
Texture Mixer: A Network for Controllable Synthesis

and Interpolation of Texture

Ning Yu1,2,4 Connelly Barnes3,4 Eli Shechtman3 Sohrab Amirghodsi3 Michal Lukáč3

1University of Maryland 2Max Planck Institute for Informatics
3Adobe Research 4University of Virginia

ningyu@mpi-inf.mpg.de connelly@cs.virginia.edu {elishe, tamirgho, lukac}@adobe.com

Abstract

This paper addresses the problem of interpolating visual

textures. We formulate this problem by requiring (1) by-

example controllability and (2) realistic and smooth inter-

polation among an arbitrary number of texture samples. To

solve it we propose a neural network trained simultaneously

on a reconstruction task and a generation task, which can

project texture examples onto a latent space where they can

be linearly interpolated and projected back onto the image

domain, thus ensuring both intuitive control and realistic

results. We show our method outperforms a number of base-

lines according to a comprehensive suite of metrics as well

as a user study. We further show several applications based

on our technique, which include texture brush, texture dis-

solve, and animal hybridization 1.

1. Introduction

Many materials exhibit variation in local appearance,

as well as complex transitions between different materials.

Editing materials in an image, however, can be highly chal-

lenging due to the rich, spatially-varying material combina-

tions as we see in the natural world. One general research

challenge then is to attempt to enable these kinds of edits.

In particular, in this paper, we focus on textures. We define

“texture” as being an image-space representation of a sta-

tistically homogeneous material, captured from a top-down

view. We further focus on allowing a user to both be able

to accurately control the placement of textures, as well as

create plausible transitions between them.

Because of the complex appearance of textures, creat-

ing transitions by interpolating between them on the pixel

domain is difficult. Doing so naı̈vely results in unpleas-

ant artifacts such as ghosting, visible seams, and obvious

repetitions. Researchers in texture synthesis have therefore

1Demos, videos, code, data, models, and supplemental material are

available at GitHub.

Figure 1. Texture interpolation and texture painting using our

network on the animal texture dataset. The top part shows a

1024 × 1024 palette created by interpolating four source tex-

tures at the corners outside the palette. The bottom part shows

a 512 × 2048 painting of letters with different textures sampled

from the palette. The letters are interpolated by our method with

the background, also generated by our interpolation.

developed sophisticated algorithms to address this prob-

lem. These may be divided to two families: non-parametric

methods such as patch-based synthesis (e.g. [10, 9, 2]) and

parametric methods (e.g. [15, 32]), including neural net-

work synthesis approaches (e.g. [11, 37, 20, 26, 27]). Pre-

viously, researchers used sophisticated patch-based interpo-

lation methods [7, 8] with carefully crafted objective func-

tions. However, such approaches are extremely slow. More-

over, due to the hand-crafted nature of their objectives, they

cannot learn from a large variety of textures in the natural

world, and as we show in our comparisons are often brit-

tle and frequently result in less pleasing transitions. Fur-

ther, we are not aware of any existing feedforward neu-

ral network approaches that offer both fine-grained con-

trollable synthesis and interpolation between multiple tex-

tures. User-controllable texture interpolation is substan-

12164

tially more challenging than ordinary texture synthesis, be-

cause it needs to incorporate adherence to user-provided

boundary conditions and a smooth transition for the inter-

polated texture.

In our paper, we develop a neural network approach that

we call “Texture Mixer,” which allows for both user control

and interpolation of texture. We define the interpolation

of texture as a broad term, encompassing any combination

of: (1) Either gradual or rapid spatial transitions between

two or more different textures, as shown in the palette, the

letters, and the background in Figure 1, and (2) Texture dis-

solve, where we can imagine putting two textures in differ-

ent layers, and cross-dissolving them according to a user-

controlled transparency, as we show in our video. Previous

neural methods can create interpolations similar to our dis-

solves by changing the latent variable [17, 21, 27, 28, 5].

Thus, in this paper we focus primarily on high-quality spa-

tial interpolation: this requires textures to coexist in the

same image plane without visible seams or spatial repeti-

tions, which is more difficult to achieve. Our feedforward

network is trained on a large dataset of textures and runs at

interactive rates.

Our approach addresses the difficulty of interpolating be-

tween textures on the image domain by projecting these tex-

tures onto a latent domain where they may be linearly inter-

polated, and then decoding them back into the image do-

main to obtain the desired result. In order to satisfy the two

goals of controllability and visual realism, we train our net-

work simultaneously for both tasks. A reconstruction task

ensures that when a texture is passed through an encoder

and then a decoder (an autoencoder), the result will be sim-

ilar to the input. This allows the user to specify texture at

any given point of the output by example. An interpolation

task uses a discriminator to ensure that linear interpolations

of latent tensors also decode into plausible textures, so that

the regions of the output not directly specified by the user

are realistic and artifact-free. For this task, we can view our

network as a conditional Generative Adversarial Network

(GAN). In effect, we thus train an autoencoder and a con-

ditional GAN at the same time, using shared weights and a

shared latent space.

