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Abstract

Deep metric learning, which learns discriminative fea-

tures to process image clustering and retrieval tasks, has

attracted extensive attention in recent years. A number of

deep metric learning methods, which ensure that similar ex-

amples are mapped close to each other and dissimilar ex-

amples are mapped farther apart, have been proposed to

construct effective structures for loss functions and have

shown promising results. In this paper, different from the

approaches on learning the loss structures, we propose a

robust SNR distance metric based on Signal-to-Noise Ratio

(SNR) for measuring the similarity of image pairs for deep

metric learning. By exploring the properties of our SNR

distance metric from the view of geometry space and sta-

tistical theory, we analyze the properties of our metric and

show that it can preserve the semantic similarity between

image pairs, which well justify its suitability for deep metric

learning. Compared with Euclidean distance metric, our S-

NR distance metric can further jointly reduce the intra-class

distances and enlarge the inter-class distances for learned

features. Leveraging our SNR distance metric, we propose

Deep SNR-based Metric Learning (DSML) to generate dis-

criminative feature embeddings. By extensive experiments

on three widely adopted benchmarks, including CARS196,

CUB200-2011 and CIFAR10, our DSML has shown its su-

periority over other state-of-the-art methods. Additionally,

we extend our SNR distance metric to deep hashing learn-

ing, and conduct experiments on two benchmarks, including

CIFAR10 and NUS-WIDE, to demonstrate the effectiveness

and generality of our SNR distance metric.

1. Introduction

Recent years have witnessed the extensive research on

metric learning, which aims at learning semantic distance

and embeddings such that similar examples are mapped to

∗Corresponding author

nearby points on a manifold and dissimilar examples are

mapped apart from each other [20, 27, 30, 39]. Compared to

conventional distance metric learning, deep metric learning

learns a nonlinear embedding of the data using deep neural

networks, and it has shown significant benefits by explor-

ing more loss structures. With the development of these

learning techniques, deep metric learning has been widely

applied to the tasks of face recognition [29, 28], image clus-

tering and retrieval [33, 20].

Deep metric learning has made remarkable successes in

generating discriminative features. To improve the perfor-

mance of learned features, many learning methods have ex-

plored the structures in the objective functions, such as con-

trastive loss [9], triplet loss [22, 36], lifted structured em-

bedding [20], N-pair Loss method [27], etc. These deep

metric learning methods can be categorized as structure-

learning methods, which focus on constructing more ef-

fective structures for objective functions by making use of

training batches or increasing negative examples. However,

most structure-learning methods simply take the Euclidean

distance as the semantic distance metric and ignore that the

distance metric is playing a nonnegligible role in deep met-

ric learning. Different from structure-learning, some metric

learning methods [37, 6] employ new distance metrics to

metric learning. For example, Weinberger et al. have pro-

posed a distance metric for k-nearest neighbor (kNN) clas-

sification in metric learning, i.e, Mahalanobis distance [37],

which shows that the performance of metric learning al-

gorithms also depends on the distance metric. Contrary

to structure-learning methods, these methods exploring a

new distance metric can be categorized as distance-learning

methods. Compared to the structure-learning methods, de-

signing a good distance metric for measuring the semantic

similarity may make a more significant impact on learning

discriminative embeddings. Therefore, we focus on design-

ing of a novel and effective distance metric.

Measuring similarities between pairs of examples is crit-

ical for metric learning. The most well-known distance met-

ric is Euclidean distance, which has been widely used in
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learning discriminative embeddings. However, Euclidean

distance metric only measures the distance between paired

examples in n-dimensional space, lacking the abilities to p-

reserve the correlation and improve the robustness of the

pairs. Therefore, we devise a new distance metric by lever-

aging a concept defined in signal processing, i.e. Signal-

to-Noise Ratio (SNR), as a similarity measurement in deep

metric learning. Generally, SNR in signal processing is

used to measure the level of a desired signal to the level of

noise, and a larger SNR value means a higher signal quality.

For similarity measurement in deep metric learning, a pair

of learned features x and y can be given as y = x + n,

where n can be treated as a noise. Then, the SNR is the

ratio of the feature variance and the noise variance. Based

on the definition of SNR in deep metric learning, we find

that SNR is promising to be formulated as a distance metric

for measuring the differences between paired features.

