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Abstract

Current wisdom suggests more labeled image data is al-
ways better, and obtaining labels is the bottleneck. Yet cu-
rating a pool of sufficiently diverse and informative images
is itself a challenge. In particular, training image curation
is problematic for fine-grained attributes, where the subtle
visual differences of interest may be rare within traditional
image sources. We propose an active image generation ap-
proach to address this issue. The main idea is to jointly
learn the attribute ranking task while also learning to gen-
erate novel realistic image samples that will benefit that
task. We introduce an end-to-end framework that dynam-
ically “imagines” image pairs that would confuse the cur-
rent model, presents them to human annotators for labeling,
then improves the predictive model with the new examples.
On two datasets, we show that by thinking outside the pool
of real images, our approach gains generalization accuracy
on challenging fine-grained attribute comparisons.

1. Introduction

Visual recognition methods are famously data hun-
gry. Today’s deep convolutional neural networks (CNNis)
achieve excellent results on various challenging tasks, and
one critical ingredient is access to large manually annotated
datasets [6, 8, 18, 59]. A common paradigm has emerged
where a supervised learning task is defined, the relevant im-
ages/videos are scraped from the Web, and crowdworkers
are enlisted to annotate them. A practical downside to this
paradigm, of course, is the burden of getting all those anno-
tations, which can be significant.

However, setting efficiency concerns aside, we contend
that the standard paradigm also quietly suffers a curation
concern. The assumption is that the more data we gather
for labeling, the better. And indeed unlabeled photos are
virtually unlimited. Yet—particularly when relying on Web
photos—the visual variety and information content of the
images amassed for labeling eventually reach a limit. The
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Figure 1: Our approach learns to actively create training images
for fine-grained attribute comparisons, focusing attention on infor-
mative pairs of images unavailable in the real image training pool.
Here we show two example pairs it generated to improve learning
of open (left) and masculine (right).

resulting deep network inherits this limit in terms of how
well it can generalize. Importantly, while active learning
methods can try to prioritize informative instances for la-
beling, the curation problem remains: existing active selec-
tion methods scan the pool of manually curated unlabeled
images when choosing which ones to label [12, 54, 55, 65].

We propose to address the curation challenge with ac-
tive image generation. The main idea is to jointly learn the
target visual task while also learning to generate novel real-
istic image samples that, once manually labeled, will benefit
that task. We focus specifically on the fine-grained relative
attribute task [33, 42, 49, 50, 58]: given two images, the
system must infer which one more evidently exhibits an at-
tribute (e.g., which is more furry, more red, more smiling).
The curation problem is particularly pronounced for fine-
grained relative attributes. This is because while at test time
an image pair may be arbitrarily close in an attribute, it is
difficult to locate extensive training samples showing such
subtle differences for all attributes [61]. Our idea is for the
system to dynamically “imagine” image pairs that would
confuse the current learning-to-rank model, then present
them to human annotators for labeling. See Figure 1.

To this end, we introduce an end-to-end deep network
consisting of an attribute-conditioned image generator, a
ranking network, and a control network. The network is
seeded with real labeled image pairs of the form “image
X exhibits attribute @ more than image Y. Then the con-
trol network learns to generate latent visual parameters to
present to the image generator so as to form image pairs
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that would be difficult for the ranker. Thus, rather than
simply perturb existing training images (a la “fooling im-
ages” [31]), the control module learns a function to create
novel instances, potentially improving the exploration of the
relevant image space. We train the ranker and controller in
an adversarial manner, and we solicit manual labels for the
resulting images in batches. As a result, the set of imagined
training instances continues to evolve, as does the ranker.
Our main contribution is a new approach to active learn-
ing in which samples are newly created so as to best aug-
ment a ranker’s training data. On two challenging datasets
of Shoes [59, 61] and Faces [18, 42], we demonstrate
our approach’s effectiveness. Active generation focuses
attention on novel training images that rapidly improve
generalization—even after all available real images and
their labels are exhausted. It outperforms alternative data
augmentation strategies, including prior work that generates
synthetic training images in a passive manner [61].