To perform the interpolation task, we take texture sam-

ples that user specifies, and project them into latent space

using a learned encoder. Given these latent tensors, our

network then uses three intuitive latent-space operations:

tiling, interpolation, and shuffling. The tiling operation ex-

tends a texture spatially to any arbitrary size. The interpola-

tion operation uses weighted combinations of two or more

textures in latent domain. The shuffling operation swaps ad-

jacent small squares within the latent tensor to reduce repe-

titions. These new latent tensors are then decoded to obtain

the interpolated result.

Our main contributions are: (1) a novel interactive tech-

nique that allows both user control and interpolation of tex-

ture; (2) several practical and creative applications based on

our technique; (3) a new suite of metrics that evaluate user

controllability, interpolation smoothness, and interpolation

realism; and (4) the state-of-the-art performance superior to

previous work both based on these metrics, and based on a

user study if we consider them holistically.

2. Related Work

The problem of user-controllable texture interpolation

has so far been under-explored. It is however closely re-

lated to several other problems, most significantly texture

synthesis, inpainting, and stylization.

Texture synthesis algorithms can be divided into two

families. The first one is parametric, with a generative

texture model. These algorithms include older, non-neural

methods [15, 32], and also more recent deep learning-based

methods that are based on optimization [11, 12, 33, 35] or

trained feedforward models [37, 20, 26, 27]. Where the un-

derlying model allows spatially varying weights for com-

bination, it may be used to cross-dissolve textures. How-

ever, we are not aware of any existing texture synthesis tech-

niques in this family that enables spatial transition between

different textures.

The second family of texture synthesis algorithms is non-

parametric, in which the algorithm produces output that is

optimized to be as close as possible to the input under some

appearance measure [10, 38, 9, 24, 23, 30, 25, 39, 2, 7, 22].

These can be formulated to accept two different inputs and

spatially vary which is being compared to, facilitating inter-

polation [7, 8]. As we mentioned before, such approaches

are slow, and due to the hand-crafted nature of their objec-

tives, they tend to be brittle.

Recently, generative adversarial networks (GANs) [13,

34, 1, 14] have shown improved realism in image synthe-

sis and translation tasks [18, 45, 46]. GANs have also been

used directly for texture synthesis [26, 19, 44], however,

they were limited to a single texture they were trained on.

A recent approach dubbed PSGAN [3] learns to synthesize

a collection of textures present in a single photograph, mak-

ing it more general and applicable to texture interpolation;

it is not, however, designed for our problem as it cannot in-

terpolate existing images. We show comparisons with PS-

GAN and it cannot reconstruct many input textures, even

after running a sophisticated optimization or jointly asso-

ciating PSGAN with an encoder. Moreover, PSGAN can

suffer from mode collapse.

Texture synthesis and image inpainting algorithms are

often closely related. A good hole filling algorithm needs

to be able to produce some sort of transition between tex-

tures on opposite ends of the hole, and so may be used in a

texture interpolation task. A few recent deep learning-based

methods showed promising results [40, 42, 29, 41].

12165

E
g

z
g

1

z
l
1

z
g

2

z
l
2

G

E
l

E
g

E
l

Reconstruc�on Loss

Reconstruc�on Loss

α

z
l
1z

l
1z

l
1

α

G

z
l
2z

l
2z

l
2

Interpola�on Loss Interpola�on Lossα

R
e

co
n

stru
c�

o
n

 T
a

sk

In
te

rp
o

la�
o

n
 T

a
sk

Source

Texture S1

Source

Texture S2

Reconstructed

Texture S1

Reconstructed

Texture S2

Interpolated Texture I

Legend

α

S1, S2, and combined

data respec�vely

Linear blending using

interpola�on

parameter

Tile opera�on

Shuffle opera�on

Random crop

^

^

G

Figure 2. A diagram of our method. Background color highlights each of the tasks. Trapezoids represent trainable components that share

weights if names match. Rounded rectangles represent the losses. Arrows and circles represent operations on tensor data.

Finally, some neural stylization approaches [12, 26, 17,

28] based on separating images into content and style com-

ponents have shown that, by stylizing a noise content image,

they can effectively synthesize texture [11]. By spatially

varying the style component, texture interpolation may thus

be achieved.

3. Our network: Texture Mixer

In this section, we explain how our network works. We

first explain in Section 3.1 how our method is trained. We

then show how our training losses are set up in Section 3.2.

Finally, we explain in Section 3.3 how our method can be

either tested or used by an end user.

3.1. Training setup

We aim to train our network simultaneously for two

tasks: reconstruction and interpolation. The reconstruction

task ensures that every input texture after being encoded and

then decoded results in a similar texture. Meanwhile, the in-

terpolation task ensures that interpolations of latent tensors

are also decoded into plausible textures.