In this paper, based on the properties in SNR, we pro-

pose an SNR distance metric to replace Euclidean distance

metric for deep metric learning. In the aspect of space anal-

ysis and theoretical demonstration, we explain the advan-

tages of SNR distance over Euclidean distance. Differen-

t from Euclidean distance, SNR distance is a more robust

distance metric, which can further jointly reduce the intra-

class distances and enlarge the inter-class distances for the

learned features, and preserve the correlations of the fea-

tures. Moreover, we propose a Deep SNR-based Metric

Learning (DSML) method, which uses SNR distance metric

as similarity measurement for generating more discrimina-

tive features. To show the generality of our SNR-based met-

ric, we also extend our approach to hashing retrieval learn-

ing.

Our main contributions can be summarized as follows.

(1) To the best of our knowledge, this is the first work that

employs SNR to build the distance metric in deep metric

learning. By analyzing the properties of the SNR distance

metric, we find that it has better performance than Euclidean

distance and can be widely used in deep metric learning. (2)

We show how to integrate our SNR distance metric into the

popular learning frameworks, and propose the correspond-

ing objective function in our DSML. (3) We make extensive

experiments on three widely-used benchmarks about image

clustering and retrieval tasks, and the results demonstrate

the superiority of our deep SNR-based metric learning ap-

proach over state-of-the-art methods. (4) We extend our

SNR-based metric distance to deep hashing learning and

obtain promising experiment results.

2. Related Work

2.1. Metric Learning

Metric learning methods, which have been widely ap-

plied to image retrieval, clustering and recognition tasks,

have attracted much attention. With the development of

deep neural networks, deep metric learning methods [5, 21,

15, 10] have shown promising performance on the com-

plex computer vision tasks. To distinguish the innovations

of different deep metric learning methods, we roughly di-

vide these approaches into structure-learning and distance-

learning methods, and introduce these works briefly. Re-

lated to our work, we also introduce deep hashing methods

based on the famous metric learning structures.

2.1.1 Structure-Learning Methods

The most well-known structure-learning approach is con-

trastive embedding, which is proposed by Hadsell et al. [9].

The main idea of contrastive loss [9] is that similar exam-

ples should be mapped to nearby points on a manifold and

dissimilar examples should be mapped apart from each oth-

er. This idea have established the foundation of the objec-

tive functions in deep metric learning. Following this work,

the subsequent structure-learning methods have proposed

various loss functions with different structures. For exam-

ple, triplet loss [22, 36] is composed of triplets, and each

triplet is consisted of a anchor example, a positive example

and a negative example. The triplet loss encourages the pos-

itive distance to be smaller than the negative distance with

a margin. Lifted structured loss [20] lifts the vector of pair-

wise distances within the batch to the matrix of pairwise dis-

tances. N-pair loss [27] generalizes triplet loss by allowing

joint comparison among more than one negative examples,

which means a feature pair is composed of samples from the

same labels and other pairs in the mini-batch have different

labels. ALMN [1] proposes to optimize an adaptive large

margin objective via the generated virtual points instead of

mining hard-samples. Besides these works, several work-

s [22, 26] try to mine hard negative data on the basis of triple

loss, and they can been seen as enhanced structure-learning

methods. Different from these structure-learning method-

s, our work aims to design a new distance metric for deep

metric learning. Because most structure-learning methods

use the Euclidean distance as their similarity measurement

(inner product in N-pair loss can be regarded as a similar

Euclidean measurement), they can provide the baselines for

our work.

2.1.2 Distance-Learning Methods

Different from structure-learning approaches, the distance-

learning method, which explores a superior distance metric,

is also promising to improve the performance of deep met-

ric learning. In traditional metric learning [23, 24], some

distance-learning methods have been proposed by using

Mahalanobis distance to measure the similarities of sam-

ples. For instance, Globerson et al. [8] presented an algo-

rithm to learn Mahalanobis distance in classification tasks.
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Weinberger et al. [37] showed how to learn a Mahalanobis

distance metric for kNN classification from labeled exam-

ples. Davis et al. [6] presented an information-theoretic

approach to learning a Mahalanobis distance function. In

deep metric learning, we noticed that in order to learn better

features, Wang et al. proposed a distance-learning method

to constrain the angle at the negative point of triplet trian-

gles [34]. Moreover, Chen et al. [2] introduce energy con-

fusion metric to improve the generalization of the learned

deep metric. Chen et al. [3] propose the hybrid-attention

based decoupled metric learning framework for learning

discriminative and robust deep metric. However, the angle

measurement for triangles has limitations when measuring

the distance of two points, and it cannot be regarded as a

general distance metric. In this paper, we propose a gener-

al distance-learning method, which uses SNR-based metric

for measuring the similarity of image pairs in deep metric

learning.