2. Related Work

Attribute Comparisons Relative attributes [33] model
visual properties in a comparative manner, and a variety of
applications have been explored in online shopping [24],
fashion [23], biometrics [41], and graphical design [32].
Recent work explores novel learning schemes to learn rela-
tive attributes accurately, including new deep network ar-
chitectures [49, 50, 58], part discovery [42], local learn-
ing [59, 60], and multi-task approaches [29]. Our contri-
bution is an approach to actively elicit training examples
for ranking, which could facilitate training for many of the
above formulations.

Image Generation Photo-realistic image generation has
made steady and exciting process in the recent years, often
using generative adversarial networks (GANs) [13, 20, 40,
62, 63, 67] or variational auto-encoders (VAEs) [14, 25, 56].
Conditional models can synthesize an image based on a la-
bel map [20, 67] or latent attribute label [27, 52, 56]. We
integrate the Attribute2Image [56] network as the image
generation module in our full pipeline, though similarly
equipped conditional models could also be used. Meth-
ods to generate adversarial “fooling images” also use a net-
work to automatically perturb an image in a targeted man-
ner [3, 30, 31]. However, rather than using adversarial gen-
eration to understand how features influence a classifier,
our goal is to synthesize the very training samples that will
strengthen a learned ranker. Unlike any of the above, we
create images for active query synthesis.

Learning with Synthetic Images The idea of training on
synthetic images but testing on real ones has gained traction
in recent years. Several approaches leverage realistic human

body rendering engines to learn 3D body pose [45, 46, 53],
while others extrapolate from video [7, 22, 34] or leverage
3D scene [64] or object [36, 57] models. Refiner networks
that translate between the simulated and real data can help
ease the inevitable domain gap [48].

Data augmentation (used widely in practice) can be seen
as a hybrid approach, where each real training sample is
expanded into many samples by applying low-level label-
preserving transformations, or “jitter”, like scaling, rotat-
ing, mirroring, etc. [38]. Usually the jitter is manually
defined, but some recent work explores how to adversar-
ially generate “hard” jitter for body pose estimation [37],
greedily select useful transformations for image classifica-
tion [35], or actively evolve 3D shapes to learn shape from
shading [57]. Such methods share our motivation of gener-
ating samples where they are most needed, but for very dif-
ferent tasks. Furthermore, our approach aligns more with
active learning than data augmentation: the new synthetic
samples can be distant from available real samples, and so
they are manually annotated before being used for training.

In the low-shot recognition regime, several recent meth-
ods explore creative ways to hallucinate the variability
around sparse real examples [9, 15, 16, 26, 43, 61], typi-
cally leveraging the observed inter-sample transformations
to guide synthesis in feature-space. Among them, most rel-
evant to our work is our “semantic jitter” approach [61],
which generates relative attribute training images by alter-
ing one latent attribute variable at a time. However, whereas
semantic jitter [61] uses manually defined heuristics to sam-
ple synthetic training images, we show how to dynamically
derive the images most valuable to training, via an adversar-
ial control module learned jointly with the attribute ranker.

Active Learning Active learning has been studied for
decades [44]. For visual recognition problems, pool-based
methods are the norm: the learner scans a pool of unlabeled
samples and iteratively queries for the label on one or more
of them based on uncertainty or expected model influence
(e.g., [12, 54, 55, 65]). Active ranking models adapt the
concepts of pool-based learning to select pairs for compari-
son [28, 39]. Hard negative mining—often used for training
object detectors [11, 47]—also focuses the learner’s atten-
tion on useful samples, though in this case from a pool of
already-labeled data. Rather than display one query image
to an annotator, the approach in [19] selects a sample from
the pool then displays a synthesized image spectrum around
it in order to elicit feature points likely to be near the true
linear decision boundary for image classification. We do
not perform pool-based active selection. Unlike any of the
above, our approach creates image samples that (once la-
beled) should best help the learner, and it does so in tight
coordination with the ranking algorithm.