Our method can be viewed as a way of training a net-

work containing both encoders and a generator, such that

the generator is effectively a portion of a GAN. The net-

work accepts a source texture S as input. A global encoder

Eg(S) encodes S into a latent vector zg , which can also be

viewed as a latent tensor with spatial size 1 × 1. A local

encoder El(S) encodes the source texture into a latent ten-

sor zl, which has a spatial size that is a factor m smaller

than the size of the input texture: we use m = 4. The

generator G(zl, zg) concatenates zl and zg , and can decode

these latent tensors back into a texture patch, so that ideally

G(El(S), Eg(S)) = S, which encompasses the reconstruc-

tion task. Our generator is fully convolutional, so that it can

generate output textures of arbitrary size: the output texture

size is directly proportional to the size of the local tensor zl.

A discriminator Drec is part of the reconstruction loss. An

identical but separately trained discriminator Ditp evaluates

the realism of interpolation.

Note that in practice, our generator network is imple-

mented as taking a global tensor as input, which has the

same spatial size as the local tensor. This is because, for

some applications of texture interpolation, zg can actually

vary spatially. Thus, when we refer to G taking a global la-

tent vector zg with spatial size 1×1 as input, what we mean

is that this zg vector is first repeated spatially to match the

size of zl, and the generator is run on the result.

We show the full training setup in Figure 2. We will

also explain our setup in terms of formulas here. As is

shown in the upper-left of Figure 2, the network is given two

real source texture images S1 and S2 from the real texture

dataset S . Each local encoder El encodes Si (i ∈ {1, 2}) to

a local latent tensor zli = El(Si). Meanwhile, each global

encoder Eg encodes Si to a global latent vector z
g
i , denoted

as z
g
i = Eg(Si). These latent variables are shown in green

and blue boxes in the upper-left of Figure 2.

12166

For the reconstruction task, we then evaluate the recon-

structed texture image Ŝi = G
(

zli, z
g
i). These are shown in

the upper center of Figure 2. For each reconstructed image

Ŝi, we then impose a weighted sum of three losses against

the original texture Si. We describe these losses in more

detail later in Section 3.2.

For the interpolation task, we pose the process of multi-

ple texture interpolation as a problem of simultaneously (1)

synthesizing a larger texture, and (2) interpolating between

two different textures. In this manner, the network learns to

perform well for both single and multiple texture synthesis.

For single texture synthesis, we enlarge the generated im-

ages by a factor of 3 × 3. We do this by tiling zli spatially

by a factor of 3× 3. We denote this tiling by T (zli), and in-

dicate tiling by a tile icon in the lower-left of Figure 2. We

chose the factor 3 because this is the smallest integer that

can synthesize transitions over the four edges of zli. Such a

small tiling factor minimizes computational cost. The tiling

operation can be beneficial for regular textures. However, in

semiregular or stochastic textures, the tiling introduces two

artifacts: undesired spatial repetitions, and undesired seams

on borders between tiles.

We reduce these artifacts by applying a random shuffling

to the tiled latent tensors T (zli). In Figure 2, this shuffling

operation is indicated by a dice icon. Random shuffling in

the latent space not only results in more varied decoded

image appearance and thus reduces visual repetition, but

also softens seams by spatially swapping pixels in the la-

tent space across the border of two zli tensors.

We implement the random shuffling by row and column

swapping over several scales from coarse to fine. For this

coarse to fine process, we use scales that are powers of two:

si = 2i for i = 0, 2, . . . , n. We set the coarsest scale n to

give a scale sn that is half the size of the local tensor zli. For

each scale si, we define a grid over the tiled latent tensor

T (zl), where each grid cell has size si × si. For each scale

si, we then apply a random shuffling on cells of the grid for

that scale: we denote this by Pi. This shuffling proceeds

through grid rows first in top-down and then bottom-up or-

der: each row is randomly swapped with the succeeding

row with probability 0.5. Similarly, this is repeated on grid

columns, with column swapping from left to right and right

to left. Thus, the entire shuffling operation is:

P
(

T (zli)
)

= P0 ◦ P1 ◦ · · · ◦ Pn

(

T (zli)
)

(1)

We visualize this shuffling procedure in the supplementary

material. We also want the synthesized texture to be able

to transit smoothly between regions where there are user-

specified texture constraints and regions where there are

none. Thus, we override the original zli without shuffling

at the 4 corners of the tiled latent tensor. We denote such

shuffling with corner overriding as P̃
(

T (zli)
)

.