2.2. Hashing Learning

Similar to deep metric learning, deep hashing aims to

learn a discriminative embedding to preserve the consisten-

cy with semantic similarity in binary features. Recently,

many deep hashing methods [40, 16, 38, 41, 18, 31, 25, 42]

have been proposed to learn compact binary codes and re-

trieve the similar images in Hamming space. Benefiting

from metric learning methods, some deep hashing meth-

ods [17, 14, 35] are established on contrastive embedding

or triplet embedding. In this paper, in order to extend the

application of our SNR-based metric and verify the gen-

erality of the metric, we also propose a deep SNR-based

hashing learning method, which aims to generate similarity-

preserving binary codes by training the convolutional neural

networks with our SNR metric based loss layer.

3. Proposed Approach

Pair-wise distances in features are usually measured

by Euclidean distance metric, which has been rarely

changed [34]. However, designing a good distance metric

for measuring the similarity between images is significan-

t for improving the performance of deep metric learning.

Therefore, we propose a new SNR-based metric for deep

metric learning.

3.1. SNR­based Metric

Definition: In deep metric learning, given two images

xi and xj , the learned features can be denoted as hi =
f(θ;xi) and hj = f(θ;xj), where f is the metric learning

function and θ denotes the learned parameters. Given a pair

of features hi and hj , where the anchor feature is hi and the

compared feature is hj . We denote the anchor feature hi as

signal, and the compared feature hj as noisy signal, then the

noise nij in hi and hj can be formulated as nij = hj−hi.

In statistical theory, a standard definition of SNR is the
ratio of signal variance to noise variance [7], so we define
the SNR between the anchor feature hi and the compared
feature hj as:

SNRi,j =
var(hi)

var(hj − hi)
=

var(hi)

var(nij)
, (1)

where var(a) =
∑

n
i=1

(ai−µ)2

n
denotes the variance of

a, and µ is the mean value of a. If µ = 0, var(a) =∑
n
i=1

(ai)
2

n
.

The variance in information theory reflects the informa-

tiveness. More explicitly, the signal variance measures the

useful information, while the noise variance measures the

useless information. Therefore, increasing SNRi,j can im-

prove the ratio of useful information to useless information,

which reflects the compared feature can be more similar

to the anchor feature. On the contrary, decreasing SNRi,j

can increase the proportion of noise information, leading to

more difference in the two features. Therefore, the values

of SNRi,j can be used to measure the difference in a pair

of features reasonably, which is an essential to construct a

distance metric in metric learning.
SNR distance metric: In deep metric learning, the con-

straint of most loss functions based on Euclidean distance
metric is that similar examples should have short distances
in features while dissimilar examples should have large dis-
tances in features. According to the constraint, we design
a new distance metric as similarity measurement for deep
metric learning. On the basis of the definition of SNR, we
propose our SNR distance metric. The SNR distance dS in
a pair of features hi and hj is defined as:

dS(hi,hj) =
1

SNRij

=
var(nij)

var(hi)
. (2)

Notably, the commutative property (dE(hi,hj) =
dE(hj ,hi)) in Euclidean distance dE is inapplicable in

our SNR distance. Because the values of dS(hi,hj) and

dS(hj ,hi) are usually not equal, our SNR distance is sen-

sitive to which one is the anchor feature in a pair.

To show how SNR distance reflects the differences in

a pair of features, we synthesize a 32-dimensional Gaus-

sian data with N ∼ {0, 1} as anchor feature, and a se-

ries of Gaussian noises with N ∼ {0, σ2}, where σ2 =
{0.2, 0.5, 1.0, 2.0}. The compared feature is synthesized by

adding the noise data to the anchor feature, then the SNR

distance dS of the anchor feature and compared feature is

{0.2, 0.5, 1.0, 2.0}. As shown in Figure 1, the longer S-

NR distance reflects that the difference between the anchor

feature and the compared feature is larger. Therefore, the S-

NR distance applied to the loss functions can have a similar

property with Euclidean distance (i.e., similar image pairs

are supposed to have a short SNR distance in features, while

dissimilar image pairs should have a large SNR distance in

features). As a result, we can use the SNR distance met-

ric as the similarity measurement to replace the Euclidean

distance metric in deep metric learning.