In contrast to pool-based active learning, active query
synthesis methods request labels on novel samples from a
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given distribution [1, 2, 44, 66]. When the labeler is a per-
son (as opposed to an oracle or experimental outcome), a
well known challenge with query synthesis is that the query
may turn out to be unanswerable [4]. Accordingly, there is
very limited prior work attempting active query synthesis
for image problems. One recent study [66] uses the tra-
ditional active learning heuristic for linear SVMs [51] to
generate images for toy binary image classification tasks
(e.g., two MNIST digits). To our knowledge, ours is the
first approach that learns to actively generate training im-
ages jointly with the image prediction task, and we demon-
strate its real impact on modern well-studied datasets with
complex fashion products and face images. Furthermore,
rather than sample from some given input distribution, our
selection approach optimizes the latent parameters of an im-
age pair to directly affect the current deep ranking model.

3. Approach

We propose an end-to-end framework for attribute-based
image comparison through active adversarial image gen-
eration. We refer to our approach as ATTIC, for AcTive
Training Image Creation.

The goal is to avoid the “streetlight effect” of traditional
pool-based active learning, where one looks for more train-
ing data where one already has it.! Rather than limit training
to manually curated real images, as would standard pool-
based active learning, ATTIC synthesizes image pairs that
will be difficult for the ranker as it has been trained thus far.
See Figure 2.

We first define the relative attributes problem (Sec. 3.1).
Then we describe the key modules in our ATTIC network
(Sec. 3.2). Finally we define our training procedure and the
active image creation active loop (Sec. 3.3).

3.1. Relative Attributes via Ranking

Relative attributes are valuable for inferring fine-grained
differences between images in terms of describable natu-
ral language properties. They have wide application in im-
age search, zero-shot learning, and biometrics, as discussed
above. At the core of the relative attribute comparison task
is a learning-to-rank problem [33, 49]. A ranking function
R4 : X — R for attribute A (e.g., comfortable, smiling)
maps an image to a real-valued score indicating the strength
of the attribute in the image.

Relative attribute rankers are trained using pairs of train-
ing images. Let P4 = {(x;, x;)} be a set of ordered pairs,
where humans perceive image x; to have “more” of at-
tribute A than image x;. The goal is to learn a ranking
function R 4 that satisfies the relative orderings as much
as possible: V(i,j) € Pa : Ra(x;) > Ra(xz;). Having
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Figure 2: Schematic overview of main idea. Real images (green
x’s) are used to train a deep ranking function for the attribute (e.g.,
the openness attribute for shoes). The pool of real images con-
sists of those that are labeled (dark x’s) and those that are unla-
beled (faded x’s). Even with all the real images labeled, the ideal
ranking function may be inadequately learned. Rather than select
other manually curated images for labeling (faded green x’s), AT-
TIC directly generates useful synthetic training images (red O’s)
through an adversarial learning process. The three shoes along a
path represent how ATTIC iteratively evolves the control param-
eters to obtain the final synthetic training image pairs (not to be
confused with incrementally adding “more” of a target attribute.)

X Real Image
Real Image (unlabeled)

© Generated Image

trained such a function R 4 we can use it to score images for
their attribute strength individually, or, similarly, to judge
which among a novel pair of images (x,,, €,,) exhibits the
attribute more. ATTIC trains a network for each attribute A;
we drop the subscript below when not needed for clarity.

3.2. End-to-End Active Training Image Creation

Let P% be an initial set of real training image pairs used
to initialize the ranker R defined above. Our goal is to im-
prove that ranker by creating synthetic training images P,
to form a hybrid training set P = PF | JPS.

