towards a more practical setting.

2.3. Open Set Domain Adaptation

Busto et al. [28] proposed open set domain adaptation

(OSDA), as shown in Figure 1. The classes private to both

domains are unified as an “unknown” class. They use an

Assign-and-Transform-Iteratively (ATI) algorithm to map

target samples to source classes and then train SVMs for final

classification. Saito et al. [35] modified the open set domain

adaptation by requiring no data of the source private label

set and extends the source classifier by adding an explicit

“unknown” class and trains it adversarially among classes.

These methods tackle the domain gap by discarding the

“unknown” classes when common classes are known in ad-

vance. While confined from more generalized settings, they

shed light on designing practical domain adaptation models.

3. Universal Domain Adaptation

In this section, we formally introduce Universal Domain

Adaptation (UDA) setting and address it by a novel Universal

Adaptation Network (UAN).

3.1. Problem Setting

In Universal Domain Adaptation (UDA), a source domain

Ds = {(xs
i ,y

s
i )} consisting of ns labeled samples and a

target domain Dt = {(xt
i)} of nt unlabeled samples are

provided at training. Note that the source data are sampled

from distribution p while the target data from distribution q.

We use Cs to denote the label set of source domain and Ct the

label set of target domain. C = Cs ∩ Ct is the common label

set shared by both domains. Cs = Cs \ C and Ct = Ct \ C
represent the label sets private to the source domain and the

target domain respectively. pCs
and pC are used to denote the

distributions of source data with labels in the label set Cs and

C respectively, and qCt
, qC for target distributions with labels

in the label set Ct, C respectively. Note that the target data

are fully unlabeled, and the target label sets (inaccessible at

training) are only used for defining the UDA problem.

We define the commonness between two domains as the

Jaccard distance of two label sets: ξ = |Cs∩Ct|
|Cs∪Ct|

. Closed set

domain adaptation is a special case of UDA when ξ = 1.

The smaller ξ is, the less sharing knowledge is and the more

difficult the adaptation is. The task for UDA is to design a

model that does not know ξ but works well across a wide

spectrum of ξ. It must be able to distinguish between target

data coming from C and target data coming from Ct, as well

as to learn a classification model f to minimize the target

risk in the common label set, i.e. minE(x,y)∼qC [f(x) 6= y].

3.2. Technical Challenges

In UDA, a new challenge has emerged, the category gap

between two domains. The root of the category gap lies in

the difference of the label sets. If we naively pick any of

the existing closed set domain adaptation methods to solve

UDA, source data in Cs may be matched with target data

from Ct. Such blind alignment is problematic since their

label sets have no overlap (Cs ∩ Ct = ∅) and forcefully

matching them will cause many target private data to be
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Figure 2. The training and testing phases of the Universal Adaptation Network (UAN) designed for Universal Domain Adaptation (UDA).

predicted as a class in Cs whereas they should be marked

as “unknown”. If we turn to tailored methods of partial or

open set domain adaptation, we must face the fact that the

relationship between Cs and Ct is unknown. In the absence

of the configuration about C, Cs and Ct, it is hard to make

a choice among tailored domain adaptation methods. Thus,

we need to automatically identify the source and target data

from C, such that feature alignment can be done in the auto-

discovered common label set.

Despite the category gap, the domain gap still exists in

UDA setting, i.e. between the source and target data in the

common label set. In other words, p 6= q and pC 6= qC .

Domain adaptation should be applied to align distributions

of the source and target data in the common label set C.

Another challenge for UDA is to detect “unknown”

classes. In practice, confidence thresholding, which marks

samples with low classification confidence as “unknown”,

is often used. Nonetheless, such a straightforward method

may fail in universal domain adaptation since the predictions

by neural networks are usually overconfident [10] but less

discriminative due to the underlying domain gap.

3.3. Universal Adaptation Network

We propose Universal Adaptation Network (UAN) to ad-

dress the UDA problem. As shown in Figure 2, the architec-

ture of UAN consists of a feature extractor F , an adversarial

domain discriminator D, a non-adversarial domain discrimi-

nator D′ and a label classifier G. Input x from either domain

is fed into the feature extractor F . The extracted feature

z = F (x) is forwarded into the label classifier G to obtain

the probability ŷ = G(z) of x over the source classes Cs.