4817



Figure 1. The curves show the comparisons of 32-dimensional

synthetic anchor features and the compared features under differ-

ent SNR distances.

Superiority analysis: To indicate the superiority of S-

NR distance to Euclidean distance, we compare these two

metrics from the view of geometry space and statistical the-

ory.

The Euclidean distance of two points a and b is defined
as:

dE(a, b) =

√

√

√

√

n
∑

i=1

(ai − bi)2. (3)

For SNR distance, according to Equations (2) and (3),
we can derive that if the features follow zero-mean distribu-
tions:

dS(hj ,hi) =
var(nij)

var(hi)
=

∑M

m=1(him − hjm)2
∑M

m=1(him)2

=
dE(hi,hj)

2

dE(hi)
2 ,

(4)

where dE(hi) denotes the Euclidean distance from hi to

the origin O, and M is the dimension of learned features

h. As shown in (4), besides the Euclidean distance of the

paired features, the SNR distance also takes into account the

Euclidean distance from the feature to the origin.

In order to preserve the semantic similarity, the loss

functions with Euclidean distance metric constrain that the

Euclidean distances in feature pairs with the same labels

should be reduced, while the Euclidean distances in feature

pairs with the different labels should be increased. Different

from Euclidean distance metric, the loss functions with S-

NR distance metric can make an additional constraint on the

Euclidean distance from origin to the features. As shown

in Figure 2, compared to Euclidean distance metric which

only measures the Euclidean distances of feature pairs, our

SNR distance can not only provide the constraints in Eu-

clidean distances, but also give an additional constraint to

enlarge the inter-class distances when dealing with similar

pairs, and to reduce the intra-class distances when dealing

with dissimilar pairs. As a result, in deep metric learning,

our SNR distance metric is more powerful to increase the

discrimination and robustness of feature pairs.

Figure 2. This example shows how SNR distance metric and Eu-

clidean metric affect the features in Euclidean space. The con-

straints for preserving the semantic similarity are described as re-

pulsive forces and attractive forces. The arrowed lines represen-

t forces, where the purple lines denote the forces only from the

SNR distance metric, and orange lines are the forces shared by

Euclidean distance and SNR distance. As shown in (a), for sim-

ilar images, minimizing Euclidean distance can only reduce the

distances between the intra-class examples. Because our SNR dis-

tance takes into account the Euclidean distance from the feature

to the origin, minimizing SNR distance can also enlarge the inter-

class Euclidean distances. As shown in (b), for dissimilar sam-

ples, the Euclidean distance of the inter-class examples should be

increased. Different from the constraint force of Euclidean met-

ric, the constraint forces caused by increasing SNR distance (i.e.

orange lines and purple lines) can collaborate to make each cluster

more compact, leading to the smaller intra-class distances.

We also explore the relationship between SNR distance
and the correlation coefficient of paired features to further
show the superiority to Euclidean distance, If the mean of
each feature is zero, and the noise is independent to the sig-
nal feature, the correlation coefficient corr(·, ·) in paired
features can be computed via the statistical theory as fol-
lows:
corr(hi,hj) =

cov(hi,hj)
√

var(hi)var(hj)
=

E(hihj)
√

var(hi)var(hj)

=
E(hi(hi + nij))

√

var(hi)var(hi + nij)
=

E(h2
i)

√

var(hi)var(hi + nij)

=
var(hi)

√

var(hi)2 + var(hi)var(nij)
=

1
√

1 +
var(nij)

var(hi)

=
1

√

1 + 1
SNRij

=
1

√

1 + dS(hj ,hi)
.

(5)

According to (5), the correlation coefficient of the paired

features is an decreasing function of their SNR distance.

Increasing the SNR distance will reduce the correlation in

dissimilar features, and reducing the SNR distance will in-

crease the correlation in similar pairs. Therefore, by using

the SNR distance instead of Euclidean distance, deep met-

ric learning can jointly preserve the semantic similarity and

the correlations in learned features.
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3.2. Deep SNR­based Metric Learning

Because of the superiority of SNR distance metric, the

SNR distance can provide a more effective similarity mea-

surement compared with the Euclidean distance. Besides,

the SNR distance can be generally applied to various ob-

jective functions of deep metric learning. In order to re-

alize deep SNR-based metric learning (DSML), we selec-

t four attractive deep metric learning structures, including

contrastive loss [9], triplet loss [22, 36], lifted structured

loss [20], and N-pair loss [27], to construct our SNR-based

objective functions.

