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Abstract

The success of deep neural networks often relies on a

large amount of labeled examples, which can be difficult to

obtain in many real scenarios. To address this challenge,

unsupervised methods are strongly preferred for training

neural networks without using any labeled data. In this

paper, we present a novel paradigm of unsupervised repre-

sentation learning by Auto-Encoding Transformation (AET)

in contrast to the conventional Auto-Encoding Data (AED)

approach. Given a randomly sampled transformation, AET

seeks to predict it merely from the encoded features as ac-

curately as possible at the output end. The idea is the fol-

lowing: as long as the unsupervised features successful-

ly encode the essential information about the visual struc-

tures of original and transformed images, the transforma-

tion can be well predicted. We will show that this AET

paradigm allows us to instantiate a large variety of trans-

formations, from parameterized, to non-parameterized and

GAN-induced ones. Our experiments show that AET great-

ly improves over existing unsupervised approaches, set-

ting new state-of-the-art performances being greatly clos-

er to the upper bounds by their fully supervised counter-

parts on CIFAR-10, ImageNet and Places datasets. Our

source codes are available at https://github.com/

maple-research-lab/AET.

1. Introduction

The great success in applying deep neural networks to

image classification, object detection and semantic segmen-

tation has inspired us to explore their full ability in a wide

variety of computer vision tasks. Unfortunately, training

∗The work was done while L. Zhang was interning at Huawei Cloud.
†Corresponding author: G.-J. Qi. Email: guojunq@gmail.com

(a) Auto-Encoding Data (AED)

(b) Auto-Encoding Transformation (AET)

Figure 1: An illustrative comparison between AED and

AET, where AET attempts to estimate the input transfor-

mation rather than the data at the output end. This forces

the encoder network E to extract the features that contain

the sufficient information about visual structures to decode

the input transformation.

deep neural networks often requires a large amount of la-

beled data to learn adequate feature representations for visu-

al understanding tasks. This greatly limits the applicability

of deep neural networks when only a limited amount of la-

beled data is available for training the networks. Therefore,

there has been an increasing interest in literature to learn

deep feature representations in an unsupervised fashion to

solve emerging visual understanding tasks with insufficient

labeled data.

Among the efforts on unsupervised learning methods,

the most representative ones are Auto-Encoders and Gen-

erative Adversarial Nets (GANs) [11]. The former trains an

encoder network to output feature representations with suf-
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ficient information to reconstruct input images by a paired

decoder. Many variants of auto-encoders [12, 15] have been

proposed in literature but all of them stick to essentially the

same idea of reconstructing input data at the output end, and

thus we classify them into the Auto-Encoding Data (AED)

paradigm illustrated in Figure 1(a).

On the other hand, GANs learn the feature representa-

tion in an unsupervised fashion by generating images from

input noises with a pair of adversarially trained generator

and discriminator. The input noises into the generator can

be viewed as the feature representations of its output, s-

ince they contain necessary information to produce the cor-

responding images through the generator. To obtain the

“noise” feature representation for each image, an encoder

can be trained to form an auto-encoder architecture with the

generator as the decoder. In this way, given an input image,

the encoder can directly output its noise representation pro-

ducing the original image through the generator [6, 8]. This

combines the strength of both AED and GAN models. Re-

cently, these models become a popular alternative to auto-

encoders in many unsupervised and semi-supervised tasks,

as they can generate the distribution of photo-realistic im-

ages as a whole so that better feature representations can be

derived from the trained generator.

Besides auto-encoders and GANs, various paradigms of

self-supervised learning methods exist without using man-

ually labeled data. These methods create self-supervised

objectives to train the networks. For example, Doersch et

al. [5] propose to train neural networks by predicting the

relative positions of two randomly sampled patches. Mehdi

and Favaro [18] report to train a convolutional neural net-

work by solving Jigsaw puzzles. Image colorization has

also been used as a self-supervised task to train convolu-

tional networks in literature [30, 17]. Instead, Dosovitskiy

et al. [7] train neural networks by discriminating among

a set of surrogate classes artificially formed by applying

various transformations to image patches, while Gidaris et

al. [10] attempt to classify image rotations of four discrete

angles. These approaches explore supervisory signals at

various levels of visual structures to train networks without

manually labeling data. Unsupervised features have also

been extracted from videos by estimating the self-motion of

moving objects between consecutive frames [1].