The non-adversarial domain discriminator D′ obtains the do-

main similarity d̂′ = D′(z), quantifying the similarity of x

to the source domain. The adversarial domain discriminator

D aims to adversarially match the feature distributions of

the source and target data falling in the common label set C
(Note that we need a mechanism to detect the common label

set). EG, ED′ and ED represent the error for label classifier

G, non-adversarial domain discriminator D′ and adversarial

domain discriminator D, which are formally defined as

EG = E(x,y)∼pL (y, G(F (x))) (1)

ED′ =− Ex∼p logD
′ (F (x))

− Ex∼q log
(

1−D
′ (F (x))

) (2)

ED =− Ex∼pw
s(x) logD (F (x))

− Ex∼qw
t(x) log (1−D (F (x)))

(3)

where L is the standard cross-entropy loss, ws(x) indicates

the probability of a source sample x belonging to the com-

mon label set C, and similarly, wt(x) indicates the probabil-

ity of a target sample x belonging to the common label set

C. The details of ws(x) and wt(x) will be elaborated in the

next subsection. With well-established weighting ws(x) and

wt(x), the adversarial domain discriminator D is confined

to distinguish the source and target data in the common label

set C. Adversarially, the feature extractor F strives to con-

fuse D, yielding domain-invariant features in the common

label set C. The label classifier G trained on such features

can be applied safely to the target domain.

The training of UAN can be written as a minimax game:

max
D

min
F,G

EG − λED

min
D′

ED′

(4)

where λ is a hyper-parameter to trade off between transfer-

ability and discriminability. We utilize the well-established

gradient reversal layer proposed by Ganin et al. [6] to reverse
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the gradient between F and D to optimize all the modules

in an end-to-end training framework.

The testing phase of UAN is shown in the right plot of

Figure 2. Given each input target sample x, its categorical

prediction ŷ(x) over the source label set Cs, and the domain

prediction d̂′(x), we compute wt(x) using Eq. (8) (details

in the next subsection). With a validated threshold w0, the

class y(x) can be predicted by thresholding ŷ(x) w.r.t. w0:

y(x) =

{

unknown wt < w0

argmax (ŷ) wt ≥ w0

(5)

which either rejects the target sample x as “unknown” class

or classifies it to one of the source classes.

3.4. Transferability Criterion

In this section, we further elaborate on how to compute

weighting ws = ws(x) and wt = wt(x) by sample-level

transferability criterion. With a proper sample-level transfer-

ability criterion, each point in both source and target domains

can be weighted such that the distributions of source and tar-

get data in the common label set C can be maximally aligned.

Also, data from target private label set Ct can be identified

and marked as “unknown” with the help of the sample-level

transferability criterion. Thus, a well-established sample-

level transferability criterion should satisfy Eq. (6):

Ex∼pC
ws(x) > Ex∼p

Cs

ws(x)

Ex∼qCw
t(x) > Ex∼q

Ct

wt(x)
(6)

These inequalities should hold in a non-negligible margin.

Now we need to construct the sample-level transferability

criterion. We first list what we have at hand about each input

x: ŷ, d̂, d̂′. Since D is involved in adversarial training and

thus fooled, its output d̂ is not discriminative enough. We

thus analyze the properties of ŷ and d̂′ as follows.

Domain Similarity. In Eq. (2), the objective of D′ is to

predict samples from source domain as 1 and samples from

target domain as 0. Thus, d̂′ can be seen as the quantification

for the domain similarity of each sample. For a source

sample, smaller d̂′ means that it is more similar to the target

domain; for a target sample, larger d̂′ means that it is more

similar to the source domain. Therefore, we can hypothesize

that Ex∼p
Cs

d̂′ > Ex∼pC
d̂′ > Ex∼qC d̂

′ > Ex∼q
Ct

d̂′.