If we apply the fully convolutional generator G to a net-

work trained using a single input texture and the above shuf-

fling process, it will work for single texture synthesis. How-

ever, for multiple texture interpolation, we additionally ap-

ply interpolation in the latent space before calling G, as in-

spired by [27, 17, 3]. We randomly sample an interpolation

parameter α ∼ U [0, 1], and then interpolate the latent ten-

sors using α. This is shown by the circles labeled with α

in Figure 2. We linearly blend the shuffled local tensors

P̃
(

T (zl1)
)

and P̃ (T (zl2))
)

, which results in the final inter-

polated latent tensor Zl:

Zl = αP̃
(

T (zl1)
)

+ (1− α)P̃
(

T (zl2)
)

(2)

In the same way, we blend z
g
1 and z

g
2 to obtain

Zg = αz
g
1 + (1− α)zg2 (3)

Finally, we feed the tiled and blended tensors into the

generator G to obtain an interpolated texture image I =
G(Zl, Zg), which is shown on the right in Figure 2. From

the interpolated texture, we take a random crop of the same

size as the input textures. The crop is shown in the red

dotted lines in Figure 2. The crop is then compared using

appropriately α-weighted losses to each of the source tex-

tures. We use spatially uniform weights α at training time

because all the real-world examples are spatially homoge-

neous and we do not want our adversarial discriminator to

detect our synthesized texture due to it having spatial vari-

ation. In contrast, at testing time, we use spatially varying

weights.

3.2. Training losses

For the reconstruction task, we use three losses. The first

loss is a pixel-wise L1 loss against each input Si. The sec-

ond loss is a Gram matrix loss against each input Si, based

on an ImageNet-pretrained VGG-19 model. We define the

Gram loss LGram in the same manner as Johnson et al. [20],

and use the features relui 1 for i = 1, . . . , 5. The third

loss is an adversarial loss Ladv based on WGAN-GP [14],

where the reconstruction discriminator Drec tries to classify

whether the reconstructed image is from the real source tex-

ture set or generated by the network. The losses are:

Lrec
pix = ‖Ŝ1 − S1‖1 + ‖Ŝ2 − S2‖1 (4)

Lrec
Gram = LGram(Ŝ1, S1) + LGram(Ŝ2, S2) (5)

Lrec
adv = Ladv(Ŝ1, S1|D

rec) + Ladv(Ŝ2, S2|D
rec) (6)

The Ladv term is defined from WGAN-GP [14] as:

Ladv(A,B|D) = D(A)−D(B) +GP (A,B|D) (7)

Here A and B are a pair of input images, D is the adversari-

ally trained discriminator, and GP (·) is the gradient penalty

regularization term.

12167

Figure 3. A sequence of dissolve video frame samples with size 1024× 1024 on the animal texture dataset, where each frame is also with

effect of interpolation.

For the interpolation task, we expect the large interpo-

lated texture image to be similar to some combination of the

two input textures. Specifically, if α = 1, the interpolated

image should be similar to source texture S1, and if α = 0,

it should be similar to S2. However, we do not require pixel-

wise similarity, because that would encourage ghosting. We

thus impose only a Gram matrix and an adversarial loss. We

select a random crop Icrop from the interpolated texture im-

age. Then the Gram matrix loss for interpolation is defined

as an α-weighted loss to each source texture:

L
itp
Gram = αLGram(Icrop, S1) + (1− α)LGram(Icrop, S2) (8)

Similarly, we adversarially train the interpolation dis-

criminator Ditp for the interpolation task to classify whether

its input image is from the real source texture set or whether

it is a synthetically generated interpolation:

L
itp
adv = αLadv(Icrop, S1|D

itp) + (1− α)Ladv(Icrop, S2|D
itp)
(9)

Our final training objective is

min
El,Eg,G

max
Drec,Ditp

E
S1,S2∼S

(λ1L
rec
pix + λ2L

rec
Gram + λ3L

rec
adv

+λ4L
itp
Gram + λ5L

itp
adv)

(10)

where λ1 = 100, λ2 = λ4 = 0.001, and λ3 = λ5 = 1 are

used to balance the order of magnitude of each loss term,

which are not sensitive to dataset.

We provide details related to our training and architec-

ture in the supplementary document, such as how we used

progressive growing during training [21].

3.3. Testing and user interactions

At testing time, we can use our network in several differ-

ent ways: we can interpolate sparsely placed textures, brush

with textures, dissolve between textures, and hybridize dif-

ferent animal regions in one image. Each of these applica-

tions utilizes spatially varying interpolation weights.

Interpolation of sparsely placed textures. This option

is shown in the palette and background in Figure 1. In this

scenario, one or more textures are placed down by the user

in the image domain. These textures are each encoded to

latent domain.

In most cases, given input textures, our method is able to

achieve inherent boundary matching and continuity. How-

ever, because of the trade-off between reconstruction and

interpolation losses, there might be a slight mismatch in

some cases. To make the textures better agree at boundary

conditions, we postprocess our images as follows. Suppose

that the user places a source textured region as a boundary

condition. We first replace the reconstructed regions with

the source texture. Then, within the source texture, we use

graph cuts [24] to determine an optimal seam where we can

cut between the source texture and the reconstruction. Fi-

nally, we use Poisson blending [31] to minimize the visibil-

ity of this seam.

Texture brush. We can allow the user to brush with

texture as follows. We assume that there is a textured back-

ground region, which we have encoded to latent space. The

user can select any texture to brush with, by first encoding

the brush texture and then brushing in the latent space. For

example, in Figure 1 we show an example of selecting a

texture from a palette created by interpolating four sparsely

created textures. We find the brush texture’s latent domain

tensors, and apply them using a Gaussian-weighted brush.