In DSML, we denote the learned features as hi ∈
(h1, · · · ,hN ). For an anchor feature hi, the positive fea-

ture is h+
i , and the negative one is denoted as h−

i . Based on

SNR distance metric, the distance of two features hi,hj in

our DSML functions can be represented as:

dSij = dS(hi,hj) =
1

SNR
=

var(hi − hj)

var(hi)
. (6)

We use a regularization λLr to constrain that the fea-
tures have zero-mean distributions, and the regularization is
defined as:

Lr = λ
1

N

∑

i∈N

|
M
∑

m=1

him |, (7)

where λ is a hyper-parameter with a small value.

Combined with the four learning structures, the SNR-

based objective functions of our DSML are detailed in the

following.
DSML(cont): For SNR-based contrastive embedding,

our DSML objective function is:

J =

Ni
∑

i=1

dS(hi,h
+
i ) +

Nj
∑

j=1

[α− dS(hj ,h
−
j )]+ + λLr, (8)

where Ni and Nj respectively represent the numbers of

positive and negative pairs, α denotes the margin to con-

strain the negative pairs, and [·]+ denotes the function

max(0, ·).
DSML(tri): For SNR-based triplet embedding, the ob-

jective function is defined as:

J =
N
∑

i=1

[dS(hi,h
+
i )− dS(hi,h

−
i ) + α]+ + λLr, (9)

which constrains that the positive SNR distance should

be smaller than the negative SNR distance with a margin

α. In triplet embedding learning, we generate all the valid

triplets and average the loss over the positive ones.
DSML(lifted): For SNR-based lifted loss function, we

deploy the SNR distance dSij as follows:

J =
1

2Ni

∑

(i,j)∈P̂

max(0, Ji,j) + λLr,

Ji,j = max( max
(i,k)∈N̂

α− βdSik, max
(j,l)∈N̂

α− βdSjl) + βdSij ,

(10)

where P̂ and N̂ denote positive pairs and negative pairs,

α denotes margin, and β is a hyper-parameter to ensure the

convergence of loss.

DSML(N-pair): In the original N-pair loss, each tuplet
Ti is composed of {xi, x

+
1 , x

+
2 , · · · , x

+
N}, where xi is the

query for Ti, x
+
i is the positive example, and x+

j (j 6= i)
are the negative examples. The N-pair loss function is con-
structed by similarity rather than distance, and the similarity
is measured by the inner product Sij = hT

i hj , which can-
not be directly replaced by our SNR distance metric. There-
fore, in our DSML(N-pair), we construct a SNR-based sim-
ilarity to adapt our SNR-based metric to N-pair learning
framework. The similarity Sij of hi and hj for DSML(N-
pair) is:

Sij =
1

dSij
2 = SNR

2
ij =

var(hi)
2

var(hi − hj)2
. (11)

Then, the objective function of DSML(N-pair) is:

J =
1

N

N
∑

i=1

log(1 +
∑

j 6=i

exp(Sij+ − Sii+)) + λLr (12)

In summary, the objective functions defined in our DSM-

L are easily to be formulated with the guide of the state-

of-the-art methods in deep metric learning, which implies

that our SNR-based metric have a good generality, and it is

promising to be widely applied in deep embedding learning.

3.3. Deep SNR­based Hashing Learning

Hashing learning methods aim to generate discriminative

binary codes for image samples, where the binary codes of

similar images have short Hamming distances, and the bi-

nary codes of dissimilar images have long Hamming dis-

tances. To indicate the generality of our SNR-based metric,

we deploy our SNR distance metric to deep hashing learn-

ing.

By using SNR-based contrastive loss (8) as the objective

function, we proposed Deep SNR-based Hashing method

(DSNRH). The main difference between the deep metric

learning and the deep hashing learning is that the learned

embeddings need to be quantized to binary features in hash-

ing. Thus, in our DSNRH, after learning the features h,

we use the sign function B = sign(h) to generate binary

codes for Hamming space retrieval, where the binary codes

B is consisted of M -bit binary codes. Similar to the exist-

ing hashing learning methods [14, 35], the similarity labels

are given as: if two images i and j share at least one label,

they are similar, otherwise they are dissimilar.

4. Experiments

We mainly conduct experiments on deep metric learning,

and also compare our DSNRH with some state-of-the-art

deep hashing methods.