Due to the nature of D′, inequality Ex∼p
Cs

d̂′,Ex∼pC
d̂′ >

Ex∼qC d̂
′,Ex∼q

Ct

d̂′ naturally holds. Since pC and qC share

the same label set, pC is closer to qC compared with qCt

, and

it is reasonable to hypothesize Ex∼p
Cs

d̂′ > Ex∼pC
d̂′. The

same observation applies to Ex∼qC d̂
′ > Ex∼q

Ct

d̂′.

Prediction Uncertainty. The prediction ŷ contains the

discriminative information about the input, but it is only reli-

able in the source domain guaranteed by labeled data. To ex-

ploit unlabeled data, entropy minimization has been used as a

criterion in semi-supervised learning and domain adaptation

[9, 23] to enforce the decision boundary in the unlabeled data

to pass through low-density area. In principle, entropy quan-

tifies the prediction uncertainty, and smaller entropy means

more confident prediction. We hypothesize: Ex∼q
Ct

H(ŷ) >

Ex∼qCH(ŷ) > Ex∼pC
H(ŷ) > Ex∼p

Cs

H(ŷ).
Since the source domain is labeled and the target domain

is unlabeled, predictions are certain for source samples and

uncertain for target samples, Ex∼q
Ct

H(ŷ),Ex∼qCH(ŷ) >

Ex∼pC
H(ŷ),Ex∼p

Cs

H(ŷ).
Similar samples from qC and pC can attract each other.

Thus, the entropy of samples from pC becomes larger be-

cause they are influenced by the high entropy samples from

qC . Still, as Cs has no intersection with Ct, samples from pCs

are not influenced by the target data and keeps highest cer-

tainty. So we hypothesize that Ex∼pC
H(ŷ) > Ex∼p

Cs

H(ŷ).

Similarly, Ct has no intersection with Cs (data from qCt

does not belong to any class in Cs), and thus the hypothesis

Ex∼qCt
H(ŷ) > Ex∼q

C
H(ŷ) is reasonable.

With the above analysis, the sample-level transferability

criterion for source data points and target data points can be

respectively defined as Eq. (7) and Eq. (8):

ws(x) =
H(ŷ)

log |Cs|
− d̂′(x) (7)

wt(x) = d̂′(x)−
H(ŷ)

log |Cs|
(8)

Note that the entropy is normalized by its maximum value

(log |Cs|) so that it is restricted into [0, 1] and comparable

to the domain similarity measure d̂′. Also, the weights are

normalized into interval [0, 1] during training.

The proposed universal adaptation network (UAN) lever-

ages the sample-level transferability criterion to disentangle

source data in C, Cs and target data in C, Ct. As such, the

category gap is reduced. The domain gap is reduced as well

by aligning features between domains in shared label set C.

4. Experiments

To perform a thorough evaluation, we compare UAN with

state of the art methods tailored to various domain adaptation

settings under a variety of UDA settings on several datasets

with different ξ, |Cs ∪ Ct|, Ct and Cs. Then, we explore

the performance with respect to the change of ξ, |Cs ∪ Ct|,
Ct and Cs. We further provide comprehensive analyses of

the hyper-parameter sensitivity and the quality of sample-

level transferability criterion about the proposed UAN model.

Code and data will be available at github.com/thuml.

4.1. Experimental Setup

In this subsection, we describe the datasets, the evaluation

protocols and the implementation details.
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Table 1. Average class accuracy (%) of universal domain adaptation tasks on Office-Home (ξ = 0.15) dataset (ResNet)

Method
Office-Home

Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Avg

ResNet [13] 59.37 76.58 87.48 69.86 71.11 81.66 73.72 56.30 86.07 78.68 59.22 78.59 73.22