Here full weight in the brush causes the background latent

tensors to be replaced entirely, and other weights cause a

proportionately decreased effect. The brush can easily be

placed spatially because the latent and image domains are

aligned with a resizing factor m related to the architecture.

We show more results in the supplementary material.

Texture dissolve. We can create a cross-dissolve effect

between any two textures by encoding them both to latent

domain and then blending between them using blending

weights that are spatially uniform. This effect is best vi-

sualized in a video, where time controls the dissolve effect.

Please see our supplementary video for such results. Fig-

ure 3 shows a sequence of video frame samples with gradu-

ally varying weights.

Animal hybridization. We generalize texture interpo-

lation into a more practical and creative application - ani-

mal hybridization. Figure 4 shows an example. Given two

aligned animal regions in one image and a hole over the

12168

Figure 4. An animal hybridization example of size 1260× 1260 between a dog and a bear. Our interpolation between the two animal furs

is smoother, has less ghosting, and is more realistic than that of the Naı̈ve α-blending.

transition region, we can sample source texture patches ad-

jacent to the hole and conduct spatial interpolation among

those textures. We fill the hole using our interpolated tex-

ture. Finally, we use graph cuts [24] and Poisson blending

[31] to postprocess the boundaries. Technical details and

more examples are shown in the supplemental material.

4. Experiments

In this section, we demonstrate experimental compar-

isons. We first introduce our own datasets in Section 4.1.

We then present in Section 4.2 a suite of evaluation metrics

for interpolation quality. In Section 4.3 we list and compare

against several leading methods from different categories on

the task of texture interpolation. In Section 4.4 we describe

a user study as a holistic comparison. Finally, we conduct

in Section 4.5 the ablation study by comparing against three

simplified versions of our own method.

We propose to learn a model per texture category rather

than a universal model because: (1) there are no real-world

examples that depict interpolation between distinct texture

categories; (2) there is no practical reason to interpolate

across categories, e.g., fur and gravel; and (3) like with other

GANs, a specific model per category performs better than a

universal one due to the model’s capacity limit.

4.1. Datasets

Training to interpolate frontal-parallel stationary textures

of a particular category requires a dataset with a rich set

of examples to represent the intra-variability of that cate-

gory. Unfortunately, most existing texture datasets such as

DTD [6] are intended for texture classification tasks, and

do not have enough samples per category (only 120 in the

case of DTD) to cover the texture appearance space with

sufficient density.

Therefore, we collected two datasets of our own: (1) the

earth texture dataset contains Creative Commons images

from Flickr, which we randomly split into 896 training and

98 testing images; (2) the animal texture dataset contains

images from Adobe Stock, randomly split into 866 train-

ing and 95 testing images. All textures are real-world RGB

photos with arbitrary sizes larger than 512×512. Examples

from both are shown in our figures throughout the paper.

We further augmented all our training and testing sets

by applying: (1) color histogram matching with a random

reference image in the same dataset; (2) random geometric

transformations including horizontal and vertical mirroring,

random in-plane rotation and downscaling (up to ×4); and

(3) randomly cropping a size of 128× 128. In this way, we

augmented 1, 000 samples for each training image and 100
samples for each testing image.

4.2. Evaluation

We will compare previous work with ours, and also do

an ablation study on our own method. In order to fairly

compare all methods, we use a horizontal interpolation task.

Specifically, we randomly sampled two 128 × 128 squares

from the test set. We call these the side textures. We placed

them as constraints on either end of a 128 × 1024 canvas.

We then used each method to produce the interpolation on

the canvas, configuring each method to interpolate linearly

where such option is available.

To the best of our knowledge, there is no standard

method to quantitatively evaluate texture interpolation. We

found existing generation evaluation techniques [34, 16, 4,

21] inadequate for our task. We, therefore, developed a suite

of metrics that evaluate three aspects we consider crucial for

our task: (1) user controllability, (2) interpolation smooth-

ness, and (3) interpolation realism. We now discuss these.

12169

User controllability. For interpolation to be considered

controllable, it has to closely reproduce the user’s chosen

texture at the user’s chosen locations. In our experiment,

we measure this as the reconstruction quality for the side

textures. We average the LPIPS perceptual similarity mea-

sure [43] for the two side textures. We call this Side Percep-

tual Distance (SPD).

We also would like the center of the interpolation to be

similar to both side textures. To measure this, we consider

the Gram matrix loss [20] between the central 128 × 128
crop of the interpolation and the side textures. We report

the sum of distances from the center crop to the two side

textures, normalized by the Gram distance between the two.

We call this measure the Center Gram Distance (CGD).

Interpolation smoothness. Ideally, we would like the

interpolation to follow the shortest path between the two

side textures. To measure this, we construct two difference

vectors of Gram matrix features between the left side tex-

ture and the center crop, and between the center crop and

the right side texture, and measure the cosine distance be-

tween the two vectors. We expect this Centre Cosine dis-

tance (CCD) to be minimized.