4.1. Experiments on Deep Metric Learning

4.1.1 Datasets

We choose the fine-grained CARS196 and CUB200-2011,

and the coarse-grained CIFAR10 [12] as the datasets for our
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Table 1. Results on CARS196 with Alexnet.
Tasks Image Clustering Image Retrieval

score (%) F1 NMI Recall@1 Recall@2

embedding size 16 32 64 16 32 64 16 32 64 16 32 64

contrastive 9.2 10.6 11.0 31.5 34.4 33.3 8.9 14.0 16.3 10.3 16.1 18.4

DSML(cont) 12.9 11.9 11.8 39.9 37.0 36.1 15.1 16.5 18.0 17.5 18.6 201

triplet 19.4 16.9 15.4 50.9 47.9 46.8 24.8 20.6 19.5 28.2 23.5 22.1

DSML(tri) 25.6 33.1 34.4 52.5 56.8 57.4 38.5 46.3 49.1 42.0 49.8 52.4

lifted 27.1 29.0 28.1 53.1 54.4 53.9 37.2 39.1 40.6 41.2 42.9 44.3

DSML(lifted) 30.2 32.1 33.6 54.1 55.6 56.7 35.3 40.3 43.8 38.9 44.0 47.5

N-pair 26.9 29.9 29.5 51.8 53.5 53.6 32.9 36.3 38.3 36.7 39.8 42.1

DSML(N-pair) 30.7 33.1 32.7 54.5 54.4 56.4 37.8 40.4 44.9 39.8 44.5 48.6

Table 2. Results on CUB200-2011 with Alexnet.
Tasks Image Clustering Image Retrieval

score(%) F1 NMI Recall@1 Recall@2

embedding size 16 32 64 16 32 64 16 32 64 16 32 64

contrastive 14.6 18.7 19.3 41.6 46.6 47.4 15.8 25.7 29.7 18.0 28.6 32.7

DSML(cont) 19.6 19.7 22.7 47.5 47.8 50.5 22.2 27.2 33.1 25.3 30.6 36.4

triplet 23.6 22.1 21.7 56.5 55.6 55.3 33.9 32.8 32.6 37.8 36.4 35.6

DSML(tri) 36.1 39.0 40.3 63.0 64.0 65.6 45.7 49.8 51.6 49.3 53.5 54.9

lifted 36.0 36.5 37.2 60.9 61.1 61.4 43.2 44.5 46.8 46.4 47.8 50.4

DSML(lifted) 41.3 43.9 45.8 63.5 64.5 65.4 46.0 48.8 51.0 49.4 51.9 54.4

N-pair 34.7 35.7 37.6 59.6 60.0 61.5 39.9 40.7 43.1 43.3 44.4 46.9

DSML(N-pair) 37.6 38.1 40.5 62.4 61.9 63.1 42.3 46.2 48.5 48.6 49.7 51.9

deep metric learning experiments. We follow the conven-

tional way to split the training and testing data:

(1) The CARS196 dataset [11] contains 16,185 images

of 196 car models. The training set and testing set are com-

posed of 8,144 images and 8,041 images, of 196 models.

(2) The CUB200-2011 dataset [32] includes 11,788 im-

ages of 200 bird species. The training set and testing set

are composed of 5,994 images and 5,794 images, of 200

classes.

(3) The CIFAR10 dataset [12] contains 60,000 32x32

color images of 10 classes. We randomly select 100 im-

ages per class as the testing set, then the rest 59,000 images

as database set. From the database set, we randomly choose

500 images per class as the training set.

The experiment results of CARS196 and CUB200-2011

are reported on the testing set, and the results on CIFAR10

are reported by querying the testing set in the database set.

4.1.2 Implementation Details and Evaluation Metrics

Our method was implemented based on TensorFlow. We

adopt the AlexNet [13] for deep metric learning. In or-

der to generate d-dimensional features hi ∈ R
M , we re-

place the last classifier layer fc8 with an embedding layer

of M hidden units. For training, we fine-tune the layers ex-

cept of the embedding layer from the model pre-trained on

ImageNet and train the embedding layer, all through back-

propagation. We use mini-batch stochastic gradient descent

(SGD) with 0.9 momentum, and fix the mini-batch size of

images as 100, except the relative N-pair methods on CI-

FAR10, which is set to 20 instead. All the input images of

these experiments are resized into the 227 x 227 to fit the

input size of AlexNet.