DANN [6] 56.17 81.72 86.87 68.67 73.38 83.76 69.92 56.84 85.80 79.41 57.26 78.26 73.17

RTN [23] 50.46 77.80 86.90 65.12 73.40 85.07 67.86 45.23 85.50 79.20 55.55 78.79 70.91

IWAN [45] 52.55 81.40 86.51 70.58 70.99 85.29 74.88 57.33 85.07 77.48 59.65 78.91 73.39

PADA [45] 39.58 69.37 76.26 62.57 67.39 77.47 48.39 35.79 79.60 75.94 44.50 78.10 62.91

ATI [28] 52.90 80.37 85.91 71.08 72.41 84.39 74.28 57.84 85.61 76.06 60.17 78.42 73.29

OSBP [35] 47.75 60.90 76.78 59.23 61.58 74.33 61.67 44.50 79.31 70.59 54.95 75.18 63.90

UAN w/o d 61.60 81.86 87.67 74.52 73.59 84.88 73.65 57.37 86.61 81.58 62.15 79.14 75.39

UAN w/o y 56.63 77.51 87.61 71.96 69.08 83.18 71.40 56.10 84.24 79.27 60.59 78.35 72.91

UAN 63.00 82.83 87.85 76.88 78.70 85.36 78.22 58.59 86.80 83.37 63.17 79.43 77.02

Table 2. Average class accuracy (%) on Office-31 (ξ = 0.32), ImageNet-Caltech (ξ = 0.07) and VisDA2017 (ξ = 0.50) (ResNet)

Method
Office-31 ImageNet-Caltech

VisDA
A → W D → W W → D A → D D → A W → A Avg I → C C → I

ResNet [13] 75.94 89.60 90.91 80.45 78.83 81.42 82.86 70.28 65.14 52.80

DANN [6] 80.65 80.94 88.07 82.67 74.82 83.54 81.78 71.37 66.54 52.94

RTN [23] 85.70 87.80 88.91 82.69 74.64 83.26 84.18 71.94 66.15 53.92

IWAN [45] 85.25 90.09 90.00 84.27 84.22 86.25 86.68 72.19 66.48 58.72

PADA [45] 85.37 79.26 90.91 81.68 55.32 82.61 79.19 65.47 58.73 44.98

ATI [28] 79.38 92.60 90.08 84.40 78.85 81.57 84.48 71.59 67.36 54.81

OSBP [35] 66.13 73.57 85.62 72.92 47.35 60.48 67.68 62.08 55.48 30.26

UAN 85.62 94.77 97.99 86.50 85.45 85.12 89.24 75.28 70.17 60.83

4.1.1 Datasets

Office-31 [33] is de facto for visual domain adaptation with

31 categories in 3 visually distinct domains (A, D, W). We

use the 10 classes shared by Office-31 and Caltech-256 [7]

as the common label set C, then in alphabetical order, the

next 10 classes are used as the Cs, and the reset 11 classes

are used as the Ct. Here ξ = 0.32.

Office-Home [40] is a larger dataset with 65 object cate-

gories in 4 different domains: Artistic images (Ar), Clip-Art

images (Cl), Product images (Pr) and Real-World images

(Rw). In alphabet order, we use the first 10 classes as C, the

next 5 classes as Cs and the rest as Ct. Here ξ = 0.15.

VisDA2017 [29] dataset focuses on a special domain

adaptation setting (simulation to real). The source domain

consists of images generated by game engines and target

domain consists of real-world images. There are 12 classes

in this dataset. We use the first 6 classes as C, the next 3

classes as Cs and the rest as Ct. Here ξ = 0.50.

ImageNet-Caltech is built from ImageNet-1K [31] with

1000 classes and Caltech-256 with 256 classes. As in previ-

ous works [2, 3], we used the 84 common classes shared by

both domains as the common label set C and use their private

classes as the private label set respectively. This dataset nat-

urally falls into the universal domain adaptation paradigm.

We form two universal domain adaptation tasks: I → C and

C → I. Here ξ = 0.07.

These dataset settings are set up to both comply with the

existing configurations [2, 3, 35, 28] and cover as many com-

monness levels ξ as possible, since brute-force evaluation of

all combinations of ξ, |Cs ∪ Ct|, Ct and Cs is unacceptable.