For smoothness, the appearance change should be grad-

ual, without abrupt changes such as seams and cuts. To

measure such, we train a seam classifier using real samples

from the training set as negative examples, and where we

create synthetic seams by concatenating two random tex-

tures as positive examples. We run this classifier on the

center crop. We call this the Center Seam Score (CSS). The

architecture and training details of seam classifier are the

same as those of Drec and Ditp.

Interpolation realism. The texture should also look re-

alistic, like the training set. To measure this, we chose

the Inception Score [34] and Sliced Wasserstein Distance

(SWD) [21], and apply them on the center crops. This

gives Center Inception Score (CIS) and Center SWD, re-

spectively. For CIS, we use the state-of-the-art Inception-

ResNet-v2 inception model architecture [36] finetuned with

our two datasets separately.

We also found these metrics do not capture undesired

repetitions, a common texture synthesis artifact. We, there-

fore, trained a repetition classifier for this purpose. We call

this the Center Repetition Score (CRS). The architecture and

training details of repetition classifier are almost the same

as those of the seam classifier except the input image size is

128× 256 instead of 128× 128, where the negative exam-

ples are random crops of size 128 × 256 from real datasets

and the positive examples are horizontally tiled twice from

random crops of size 128× 128 from real datasets.

4.3. Comparisons

We compare against several leading methods from dif-

ferent categories on the task of texture interpolation. These

Figure 5. Qualitative demonstrations and comparisons of horizon-

tal interpolation in the size of 128 × 1024 on the earth texture

samples. We use the two side crops with the orange background

for SPD measurement, and the center crop with the light yellow

background for the other proposed quantitative evaluations. For

the DeepFill [42] method, since the default design is not suitable

for inpainting a wide hole due to lack of such ground truth, we

instead test it on a shorter interpolation of size 128× 384.

include: naı̈ve α-blending, Image Melding [7] as a repre-

sentative of patch-based techniques, two neural stylization

methods - AdaIN [17] and WCT [28], a recent deep hole-

filling method called DeepFill [42], and PSGAN [3] which

is the closest to ours but without user control. Most these

had to be adapted for our task. See more details in the sup-

plementary material. Fig. 5 contains a qualitative compar-

ison between the different methods. Note that in this ex-

ample: (1) the overly sharp interpolation of DeepFill, (2)

the undesired ghosting and repetition artifacts of naı̈ve α-

blending and ours (no shuffling), (3) the incorrect recon-

struction and less relevant interpolation of AdaIN, WCT,

and PSGAN, (4) the appearance mismatch between source

and interpolation of Image Melding, (5) the lack of smooth-

ness of ours (no zg), and (6) the undesired fading of ours

(no blending). More qualitative comparisons are shown in

the supplementary material. We also report qualitative re-

sults, including the user study and the ablation experiments,

in Table 1, that contains average values for the two datasets

- earth texture and animal texture. Figure 6 summarizes the

quantitative comparisons.

12170

Table 1. Quantitative evaluation averaging over the earth texture and animal texture datasets. We highlighited the best, second best and

very high values for each metric. We also indicate for each whether higher (⇑) or lower (⇓) values are more desirable.

Controllability Smoothness Realism User study Testing

SPD CGD CCD CSS CRS CIS CSWD PR p-value time

⇓ ⇓ ⇓ ⇓ ⇓ ⇑ ⇓

Naı̈ve α-blending 0.0000 1.255 0.777 0.9953 0.4384 22.35 60.93 0.845 < 10
−6 0.02 s

Image Melding [7] 0.0111 1.289 0.865 0.0005 0.0004 29.45 47.09 0.672 < 10
−6 6 min

WCT [28] 0.8605 1.321 0.988 0.0020 0.0000 9.86 46.89 0.845 < 10
−6 7.5 s

PSGAN [3] 1.1537 1.535 1.156 0.0069 0.0005 26.81 35.90 0.967 < 10
−6 1.4 min

Ours (no z
g) 0.0112 1.207 0.680 0.0078 0.0010 21.04 21.54 - - -

Ours (no blending) 0.0103 1.272 0.817 0.0125 0.0009 22.24 52.29 - - -

Ours (no shuffling) 0.0107 1.129 0.490 0.0534 0.2386 26.78 20.99 - - -

Ours 0.0113 1.177 0.623 0.0066 0.0008 26.68 22.10 - - 0.5 s

SPD

CGD

CCD

CSSCRS

CIS

CSWD

Alpha blending
SPD

CGD

CCD

CSSCRS

CIS

CSWD

Image melding
SPD

CGD

CCD

CSSCRS

CIS

CSWD

WCT
SPD

CGD

CCD

CSSCRS

CIS

CSWD

PSGAN
SPD

CGD

CCD

CSSCRS

CIS

CSWD

Ours (no zg)
SPD

CGD

CCD

CSSCRS

CIS

CSWD

Ours (no blending)
SPD

CGD

CCD

CSSCRS

CIS

CSWD

Ours (no shuffling)
SPD

CGD

CCD

CSSCRS

CIS

CSWD

Ours

Figure 6. Radar charts visualizing Table 1. Values have been normalized to the unit range, and axes inverted so that higher value is always

better. The first four are baseline methods and next three ablation candidates, with the last entry representing our full method. Our method

scores near-top marks all around and shows balanced performance according to all metrics.