To this end, the proposed end-to-end ATTIC framework
consists of three distinct components (Fig. 3): the ranker
module, the generator module, and the control module. Our
model performs end-to-end adversarial learning between
the ranker and the control modules. The ranker tries to
produce accurate attribute comparisons, while the control
module tries to produce control parameters—Ilatent image
parameters—that will generate difficult image pairs to con-
fuse the current ranker. By asking human annotators to label
those confusing pairs, the ranker is actively improved. We
next discuss the individual modules.

3.2.1 Ranking Module

For the ranking module in ATTIC, we employ the state-
of-the-art deep DeepSTN approach [49], which integrates
a Siamese embedding and a spatial transformer network
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Figure 3: Architecture of our end-to-end approach consisting of three primary modules. The control module first converts the random input

A _A

q into control parameters {(y*, z**), (y®, 2%)}. Its architecture is detailed further in Figure 4. The generator module then generates a
pair of synthetic images (:iA, @B ) using these control parameters. The ranker module finally uses the generated synthetic images (once

manually labeled) and the real training images to train the ranking model, outputting their corresponding attribute strength (vA7 v

B).

During training, the ranking loss is fed back into the ranker (green dotted line), while the negative ranking loss is fed back into the control
module (red dotted line). The decoders within the generator are pre-trained and their parameters are kept frozen throughout training.

(STN) [21] together with a RankNet ranking loss [5].
RankNet handles pairwise outputs in a single differentiable
layer, using a cross-entropy loss. The rank estimates (v;, v;)
for images (x;, ;) are mapped to a pairwise posterior
probability using a logistic function

1
pij = Tte @)’ (1)
and the ranking loss is:
£rank = - log(pij)- (2)

The ranker jointly learns a CNN image encoder ¢(x) with
a spatial transformer that localizes the informative image
regions for judging a particular attribute. For example, the
STN may learn to clue into the mouth region for the smiling
attribute. The ranker combines the features of the full image
and this region to compute the attribute strength:

v; = Ra(x;) = RankNet 4 (STN(o(x;))), 3)

where ¢(x) denotes application of one stack in the Siamese
embedding. See [49] for details.

3.2.2 Generator Module

For the generator module, we use an existing attribute-
conditioned image generator, Attribute2Image [56]. Let
y € RY denote an N-dimensional attribute vector con-
taining the real-valued strength of each of the N = |A]
attributes for an image x, and let z € RM denote an M-
dimensional latent variable accounting for all other factors
affecting the image, like lighting, pose, and background.
The Attribute2Image network uses a Conditional Varia-
tional Auto-Encoder (CVAE) to learn a decoder py(Z|y, 2)
that can generate realistic synthetic images & conditioned

[ Input (q) ]—\
v

( FC 512 ~ 512, ReLU ]

( FC 512 — 256, ReLU )

( FC 256 — N ] q(1,256)

[ BatchNorm + Scaling ]

o)

Figure 4: Architecture of the control module. The model above
outputs a single set of control parameters (y, z). Since we gener-
ate the synthetic images in pairs, we duplicate the architecture.

on (y,z). The parameters 6 are optimized by maxi-
mizing the variational lower bound of the log-likelihood
log pg(&|y). The network uses a multilayer perceptron to
map the latent factors into their entangled hidden represen-
tation, then decodes into image pixels with a coarse-to-fine
convolutional decoder. See [56] for more details.

The attribute-conditioned aspect of this generator allows
us to iteratively refine the generated images in a semanti-
cally smooth manner, as we adversarially update its inputs
(y, z) with the control module defined next. We pre-train
the generator using {(x;, y;)}, a disjoint set of training im-
ages labeled by their N attribute strength labels. Subse-
quently, we take only the decoder part of the model and use
it as our generator (see Fig. 3). We freeze all parameters in
the generator during active image creation, since the map-
ping from latent parameters to pixels is independent of the
rank and control learning.