4.1.2 Evaluation Details

Compared Methods. We compare the proposed UAN

with (1) Convolutional Neural Network: ResNet [13], (2)

close-set domain adaptation methods: Domain-Adversarial

Neural Networks (DANN) [6], Residual Transfer Networks

(RTN) [23], (3) partial domain adaptation methods: Im-

portance Weighted Adversarial Nets (IWAN) [45], Partial

Adversarial Domain Adaptation (PADA) [3], (4) open set do-

main adaptation methods: Assign-and-Transform-Iteratively

(ATI) [28], Open Set Back-Propagation (OSBP) [35]. These

methods are state of the art in their respective settings (ATI-λ

is compared and λ is derived as described in [28]). It shall

be valuable to study the performance of these methods in the

practical UDA setting.

Evaluation Protocols. We adopt the evaluation protocol

in Visual Domain Adaptation (VisDA2018) Open-Set Clas-

sification Challenge, where all the data in the target private

label set is regarded as one unified “unknown” class and the

average of per-class accuracy for all the |C| + 1 classes is

the final result. We extend existing methods by confidence

thresholding. At the testing stage, if the prediction confi-
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Figure 3. (a) Accuracy w.r.t. |Ct| in task A → D, ξ = 0.32. (b) Accuracy w.r.t. |C| in task A → D. (c) Performance w.r.t. threshold w0.

dence is under the confidence threshold, the input image is

classified as “unknown”.

Implementation Details. Implementation is in PyTorch

and ResNet-50 [13] is used as the backbone network. Models

are fine-tuned from ResNet-50 pre-trained on ImageNet. We

set temperature [14] as 10 when calculating ŷ in Eq. (7)

because the prediction for source data is usually too certain

and the entropy is low. When applied in Eq. (3), ws, wt are

normalized in a mini-batch to be within interval [0, 1].

4.2. Classification Results

The classification results are shown in Tables 1 and 2,

respectively. UAN outperforms all the compared methods

in terms of the average per-class accuracy. In particular, we

have some key observations.

In the practical UDA setting, especially in the difficult

Office-Home dataset, most existing methods perform simi-

larly to or even worse than ResNet, indicating that existing

methods are prone to negative transfer in UDA settings,

meaning that they perform worse than a model only trained

on source data without any adaptation. For example, Fig-

ure 4(a) shows the per-class accuracy gain compared to

ResNet on task Ar → Cl. We can find that DANN, IWAN,

and OSBP suffer from negative transfer in most classes and

are only able to promote the adaptation for a few classes.

Only UAN promotes positive transfer for all classes.

In these various settings, UAN outperforms all the men-

tioned methods. This is because UAN has a carefully de-

signed sample-level transferability criterion. It filters out

data coming from Ct and Cs on feature alignment and pro-

vides a better criterion for “unknown” class detection than

the existing confidence thresholding method.

Existing methods perform well when their assumptions

hold but worse when violated. Take OSBP as an example, if

manually removing source private classes (invalid operation

since target labels are unknown), its accuracy is 89.1% on

Office-31; however, if keeping source private classes (vio-

lating its assumption), its accuracy drops to 67.68%. As the

assumptions of previous open set DA methods are violated

in UDA, it is no wonder that their accuracies drop sharply.

4.3. Analysis on Different UDA Settings

Varying Size of Ct and Cs. With fixed |Cs ∪ Ct| and ξ,

we explore the performance of methods mentioned above

on universal domain adaptation with the various sizes of Ct

(Cs also changes correspondingly) on task A → D in Office-

31 dataset. As shown in Figure 3(a), UAN outperforms all

the compared methods on most sizes of Ct. In particular,

when |Ct| = 0, which is the partial domain adaptation set-

ting with Ct ⊂ Cs, the performance of UAN is comparable

to IWAN’s performance. And when |Ct| = 21, which is

the open set domain adaptation setting with Cs ⊂ Ct, the

performance of UAN is comparable to OSBP’s performance.

IWAN and OSBP both take advantage of the prior knowledge

about label sets and design modules to exploit the knowledge.

However, UAN can still catch up with them in their expert

settings, indicating UAN is effective and robust to diverse

sizes of Ct and Cs. In the middle of 0 and 21, where Cs and

Ct are partly shared, UAN outperforms other methods with

large margin. UAN can produce impressive results without

any prior knowledge about the target label set. The general

trend in Figure 3(a) is that the performance goes higher when

|Ct| becomes larger. This is natural since larger |Ct| means

smaller |Cs| and less distraction to the label classifier.