4.4. User study

We also conducted a user study on Amazon Mechanical

Turk. We presented the users with a binary choice, asking

them if they aesthetically prefer our method or one of the

baseline methods on a random example from the horizon-

tal interpolation task. The user study webpage and sanity

check (to guarantee the effectiveness of users’ feedback) are

shown in the supplementary material. For each method pair,

we sampled 90 examples and collected 5 independent user

responses per example. Tallying the user votes, we get 90
results per method pair. We assumed a null hypothesis that

on average, our method will be preferred by 2.5 users for a

given method pair. We used a one-sample permutation t-test

to measure p-values, using 106 permutations, and found the

p-values for the null hypothesis are all < 10−6. This indi-

cates that the users do prefer one method over another. To

quantify this preference, we count for each method pair all

the examples where at least 3 users agree in their prefer-

ence, and report a preference rate (PR) which shows how

many of the preferences were in our method’s favor. Both

PR and the p-values are listed in Table 1.

4.5. Ablation study

We also compare against simplified versions of our

method. The qualitative results for this comparison are

shown in Figure 5. We report quantitative result numbers

in Table 1, and visualized them in Figure 6. We ablate the

following components:

Remove zg. The only difference between zg and zl is in

the tiling and shuffling for zl. However, if we remove zg ,

we find texture transitions are less smooth and gradual.

Remove texture blending during training. We modify

our method so that the interpolation task during training is

performed only upon two identical textures. This makes the

interpolation discriminator Ditp not be aware of the realism

of blended samples, so testing realism deteriorates.

Remove random shuffling. We skip the shuffling op-

eration in latent space and only perform blending during

training. This slightly improves realism and interpolation

directness, but causes visually disturbing repetitions.

5. Conclusion

We presented a novel method for controllable interpo-

lation of textures. We were able to satisfy the criteria of

controllability, smoothness, and realism. Our method out-

performs several baselines on our newly collected datasets.

As we see in Figure 6, although some baseline method may

achieve better results than ours on one of the evaluation cri-

teria, they usually fail on the others. In contrast, our method

has consistent high marks in all evaluation categories. The

user study also shows the users overwhelmingly prefer our

method to any of the baselines. We have also demonstrated

several applications based on this technique and hope it may

become a building block of more complex workflows.

Acknowledgement

The authors acknowledge the Maryland Advanced Re-

search Computing Center for providing computing re-

sources and acknowledge the photographers for licensing

photos under Creative Commons or public domain.

12171

References

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017. 2

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-

man. Patchmatch: A randomized correspondence algorithm

for structural image editing. ACM Transactions on Graphics

(ToG), 28(3):24, 2009. 1, 2

[3] U. Bergmann, N. Jetchev, and R. Vollgraf. Learning texture

manifolds with the periodic spatial GAN. In Proceedings

of the 34th International Conference on Machine Learning,

pages 469–477, 2017. 2, 4, 7, 8

[4] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton.

Demystifying mmd gans. arXiv preprint arXiv:1801.01401,

2018. 6

[5] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua. Stylebank: An

explicit representation for neural image style transfer. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1897–1906, 2017. 2

[6] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and

A. Vedaldi. Describing textures in the wild. In Proceedings

of the IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), 2014. 6

[7] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and

P. Sen. Image melding: Combining inconsistent images us-

ing patch-based synthesis. ACM Trans. Graph., 31(4):82–1,

2012. 1, 2, 7, 8

[8] O. Diamanti, C. Barnes, S. Paris, E. Shechtman, and

O. Sorkine-Hornung. Synthesis of complex image appear-

ance from limited exemplars. ACM Transactions on Graph-

ics (TOG), 34(2):22, 2015. 1, 2

[9] A. A. Efros and W. T. Freeman. Image quilting for tex-

ture synthesis and transfer. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive tech-

niques, pages 341–346. ACM, 2001. 1, 2

[10] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In iccv, page 1033. IEEE, 1999. 1,

2

[11] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis

using convolutional neural networks. In Advances in Neural

Information Processing Systems, pages 262–270, 2015. 1, 2,

3

[12] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2414–2423, 2016. 2, 3

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014. 2

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. C. Courville. Improved training of wasserstein gans. In