3.2.3 Control Module

As defined thus far, linking together the ranker and gener-
ator would aimlessly feed new image sample pairs to the
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ranker. Next we define our control module and explain how
it learns to feed pairs of intelligently chosen latent parame-
ters to the generator for improving the ranker.

The control module is a neural network that precedes the
generator (see Figure 3, left). Its input is a random seed
q € RO, sampled from a multivariate Gaussian. Its out-
put is a pair of control parameters {(y*,z4), (y?,25)}
for synthetic image generation. Figure 4 shows the control
architecture. It is duplicated to create two branches feed-
ing to the generator and then the Siamese network in the
DeepSTN ranker.

The attribute control variable y is formed by passing g
through a few fully-connected layers, followed by a Batch-
Norm layer with scaling. In particular, we obtain the scal-
ing parameters from the mean and standard deviation of
the attribute strengths observed from the real training im-
ages, then apply them to the normalized A(0, 1) outputs
from the BatchNorm layer. The scaling ensures that the at-
tribute strengths are bounded within a range appropriate for
the pre-trained generator.

The latent feature control variable z, which captures
all the non-attribute properties (e.g., pose, illumination), is
sampled from a Gaussian. We simply use half of the entries
from q for z4 and 2, respectively. This Gaussian sample
agrees with the original image generator’s prior p(z).

3.3. Training and Active Image Creation

Given the three modules, we connect them in sequence
to form our active learning network. The generator and the
ranker modules are duplicated for both branches to account
for two images in each training pair. The decoders in the
generator module are pre-trained and their parameters are
kept frozen. During training, we optimize the RankNet loss
for the ranker module, while at the same time optimizing
the negative RankNet loss for the control module:

‘Ccontr()l = _£7'ank- “4)
The control module thus learns to produce parameters that
generate image pairs that are difficult for the ranker to pre-
dict. This instills an adversarial effect where the control
module and the ranker module are competing against each
other iteratively during training. The learning terminates
when the ranker converges. Our adversarial losses promote
“hard” examples, and are not to be confused with adversar-
ial “fooling” images [3, 30, 31]; image pairs generated by
our method are only fed to the learner if humans can label
them confidently.

Figure 5 shows examples of the progression of synthetic
images over training iterations. ATTIC captures the interac-
tion between the attributes and traverses the multi-attribute
space to places not occupied by real training images.

Active Training Image Creation

Initial »  Final
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v R e W
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Figure 5: Visualization of the progression of synthetic image pairs
(&4, &®) during training (not to be confused with a spectrum go-
ing from less to more of a given attribute [61]). Our model learns
patterns between all the attributes, modifying multiple attributes
simultaneously. For example, while modifying the faces for the
attribute masculine (last row), our model learned to change the
attribute smiling as well. The rightmost images, i.e., end of the

progression, are manually labeled and augment the training data.

To generate a batch? of synthetic image pairs P° =
{24, 25)}T_ |, we sample T vectors g and push them
through the control and generator. Then the batch is labeled
by annotators, who judge which image shows the attribute
more. The resulting pairs accepted by annotators as valid
are added to the hybrid training set P. We consider with
both single-batch, where all synthetic pairs are generated in
one go (Sec. 4.2), and multi-batch settings, where we reset
the ranker module for each subsequent batch (Sec. 4.3).

The primary novelty of our approach comes from the
generation of synthetic image pairs through active query
synthesis. From an active learning perspective, instead of
selecting more real image pairs to be labeled based on ex-
isting pool-based strategies, our approach aims to directly
generate the most beneficial synthetic image pairs (Fig. 2).
Furthermore, instead of choosing (y;, z;) manually when
generating the synthetic image pairs [61], ATTIC automates
this selection in a data-driven manner.

2Here we mean “batch” in the active learning sense: a batch of exam-
ples to be manually labeled and then used to augment the training set. This
is not to be confused with (mini)-batches for training the neural nets.
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4. Experiments

To validate our active generation approach, we explore
two fine-grained attribute domains: shoes and faces. To our
knowledge, these are the only existing datasets with suffi-
cient instance-level relative attribute labels.