Varying Size of Common Label Set C. We explore an-

other dimension of universal domain adaptation by varying

the size of C. This is done in Office-31 dataset on task A

→ D. Here |C| + |Ct| + |Cs| = 31. For simplicity, we let

|Ct| = |Cs|+1 and vary |C| from 0 to 31. Figure 3(b) shows

the accuracy of these methods with different |C|’s. When

|C| = 0, source domain and target domain have no overlap

on label sets, i.e. Ct ∩ Cs = ∅. We observe that UAN sub-

stantially outperforms all the compared methods with large

margin, because they all assume that there is some common

label set between source and target domains and cannot filter

out target samples well when all the target samples are in the

private label set Ct. When |C| = 31, which is the closed set

domain adaptation setting with Cs = Ct, we see that the per-

formance of UAN is comparable with DANN’s performance,

indicating that the sample-level transferability criterion of
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Figure 4. (a) The negative transfer influence in UDA (task Ar → Cl). (b) Justification of validity of hypotheses in Section 3.4.

UAN preserves useful samples and does not influence per-

formance on the closed set domain adaptation setting. Note

that when |C| keeps decreasing, the performance of DANN

and IWAN drops rapidly and only UAN works stably.

4.4. Analysis of Universal Adaptation Network

Ablation Study. We go deeper into the efficacy of the

proposed sample-level transferability criterion by perform-

ing an ablation study that evaluates variants of UAN. (1)

UAN w/o d is the variant without integrating the domain

similarity into the sample-level transferability criterion in

Eq. (7) and Eq. (8); (2) UAN w/o y is the variant without

integrating the uncertainty criterion into sample-level trans-

ferability criterion in Eq. (7) and Eq. (8). Results are shown

in bottom rows of Table 1. UAN outperforms UAN w/o d and

UAN w/o y, indicating both the domain similarity compo-

nent and the uncertainty criterion component in the definition

of ws(x), wt(x) are important and necessary. In addition,

UAN w/o d performs better than UAN w/o y, meaning that

integrating the uncertainty criterion into the sample-level

transferability criterion is even more crucial.

Hypotheses Justification. To justify the validity of the

hypotheses in Section 3.4, we plot in Figure 4(b) the esti-

mated probability density function for different components

of weights ws(x) in Eq. (7) and wt(x) in Eq. (8). Results

show that all the hypotheses are successfully justified, ex-

plaining why UAN can perform well in various UDA settings.

Another observation is that the uncertainty criterion and the

domain similarity themselves can be used to distinguish all

the examples from common label set and private label sets.

By combining these two components we can obtain more

distinguishable transferability criterion.

Threshold Sensitivity. We explore the sensitivity of

UAN with respect to threshold w0 in task I → C. As shown

in Figure 3(c), though UAN’s accuracies vary by about 2%
w.r.t. w0, it consistently outperforms the other methods by

large margins in a wide range of w0. Note that the baselines

are fully tuned and their best accuracies are compared here.

5. Conclusion

In this paper, we introduce a novel Universal Domain

Adaptation (UDA) setting, where no prior knowledge are

required on the label set relationship between domains. We

propose Universal Adaptation Network (UAN) with a well-

designed sample-level transferability criterion to address

UDA. A thorough evaluation shows that existing methods

requiring prior knowledge on the relationship of label sets

cannot work well in general UDA setting while the proposed

UAN works stably and achieves state-of-the-art results.

In practice, if one wants to generalize a model to a new

scenario, the proposed UAN can be a good candidate model.

If UAN classifies most examples as “unknown”, then domain

adaptation in such a new scenario may well fail, and collect-

ing labels will be indispensable. On the other hand, if UAN

can generate labels for most examples, collecting labels for

such a scenario are not necessary and domain adaptation will

perform the work. That said, UAN can serve as a pilot study

when we encounter a new domain adaptation scenario.
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