Advances in Neural Information Processing Systems, pages

5767–5777, 2017. 2, 4

[15] D. J. Heeger and J. R. Bergen. Pyramid-based texture anal-

ysis/synthesis. In Proceedings of the 22nd annual con-

ference on Computer graphics and interactive techniques,

pages 229–238. ACM, 1995. 1, 2

[16] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and

S. Hochreiter. Gans trained by a two time-scale update rule

converge to a local nash equilibrium. In Advances in Neural

Information Processing Systems, pages 6626–6637, 2017. 6

[17] X. Huang and S. J. Belongie. Arbitrary style transfer in real-

time with adaptive instance normalization. In ICCV, pages

1510–1519, 2017. 2, 3, 4, 7

[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-

image translation with conditional adversarial networks. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2017. 2

[19] N. Jetchev, U. Bergmann, and R. Vollgraf. Texture synthesis

with spatial generative adversarial networks. arXiv preprint

arXiv:1611.08207, 2016. 2

[20] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

Conference on Computer Vision, pages 694–711. Springer,

2016. 1, 2, 4, 7

[21] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive

growing of gans for improved quality, stability, and variation.

arXiv preprint arXiv:1710.10196, 2017. 2, 5, 6, 7

[22] A. Kaspar, B. Neubert, D. Lischinski, M. Pauly, and J. Kopf.

Self tuning texture optimization. In Computer Graphics

Forum, volume 34, pages 349–359. Wiley Online Library,

2015. 2

[23] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture opti-

mization for example-based synthesis. In ACM Transactions

on Graphics (ToG), volume 24, pages 795–802. ACM, 2005.

2

[24] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.

Graphcut textures: image and video synthesis using graph

cuts. ACM Transactions on Graphics (ToG), 22(3):277–286,

2003. 2, 5, 6

[25] S. Lefebvre and H. Hoppe. Appearance-space texture syn-

thesis. In ACM Transactions on Graphics (TOG), volume 25,

pages 541–548. ACM, 2006. 2

[26] C. Li and M. Wand. Precomputed real-time texture syn-

thesis with markovian generative adversarial networks. In

European Conference on Computer Vision, pages 702–716.

Springer, 2016. 1, 2, 3

[27] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.

Diversified texture synthesis with feed-forward networks. In

Proc. CVPR, 2017. 1, 2, 4

[28] Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang.

Universal style transfer via feature transforms. In Advances

in Neural Information Processing Systems, pages 386–396,

2017. 2, 3, 7, 8

[29] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and

B. Catanzaro. Image inpainting for irregular holes using par-

tial convolutions. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), 2018. 2

[30] W. Matusik, M. Zwicker, and F. Durand. Texture design us-

ing a simplicial complex of morphable textures. In ACM

Transactions on Graphics (TOG), volume 24, pages 787–

794. ACM, 2005. 2

[31] P. Pérez, M. Gangnet, and A. Blake. Poisson image edit-

ing. ACM Transactions on graphics (TOG), 22(3):313–318,

2003. 5, 6

12172

[32] J. Portilla and E. P. Simoncelli. A parametric texture model

based on joint statistics of complex wavelet coefficients. In-

ternational journal of computer vision, 40(1):49–70, 2000.

1, 2

[33] E. Risser, P. Wilmot, and C. Barnes. Stable and controllable

neural texture synthesis and style transfer using histogram

losses. arXiv preprint arXiv:1701.08893, 2017. 2

[34] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans. In

Advances in Neural Information Processing Systems, pages

2234–2242, 2016. 2, 6, 7

[35] O. Sendik and D. Cohen-Or. Deep correlations for tex-

ture synthesis. ACM Transactions on Graphics (TOG),

36(5):161, 2017. 2

[36] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.

Inception-v4, inception-resnet and the impact of residual

connections on learning. In AAAI, volume 4, page 12, 2017.

7

[37] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.

Texture networks: Feed-forward synthesis of textures and

stylized images. In ICML, pages 1349–1357, 2016. 1, 2

[38] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-

structured vector quantization. In Proceedings of the 27th

annual conference on Computer graphics and interactive

techniques, pages 479–488. ACM Press/Addison-Wesley

Publishing Co., 2000. 2

[39] Y. Wexler, E. Shechtman, and M. Irani. Space-time com-

pletion of video. IEEE Transactions on Pattern Analysis &

Machine Intelligence, (3):463–476, 2007. 2

[40] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li.

High-resolution image inpainting using multi-scale neural

patch synthesis. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), volume 1, page 3,

2017. 2

[41] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang.

Free-form image inpainting with gated convolution. arXiv

preprint arXiv:1806.03589, 2018. 2

[42] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang.

Generative image inpainting with contextual attention. arXiv

preprint arXiv:1801.07892, 2018. 2, 7

[43] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a percep-

tual metric. In CVPR, 2018. 7

[44] Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and

H. Huang. Non-stationary texture synthesis by adversarial

expansion. ACM Trans. Graph., 37(4):49:1–49:13, 2018. 2

[45] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In Computer Vision (ICCV), 2017 IEEE International

Conference on, 2017. 2

[46] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros,

O. Wang, and E. Shechtman. Toward multimodal image-to-

image translation. In Advances in Neural Information Pro-

cessing Systems, 2017. 2

12173