In contrast, we are motivated to learn unsupervised

feature representations by Auto-Encoding Transformation-

s (AET) rather than the data themselves. Specifically, by

sampling some operators to transform images, we seek to

train auto-encoders that can directly reconstruct these op-

erators from the learned feature representations between o-

riginal and transformed images. We believe as long as the

trained features are sufficiently informative, we can decode

the transformations from the features that well encode vi-

sual structures of images. As compared with the conven-

tional paradigm of Auto-Encoding Data (AED) in Figure 1,

AET focuses on exploring dynamics of feature represen-

tations under different transformations, thereby revealing

not only static visual structures but also how they would

change by applying different transformations. Moreover,

there is no restriction on the form of transformations ap-

plicable in the proposed AET framework. This allows us

to flexibly explore a large variety of transformations, rang-

ing from simple image warping to any parametric and non-

parametric transformations. We will demonstrate the AET

representations outperform the other unsupervised model-

s in experiments, greatly pushing the state-of-the-art unsu-

pervised method much closer to the upper bound set by the

fully supervised counterparts.

The remainder of the paper is organized as follows. We

first review the related work in Section 2, and then formally

present the proposed AET model in Section 3. We conduct

experiments in Section 4 to compare its performances with

the other state-of-the-art unsupervised models. Finally, we

summarize conclusions in Section 5.

2. Related Work

Auto-Encoders. The use of auto-encoder architecture in

learning representations in an unsupervised fashion has

been extensively studied in literature [13, 14, 27]. These

existing auto-encoders are all based on reconstructing the

input data at the output end through a pair of encoder and

decoder. The encoder acts as an extractor of features usu-

ally compactly representing the most essential information

about input data, while a decoder is jointly trained to recov-

er the input data upon the extracted features. The idea is that

a good feature representation should contain sufficient in-

formation to reconstruct the input data. A wide spectrum of

auto-encoders have been proposed following this paradigm

of auto-encoding data (AED). For example, the variation-

al auto-encoder [15] explicitly introduces probabilistic as-

sumption about the distribution of features extracted from

data. Denoising auto-encoder [27] aims to learn more ro-

bust representation by reconstructing original inputs from

noise-corrupted inputs. Contrastive Auto-Encoder [26] pe-

nalizes abrupt changes of representations around given da-

ta, thus encouraging representation invariance to small per-

turbation on input data. Zhang et al. [29] present a cross-

channel auto-encoder by reconstructing a subset of data

channels from another subset with the cross-channel fea-

tures being concatenated as data representation. Hinton et

al. [12] propose a transforming auto-encoder in the context

of capsule nets, which is still trained in the AED fashion by

minimizing the discrepancy between the reconstructed and

target images. Conceptually, this differs from the proposed

AET that aims to learn unsupervised features by directly

minimizing the input and output transformations in an end-

to-end auto-encoder architecture.
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Generative Adversarial Nets. Besides the auto-encoders,

Generative Adversarial Nets (GANs) become popular for

training network representations of data in an unsupervised

fashion. Unlike the auto-encoders, GANs attempt to direct-

ly generate data from noises drawn from a random distri-

bution. By viewing the sampled noises as the coordinates

over the manifold of real data, one can use them as the fea-

tures to represent data. For this purpose, one usually needs

to train a data encoder to find the noise that can generate

the input images through the GAN generator. This can be

implemented by jointly training a pair of mutually inverse

generator and encoder [6, 8]. A prominent characteristic of

GANs that make them different from auto-encoders is they

do not rely on one-to-one reconstruction of input data at

the output end. Instead, they focus on discovering and gen-

erating the entire distribution of data over the underlying

manifold. Recent progress has shown the promising gener-

alization ability of regularized GANs in generating unseen

data based on the Lipschitz assumption on the real data dis-

tribution [23, 2], and this shows great potential of GANs in

providing expressive representation of images [6, 8, 9].