To evaluate the performance of different deep metric

learning methods, we follow the protocol in [20, 34] to

conduct experiments on both clustering tasks and retrieval

tasks. For the clustering tasks, we make experiment on

CUB200-2011 and CARS196, and use NMI and F1 score

to measure the performance of different methods. NMI is

defined by the ratio of mutual information and the aver-

age entropy of clusters and the entropy of labels. F1 metric

computes the harmonic mean of precision(P ) and recall(R),

and F1 = 2PR
P+R

. For image retrieval tasks, we calculate the

Recall@K for the experiment results on CUB200-2011 and

CARS196, and record the MAP and F1 metric for the ex-

periment results on CIAFR10. Recall@K is computed by

that each query will score 1 if an semantic similar image is

retrieved in K nearest neighbors from test data. MAP is the

mean of the Average Precision (AP), and AP of each query

is computed as AP@T =
∑

T
t=1

P (t)δ(t)∑
T

t′=1
δ(t′)

, where T is the

number of top-returned images, P (t) denotes the precision

of top t retrieved results, and δ(t) = 1 if the t-th retrieved

result is true neighbor of the query, otherwise δ(t) = 0. We
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Figure 3. Recall@K curves on CARS196 and CUB200-2011 at embedding size of 64. Dashed lines denote Euclidean-based methods and

solid lines represent SNR-based methods.

Table 3. Retrieval results on CIFAR10 with AlexNet.
Euclidean Ranking Hamming Ranking

score (%) MAP@59000 F1@5000 MAP@59000 F1@5000

embedding size 16 32 64 16 32 64 16 32 64 16 32 64

contrastive 75.5 73.4 69.3 69.1 67.2 61.4 65.5 66.9 61.8 61.2 62.2 56.9

DSML(cont) 80.0 79.8 79.0 72.9 72.7 72.1 73.7 76.6 76.9 70.0 72.2 71.4

triplet 75.9 77.3 75.8 70.7 71.2 70.3 71.9 73.7 74.3 67.3 70.2 69.8

DSML(tri) 78.4 78.3 77.4 72.4 72.5 71.6 73.4 74.5 75.3 69.9 70.8 70.8

lifted 63.7 54.6 55.5 60.6 52.0 52.0 60.3 52.1 53.9 54.9 50.0 50.8

DSML(lifted) 78.1 76.2 76.7 73.5 71.1 71.8 66.9 74.3 70.7 58.1 70.5 67.1

N-pair 53.5 51.1 39.5 49.5 47.5 37.8 48.4 48.9 38.6 45.9 46.4 37.3

DSML(N-pair) 62.1 64.1 56.6 57.1 58.8 52.1 55.2 62.0 53.6 50.2 57.3 49.6

use MAP@59000 and F1@5000 as evaluation criteria for

CIFAR10, where MAP@59000 means that MAP on the re-

turned top-59000 images, and F1@5000 means F1 scores

on the returned top-5000 images.

4.1.3 Results and Analysis

Table 1 and Table 2 show the performance of deep met-

ric learning methods on CARS196 and CUB200-2011, and

we obtain the results by comparing the Euclidean-based

deep metric learning methods with our DSML under vari-

ous embedding sizes, including 16, 32, 64. We observe that

the proposed SNR-based metric boosts the performance of

state-of-the-art metric learning approaches on all the bench-

mark datasets. The experiment results on CARS196 and

CUB200-2011 datasets show similar tendency: combined

with our DSML, the performance improvements on con-

trastive, triplet, lifted, N-pair loss are all significant.

Figure 3 shows the retrieval results of Recall@K on

CARS196 and CUB200-2011, at the embedding size of 64.

The results show that our DSML obviously outperforms

other corresponding Euclidean-based methods. We can find

that the most prominent curve in Figure 3 is DSML(tri),

which have the highest performance over other methods.

Table 3 shows the comparative results of retrieval tasks

on CIFAR10 dataset with two retrieval strategies: Euclidean

Figure 4. The t-SNE visualization of the features learned by our

DSML(cont) method and the contrastive method with Euclidean

distance on CIFAR-10 dataset

ranking and Hamming ranking. Euclidean ranking is the

general retrieval approach, which computes the Euclidean

distance of real-valued features to generate the rank list.

Hamming ranking is on the basis of the binary features

and computes the Hamming distance. To obtain the binary

codes, in our experiment, we make a quantization on real-

valued embedding by sign function. As shown the Table 3,

our DSML method still has superior results than the relat-

ed Euclidean distance based metric learning methods. The

unsatisfactory results on lifted loss and N-pair loss indicate

that these losses are not suitable for the CIFAR10 dataset

with a large number of images but only ten classes.