4.1. Experimental Setup

Datasets We use two publicly available datasets, UT-
Zappos50K [59] and LFW [18]. For each, our method uses
real images to initialize training and then creates its own
synthetic images.

e Catalog Shoe Images: We use the UT-Zappos50K
dataset [59] with the fine-grained attributes from [61].
The dataset consists of over 50,000 shoe images from
Zappos.com. There are 10 attributes (comfort, casual,
simple, sporty, colorful, durable, supportive, bold,
sleek, and open), each with about 4,000 labeled pairs.

e Human Face Images: We use the LFW dataset [18]
and the LFW-10 dataset [42]. LFW consists of over
13,000 celebrity face images from the wild along with
real-valued labels on 73 attributes. LFW-10 consists of
a subset of 2,000 images from LFW along with relative
labels on 10 attributes. We use the 8 attributes (bald,
dark hair, big eyes, masculine, mouth open, smiling,
visible forehead, and young) in the intersection of these
two datasets. For the real image pairs, there are about
500 labeled pairs per attribute from LFW-10.

All images for all methods are resized to 64 x 64 pix-
els to match the output resolution of the image generator.
For all experiments, we only use high quality (high agree-
ment/high confidence) relative labels, following the proto-
col of [61]. We collect annotations for our method’s auto-
matically generated training pairs using Mechanical Turk;
we obtain 5 worker responses per label and take the major-
ity vote. Workers are free to vote for discarding a pair if
they find it illegible, which happened for just 17% of the
generated pairs. Of the other 83% accepted pairs, at least 4
of 5 annotators agree on the same label 63% of the time, and
they rate 48% of their annotations as “very confident” and
95% as at least “somewhat confident”. See Supp File for
the data collection interface and instructions to annotators.

Implementation Details During training, we validate all
hyperparameters (learning rate, learning rate decay, weight
decay) on a validation set. We run all experiments (includ-
ing individual batches) to convergence or to a max of 250
and 100 epochs for shoes and faces, respectively.

For the individual modules, implementation details are
as follows. Ranker: We pre-train the DeepSTN ranking net-
work without the global image channel using only the real

image pairs (see [49] for details on the two rounds of train-
ing). Generator: We use the code provided by the authors
of Attribute2Image [56] with all default parameters. We
pre-train the image generators using a disjoint set of real im-
ages (38,000 and 11,000 images for shoes and faces, respec-
tively), which do not have any associated relative labels. We
freeze the decoder in ATTIC throughout end-to-end training
for the ranker and control. Control: We initialize the layers
using ReLU initialization [17].

Baselines We consider the following baselines:

e SemJitter [61], an existing approach for data augmen-
tation that uses synthetic images altered by one at-
tribute at a time using a manually defined sampling
policy. We use the authors’ provided synthetic shoe
image pairs, Zap50K-Synth, for this purpose. It con-
tains 2,000 labeled pairs per attribute. For the synthetic
face image pairs, we collect relative labels on 1,000
pairs per attribute.

e Jitter, the traditional data augmentation process where
the real images are jittered through low-level geomet-
ric and photometric transformations. We follow the
jitter protocol defined in [10], which includes transla-
tion, scaling, rotation, contrast, and color. The jittered
image pairs retain the corresponding real pairs’ respec-
tive labels.

e Real, which trains with only real labeled image pairs.

Note that all methods use the same state-of-the-art ranking
network for training and predictions, hence any differences
in results will be attributable to the training data and aug-
mentation strategy.

4.2. Competing with Real Training Images

First we test our hypothesis that restricting models to
only available Web photos for training can be limiting. We
compare the data augmentation baselines and ATTIC to the
Real baseline, where all methods are given the exact same
amount of total manual annotations. The Real and Jit-
ter baselines use all n available real labeled image pairs.
Semlitter and ATTIC use half of the real labeled image
pairs (%), which are sampled uniformly at random, and then
augment those pairs with 7 manually labeled synthetic im-
age pairs that they generate.