Self-Supervised Representation Learning. In addition

to auto-encoders and GANs, other unsupervised learning

methods explore various self-supervised signals to train

deep neural networks. These self-supervised signals can

be directly derived from data themselves without having

to be manually labeled. For example, Doersch et al. [5]

use the relative positions of two randomly sampled patch-

es from an image as self-supervised information to train the

model. Mehdi and Favaro [18] propose to train a convolu-

tional neural network by solving Jigsaw puzzles. Noroozi

et al. [19] learn counting features that satisfy equivalence

relations between downsampled and tiled images, and Gi-

daris et al. [10] train neural networks by classifying image

rotations in a discrete set. Dosovitskiy et al. [7] train C-

NNs by classifying a set of surrogate classes, each of which

is formed by applying various transformations to an indi-

vidual image. However, the resultant features could over-

discriminate visually similar images as they always belong

to different surrogate classes, and the training cost is much

more expensive as every training example results in an in-

dividual surrogate class. The idea of self-supervised learn-

ing has been employed to train feature representations for

videos through the self-motion of moving objects [1]. In

summary, this type of approaches train networks using self-

supervised objectives instead of manually labeled data.

3. AET: The Proposed Approach

We elaborate on the proposed paradigm of auto-

encoding transformations (AET) in this section. First, we

will formally present the formulation of AET in Section 3.1.

Then we will instantiate AET with different genres of trans-

formations in Section 3.2.

3.1. The Formulation

Suppose that we sample a transformation t from a dis-

tribution T (e.g., image warping, projective transformation

and even GAN-induced transformation, c.f. Section 3.2 for

more details). It is applied to an image x drawn from a data

distribution X , resulting in the transformed version t(x) of

x.

Our goal is to learn an encoder E : x 7→ E(x),
which aims to extract the representation E(x) for a sam-

ple x. Meanwhile, we wish to learn a decoder D :
[E(x), E(t(x))] 7→ t̂, which gives an estimate t̂ of input

transformation by decoding from the encoded representa-

tions of original and transformed images. Since the predic-

tion on the input transformation is made through the encod-

ed features rather than the original and transformed images,

it forces the model to extract expressive features as a proxy

to represent images.

The learning problem of Auto-Encoding Transforma-

tions (AET) now boils down to jointly training the feature

encoder E and the transformation decoder D. To this end,

let us choose a loss function ℓ(t, t̂) that quantifies the dif-

ference between a transformation t and its estimate t̂. Then

the AET can be solved by minimizing this loss as

min
E,D

E
t∼T ,x∼X

ℓ(t, t̂)

where the transformation estimate t̂ is a function of the en-

coder E and the decoder D such that

t̂ = D [E(x), E(t(x))] ,

and the expectation E is taken over the sampled transforma-

tions and data. Like in training other deep neural networks,

the network parameters of E and D are jointly updated over

mini-batches by back-propagating the gradient of the loss ℓ.

3.2. The AET Family

A large variety of transformations can be easily incorpo-

rated into the AET formulation. Here we discuss three gen-

res, parameterized, GAN-induced and non-parameterized

transformations, to instantiate the AET models.

Parameterized Transformations. Suppose that we have a

family of transformations T = {tθ|θ ∼ Θ} with their pa-

rameters θ sampled from a distribution Θ. This equivalent-

ly defines a distribution of parameterized transformations,

where each transformation can be represented by its param-

eter and the loss ℓ(tθ, tθ̂) between transformations can be

captured by the difference in terms of their parameters. For

example, many transformations such as affine and projec-

tive transformations can be represented by a parameterized

matrix M(θ) ∈ R
3×3 between homogeneous coordinates

of images before and after transformations. Such a matrix

captures the change of geometric structures caused by a giv-

en transformation, and thus it is straightforward to define
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ℓ(tθ, tθ̂) =
1

2
‖M(θ) − M(θ̂)‖2

2
to model the difference

between the target and the estimated transformations. In

experiments, we will compare different instances of param-

eterized transformations in this category and demonstrate

they can yield competitive performances on training AET.

GAN-Induced Transformations. One can choose other

forms of transformations without explicit geometric impli-

cations like the affine and the projective transformations.