Figure 4 shows the t-SNE visualizations [19] of the fea-
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Table 4. MAP@50000 of Hamming Ranking on CIFAR10 and NUS-WIDE with CNN-F. DPSH* denotes re-running the code provided by

the authors of DPSH.

method
CIFAR10

method
NUS-WIDE

16 bits 24 bits 32 bits 48 bits 16 bits 24 bits 32 bits 48 bits

DSRH [44] 0.608 0.611 0.617 0.618 DSRH [44] 0.609 0.618 0.621 0.631

DSCH [43] 0.609 0.613 0.617 0.620 DSCH [43] 0.592 0.597 0.611 0.609

DRSCH [43] 0.615 0.622 0.629 0.631 DRSCH [43] 0.618 0.622 0.623 0.628

DTSH [35] 0.915 0.923 0.925 0.926 DTSH [35] 0.756 0.776 0.785 0.799

DPSH* [14] 0.903 0.885 0.915 0.911 DPSH [14] 0.715 0.722 0.736 0.741

DSNRH(Ours) 0.925 0.932 0.934 0.940 DSNRH(Ours) 0.830 0.840 0.852 0.862

tures learned by DSML(cont) and contrastive on CIFAR-10.

The result indicates that the features learned by our DSM-

L(cont) exhibit more clear discriminative structures, while

the original contrastive loss presents relative vague struc-

tures.

The encouraging performances of our DSML is because

our SNR distance metric has more power to enlarge the

inter-class distances and reduce the intra-class distances

than the traditional Euclidean distance metric. Besides, our

SNR distance metric can also preserve correlation informa-

tion in image pairs to improve the performance in learned

embeddings.

4.2. Experiments on Hashing Learning

4.2.1 Datasets

We evaluate the performance on two datasets: CIFAR10

and NUS-WIDE, and the results are reported by querying

the testing set in the database set.

(1) For CIFAR10 [12], we randomly select 1000 images

per class as the test query set, and the rest images are select-

ed as the training set and database set.

(2) NUS-WIDE [4] is consisted of 269,648 images asso-

ciated with 81 tags. Similar to DPSH [14] and DTSH [35],

we utilize 21 most frequent concepts to select 195,834 im-

ages as experimental dataset. We randomly sample 100 im-

ages in each class (2,100 images in total) as the test query

images, and the remaining images are used as the training

set and database set.

4.2.2 Implementation Details and Evaluation Metrics

Similar to DPSH [14] and DTSH [35], we deploy the CNN-

F network architecture in our DSNRH. The input images of

our experiments are resized into the 224 x 224. We also

use mini-batch stochastic gradient descent (SGD) with 0.9

momentum, and give the mini-batch size of images as 100.

We report MAP@50000 results based on the top 50,000

returned neighbors, at the binary codes length of 16, 24,

32, and 48 bits. In order to have a fair comparison, most

of the existing experiment results are directly reported from

previous works.

4.2.3 Results and Analysis

We compare the retrieval performance of our DSNRH

with five deep hashing methods, including DPSH [14],

DTSH [35], DRSCH [43], DSCH [43], DSRH [44]. The

MAP results of our experiment are presented in Table 4.

We can find that our DSNRH substantially outperforms all

the other methods. The performance of some deep hashing

methods, including DSRH, DSCH and DRSCH, are infe-

rior to our method, and their average MAP results are on-

ly above 60% in two datasets. DPSH and DTSH are also

based on the CNN-F network architecture, but they have

lower precision. The outstand performance of our DSNRH

demonstrates that our SNR-based metric can also improve

the robustness of hashing code learning.

5. Conclusion

In this paper, we propose a robust distance metric based

on Signal-to-Noise Ratio (SNR) as similarity measurement

for deep metric learning. By replacing the Euclidean dis-

tance measurement with our SNR distance metric, we con-

struct deep SNR-based metric learning, which can gener-

ate more discriminative features than the Euclidean-based

deep metric learning. In the extensive experiments for im-

age clustering and retrieval tasks, our DSML has shown its

superiority to the state-of-the-art deep metric learning meth-

ods on three benchmarks. As an extension of our SNR-

based metric, we also propose a deep SNR-based hashing

method, and the experiments on two benchmarks show the

outstanding performance of DSNRH. Based on the gener-

ality of our SNR-based similarity metric, we believe our

SNR-based metric is promising to be further applied to

more deep learning models.
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