Tables 1 and 2 show the results for the Shoes and Faces
datasets, respectively. We first look at the standard sce-
nario (middle rows) where the synthetic images generated
by Semlitter and our method are labeled by human anno-
tators. Though using exactly the same amount of manual
labels as the Real baseline, our method nearly always out-
performs it. This shows that simply having more real im-
age pairs labeled is not always enough; our generated sam-
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Comfort Casual Simple Sporty Colorful Durable Supportive Bold Sleek Open | Mean
Real [49] 84.26 88.58 88.99 88.18 94.10 82.83 83.96 88.25 8435 83.87 | 86.74
Jitter 82.87 87.96 86.65 87.58 93.91 80.51 84.63 88.66 83.37 79.84 | 85.60
Semlitter [61] 83.10 89.20 88.76 88.49 94.10 82.37 85.08 89.07 86.31 8226 | 86.87
ATTIC (ours) 83.80 89.51 89.23 88.18 94.10 85.85 86.41 88.04 87.78 83.07 | 87.62
Semlitter-Auto [61] 84.72 88.89 89.70 89.39 94.29 83.99 86.41 89.07 85.82 83.87 | 87.59
ATTIC-Auto (ours) 87.04 89.20 91.57 91.21 94.48 87.94 87.31 89.90 86.31 85.75 | 89.07

Table 1: Accuracy for the 10 attributes in the Shoes dataset. The standard scenario (middle rows) is where the synthetic images generated
by Semlitter and our method are labeled by human annotators. The “Auto” scenario (last two rows) is where an additional n unlabeled
synthetic image pairs are added for all methods except Real; those images adopt their inferred attribute labels. Note that Jitter already uses
all n labeled real images plus n (not manually labeled) jittered images. In all cases, all methods use exactly n total labels.

Bald DarkHair BigEyes Masculine MouthOpen Smiling Forehead Young | Mean
Real [49] 79.80 86.77 78.18 92.96 87.50 74.44 80.00 78.76 82.30
Jitter 81.82 86.87 80.00 91.55 84.17 74.44 85.26 79.79 82.99
Semlitter [61] 81.82 87.50 83.64 92.96 88.33 79.70 83.16 81.35 84.81
ATTIC (ours) 84.85 88.24 85.46 95.78 79.17 81.96 84.21 80.31 84.99
SemlJitter-Auto [61] 82.83 88.24 81.82 94.37 85.00 75.19 83.16 79.28 83.73
ATTIC-Auto (ours) 85.86 90.44 83.36 94.37 82.50 76.69 85.26 78.24 84.59

Table 2: Accuracy for the 8 attributes in the Faces dataset. Format is the same as Table 1.
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Our approach also outperforms (or matches) Semlitter in
8 out of 10 shoe attributes and 6 out of 8 face attributes, with
gains over 3% in some cases. This demonstrates our key ad-
vantage over Semlitter [61], which is to actively adapt the
generated images to best suit the learning of the model, as
opposed to what looks the best to human eyes. Unlike [61],
which manually modifies one attribute at a time, our ap-

Base +25% +50% +75% +100% Base +25% +50% +75% +100%
Percent of Pairs Added Percent of Pairs Added

Figure 6: Active learning curves for the Shoes (left) and Faces
(right) datasets. We show the average gain over the Real baseline
after each batch of additional generated image pairs. Our approach
nearly doubles the gain achieved by Semlitter for both domains.

proach can modify multiple attributes simultaneously in a
dynamic manner, accounting for their dependencies.

We also consider an “Auto” scenario where instead of
adding % generated images with their manual annotations,
we start our model with all n real labeled image pairs.
Then, we generate another n synthetic images and—rather
than get them labeled—simply adopt their inferred attribute
comparison labels. In this case, the “ground truth” order-
ing for attribute j for generated images @ and & is auto-
matically determined by the magnitudes of their associated
parameter values y“(j) and y?(j) output by the control
module. Analogously, Jitter adopts the label of the source
pair it jittered. Once again, all methods use the exact same
number of human-provided labels.