Let us consider a GAN generator that transforms an input

over the manifold of real images. For example, in [24], a

local generator G(x, z) is learned with a sampled random

noise z that parameterizes the underlying transformation

around a given image x. This effectively defines a GAN-

induced transformation such that tz(x) = G(x, z) with

the transformation parameter z. One can directly choose

the loss ℓ(tz, tẑ) =
1

2
‖z − ẑ‖2

2
between noise parameter-

s, and train a network D to decode the parameter ẑ from

the features E(x) and E(tz(x)) by the encoder network

E. Compared with the classical transformations that change

low-level appearance and geometric structures in images,

the GAN-induced transformations can change high-level se-

mantics in images. For example, the GANs have demon-

strated their ability of manipulating attributes such as ages,

hairs, genders and wearing glasses in facial images as well

as changing the furniture layout in bedroom images [25].

This enables AET to explore a richer family of transforma-

tions to learn more expressive representations.

Non-Parametric Transformations. Even if a transforma-

tion t ∈ T is hard to parameterize, we can still define the

loss ℓ(t, t̂) by measuring the average difference between the

transformations of randomly sampled images. Formally,

ℓ(t, t̂) = E
x∼X

dist(t(x), t̂(x)) (1)

where dist(·, ·) is a distance between two transformed im-

ages, and the expectation is taken over random samples. For

an input non-parametric transformation t, we also need a

decoder network that outputs a transformation t̂ to estimate

the input transformation. This can be done by choosing

a parameterized transformation t
θ̂

as t̂ to estimate t. Al-

though the non-parametric t may not fall in the space of pa-

rameterized transformations, such an approximation should

be enough for unsupervised learning since our ultimate goal

is not to obtain an accurate estimate of input transformation;

instead, we aim at learning a good feature representation to

give us the best estimate that can be achieved in the param-

eterized transformation space.

Note that parameterized transformations can also be

plugged into Eq. (1) to train the corresponding AET by min-

imizing this loss function. However, in experiments, we

find the performance is not as good as the AET trained with

the parameter-based loss. This is probably caused by the

Figure 2: An illustration of the network architectures for

training and evaluating AET on the CIFAR-10 dataset.

fact that the loss (1) cannot accurately reflect the actual dif-

ference between transformations unless a sufficiently large

number of images are sampled. Thus, we suggest using the

parameter-based loss for the AET with parameterized trans-

formations.

We have shown that a wide spectrum of transformations

can be adopted in training AET. In this paper, we will focus

on the parameterized transformations as they do not involve

training extra models like GAN-induced transformations, or

require choosing auxiliary transformations to approximate

non-parametric forms. This allows us to make a straightfor-

ward and fair comparison with the unsupervised methods

in literature as shown in the experiments. Moreover, the

GAN-induced transformations greatly rely on the quality

of transformed images, but existing GAN models are stil-

l unable to generate high-quality images with fine-grained

details at a high resolution. Thus, we leave it in future to s-

tudy the GAN-induced and non-parametric transformations

for training the AET representations.

4. Experiments

In this section, we evaluate the proposed AET model on

the CIFAR-10, ImageNet and Places datasets by comparing

it against different unsupervised methods. Unsupervised

learning is usually evaluated indirectly based on the clas-

sification performance by using the learned representations.

For the sake of fair comparison, we follow the test protocols

widely adopted in literature.

4.1. CIFAR­10 Experiments

First, we evaluate the AET model on the CIFAR-10

dataset. We consider two different transformations – affine

and projective transformations – to train AET, and name

the resultant models AET-affine and AET-project for brevi-

ty, respectively.
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4.1.1 Architecture and Implementation Details

To make a fair and direct comparison with existing unsu-

pervised models, we adopt the Network-In-Network (NIN)

architecture that has shown competitive performance previ-

ously on the CIFAR-10 dataset for the unsupervised learn-

ing task [10]. As illustrated in the top of Figure 2, the NIN

consists of four convolutional blocks, each of which con-

tains three convolutional layers. AET has two NIN branch-

es, each taking the original and the transformed images as

its input, respectively. The output features of the forth block

of two branches are concatenated and average-pooled to for-

m a 384-d feature vector. Then an output layer follows to

predict the parameters of input transformation. The two

branches share the same network weights, and are used as

the encoder network producing the feature representations

for input images.

The AET networks are trained by SGD with a batch size

of 512 original images and their transformed counterparts.

Momentum and weight decay are set to 0.9 and 5 × 10−4.

The learning rate is initialized to 0.1 and scheduled to drop

by a factor of 5 after 240, 480, 640, 800 and 1, 000 epochs.

The model is trained for 1, 500 epochs in total. For AET-

affine, the affine transformation is a composition of a ran-

dom rotation with [−180◦, 180◦], a random translation by

±0.2 of image height and width in both vertical and hori-

zontal directions, and a random scaling factor of [0.7, 1.3],
along with a random shearing of [−30◦, 30◦] degree. For

the AET-projective, the projective transformation is formed

by randomly translating four corners of an image in both

horizontal and vertical directions by ±0.125 of its height

and width, after it is randomly scaled by [0.8, 1.2] and ro-

tated by 0◦, 90◦, 180◦, or 270◦. We compare the results for

both models below, and demonstrate both outperform the

other existing models and AET-project performs better than

AET-affine.

4.1.2 Evaluation Protocol

To evaluate the quality of the representation by an unsuper-

vised model, a classifier is usually trained upon the learned

features. Specifically, in our experiments on CIFAR-10, we

follow the existing evaluation protocols [21, 7, 25, 20, 10]

by building a classifier on top of the second convolutional

block. See the bottom of Figure 2, where the first two blocks

are frozen while the classifier on top of them is trained with

labeled examples.

We evaluate the classification results by using the AET

features with both model-based and model-free classifiers.

For the model-based classifier, we train a non-linear classi-

fier with three Fully-Connected (FC) layers – each of the t-

wo hidden layers has 200 neurons with batch-normalization

and ReLU activations, and the output layer is a soft-max

layer with ten neurons each for an image class. Alternative-

ly, we also test a convolutional classifier upon the unsuper-

Table 1: Comparison between unsupervised feature learn-

ing methods on CIFAR-10. The fully supervised NIN and

the random Init. + conv have the same three-block NIN ar-

chitecture, but the first is fully supervised while the second

is trained on top of the first two blocks that are randomly

initialized and stay frozen during training.

Method Error rate

Supervised NIN (Lower Bound) 7.20

Random Init. + conv (Upper Bound) 27.50

Roto-Scat + SVM [21] 17.7

ExamplarCNN [7] 15.7

DCGAN [25] 17.2

Scattering [20] 15.3

RotNet + FC [10] 10.94

RotNet + conv [10] 8.84

(Ours) AET-affine + FC 9.77

(Ours) AET-affine + conv 8.05

(Ours) AET-project + FC 9.41

(Ours) AET-project + conv 7.82

Figure 3: The comparison of the KNN error rates by differ-

ent models with varying numbers K of nearest neighbors

on CIFAR-10.

vised features by adding a third NIN block whose output

feature map is averaged pooled and connected to a linear

soft-max classifier.

Moreover, we also test the model-free KNN classifier

based on the averaged-pooled output features from the sec-

ond convolutional block. The KNN classifier has an advan-

tage without need to train a model with labeled examples.

This makes a more direct evaluation on the quality of unsu-

pervised feature representation at the evaluation stage.

4.1.3 Results

In Table 1, we compare the AET models with both fully

supervised and unsupervised methods on CIFAR-10. First,

we note that the unsupervised AET-project with the con-

volutional classifier almost achieves the same error rate as

its fully supervised NIN counterpart with four convolution-

al blocks (7.82% vs. 7.2%). This is a remarkable result

demonstrating AET is capable of training unsupervised fea-
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Table 2: Comparison of RotNet vs. AETs on CIFAR-10 with different classifiers on top of learned representations for

evaluation. The RotNet is chosen as the baseline since it has the exactly same architecture for the unsupervised training.

Here n-FC denotes a n-layer fully connected (FC) classifier, and the KNN is obtained with K = 10 nearest neighbors. The

numbers in parentheses are the relative reduction in error rates w.r.t. the RotNet baseline.

KNN 1-FC 2-FC 3-FC conv

RotNet baseline [10] 24.97 18.21 11.34 10.94 8.84

AET-affine 23.07 (↓7.6%) 17.16 (↓ 5.8%) 9.77 (↓ 13.8%) 10.16 (↓ 7.1%) 8.05(↓ 8.9%)

AET-project 22.39 (↓ 10.3%) 16.65 (↓ 8.6%) 9.41 (↓ 17.0%) 9.92 (↓ 9.3%) 7.82(↓ 11.5%)

tures with a much narrower gap of performance to its super-

vised counterpart on CIFAR-10.