Tables 1 and 2 (bottom two rows) show the results. Our
model performs even a bit better in this setting, suggest-
ing that the inferred labels are often accurate, and the extra
volume of “free” training pairs is helpful. We outperform
(or match) Semlitter in all 10 shoe attributes and 6 out of

8 face attributes. lJitter offers a slight performance boost
sometimes, but can even be detrimental on these datasets.
While our method performs well overall, for a couple of at-
tributes (i.e mouth-open, young) we underperform both Real
and SemlJitter. Upon inspection, we find our weaker perfor-
mance there is likely due to poorer quality image generation
for those attributes.

4.3. Active vs. Passive Training Image Generation

Next we examine more closely ATTIC’s active learning
behavior. In this scenario, we suppose the methods have ex-
hausted all available real training data (i.e., we use all n real
labeled image pairs to initialize the model), and our goal
is to augment this set. We generate the synthetic (labeled)
image pairs in batches (again, not to be confused with the
mini-batches when training neural networks). After each
batch, we have them annotated, update the ranker’s training
set, and re-evaluate it on the test set. The weights of the
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Figure 7: Sample training image pairs. Left: “Harder” real pairs that are incorrectly predicted by the baseline model. Middle: Synthetic
image pairs generated by our active approach. Right: Synthetic image pairs that are rejected by the human annotators as illegible.

control module are carried over from batch to batch, while
the ranker module restarts at its pre-trained state at the be-
ginning of each batch.

Figure 6 shows the results for both datasets. We plot ac-
tive learning curves to show the accuracy improvements as
a function of annotator effort—steeper curves are better, as
they mean the system gets more accurate with less manual
labeling. We see the average gains of our approach over the
Real baseline increase most sharply compared to the base-
lines. Our approach achieves a gain of over 3% and 8% for
the two domains, respectively, which is almost double that
of the Semlitter baseline. Jitter falls short once again, sug-
gesting that traditional low-level jittering has limited impact
in these fine-grained ranking tasks. Please see Supp File for
the individual performance plots of each attribute. ATTIC
improves more than ATTIC-Auto, though has the burden of
gathering labels from annotators.

4.4. Qualitative Analysis

The results show the synthetic image pairs generated by
our approach outperform those selected by the heuristic and
passive selection processes of Semlitter and Jitter in most
scenarios. The advantage of our active generation approach
is its ability to modify the generated image pairs in a way
that is best for the learning of the model.

Figure 5 shows examples of how the synthetic images
look between the first and the last epoch of the training.
The final pairs selected for labeling also demonstrate subtler
visual differences than the initial pairs, suggesting that our

model has indeed learned to generate “harder” pairs.

Figure 7 compares these “harder” pairs to those from the
real image pairs. Overall we see that the actively gener-
ated synthetic pairs tend to have fine-grained differences
and/or offer visual diversity from the real training samples.
The righthand side of Figure 7 shows examples of gener-
ated pairs rejected by annotators as illegible, which occurs
17% of the time. The relative low rate of rejection is an en-
couraging sign for making active query synthesis viable for
image labeling tasks.

5. Conclusion

We introduced an approach for actively generating train-
ing image pairs that can benefit a fine-grained attribute
ranker. Our approach lets the system think “outside of the
pool” in annotation collection, imagining its own training
samples and querying human annotators for their labels. On
two difficult datasets we showed that the approach offers
real payoff in accuracy for distinguishing subtle attribute
differences, with consistent improvements over existing
data augmentation techniques. In future work we plan to
explore joint multi-attribute models for the ranker and con-
sider how human-in-the-loop systems like ours might allow
simultaneous refinement of the image generation scheme.
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