Moreover, the AETs outperform the other unsupervised

methods in Table 1. For example, ExamplarCNN also ap-

plies various transformations to images, including rotation-

s, translations, scaling and even more such as manipulating

contrasts and colors. Then it trains unsupervised CNNs by

classifying the resultant surrogate classes each containing

all transformed versions of an individual images. Compared

with ExamplarCNN [7], AET still has a significant lead in

error rate, implying it can explore the image transformations

more effectively in training unsupervised networks.

It is worth pointing out on CIFAR-10, the other reported

methods [21, 7, 25, 20, 10] are usually based on different

unsupervised networks and supervised classifiers for eval-

uation, making it difficult to make a direct comparison be-

tween them. The results still suggest that the state-of-the-art

performances can be reached by AETs, as their error rates

are very close to the pre-assumptive lower bound set by the

fully supervised counterpart.

Indeed, one can choose the RotNet in Table 1 as the base-

line for comparison as it is trained with the same network

and classifier as the AETs. Thus we can make a fair com-

parison directly. From the results, AETs successfully beat

the RotNet with both fully connected (FC) and convolution-

al classifiers on top of the learned representations. We also

compare AETs with this baseline when they are trained with

the KNN classifier and varying FC layers in Table 2. The

results show that AET-project can consistently achieve the

smallest errors no matter which classifiers are used. In Fig-

ure 3, we also compare the KNN results with varying num-

ber of nearest neighbors. Again, AET-project performs the

best without involving any labeled examples. The model-

free KNN results suggest the AET model has an advantage

when no labels are available in training classifiers upon the

unsupervised features.

For the following ImageNet experiments, many existing

methods have been compared in literature with the same

unsupervised AlexNet architecture as well as the classifiers

upon it for the evaluation. We will make a fair comparison

directly, and the results show that AET still greatly outper-

forms the other unsupervised methods.

Table 3: Top-1 accuracy with non-linear layers on Ima-

geNet. AlexNet is used as backbone to train the unsu-

pervised models. After unsupervised features are learned,

nonlinear classifiers are trained on top of Conv4 and Con-

v5 layers with labeled examples to compare their perfor-

mances. We also compare with the fully supervised mod-

els and random models that give upper and lower bounded

performances. For a fair comparison, only a single crop is

applied in AET and no dropout or local response normal-

ization is applied during the testing.

Method Conv4 Conv5

ImageNet Labels [3](Upper Bound) 59.7 59.7

Random [19] (Lower Bound) 27.1 12.0

Tracking [28] 38.8 29.8

Context [5] 45.6 30.4

Colorization [30] 40.7 35.2

Jigsaw Puzzles [18] 45.3 34.6

BiGAN [6] 41.9 32.2

NAT [3] - 36.0

DeepCluster [4] - 44.0

RotNet [10] 50.0 43.8

(Ours) AET-project 53.2 47.0

4.2. ImageNet Experiments

We further evaluate the performance by AET on the Im-

ageNet dataset. The AlexNet is used as the backbone to

learn the unsupervised features. As shown by the results on

CIFAR-10, the projective transformation has better perfor-

mance on training the AET model, and thus we report the

AET-project results here.

Architectures and Training Details. Two AlexNet

branches with shared parameters are created with original

and transformed images as inputs respectively to train un-

supervised AET-project. The 4, 096-d output features from

the second last fully connected layer in two branches are

concatenated and fed into the output layer producing eight

projective transformation parameters. We still use SGD to

train the network, with a batch size of 768 images and their

corresponding transformed version, a momentum of 0.9, a

weight decay of 5× 10−4. The initial learning rate is set to
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Table 4: Top-1 accuracy with linear layers on ImageNet. AlexNet is used as backbone to train the unsupervised models under

comparison. A 1, 000-way linear classifier is trained upon various convolutional layers of feature maps that are spatially

resized to have about 9, 000 elements. Fully supervised and random models are also reported to show the upper and the lower

bounds of unsupervised model performances. Only a single crop is used and no dropout or local response normalization is

used during testing for the AET, except the models denoted with * where ten crops are applied to compare results.

Method Conv1 Conv2 Conv3 Conv4 Conv5

ImageNet Labels (Upper Bound) [10] 19.3 36.3 44.2 48.3 50.5

Random (Lower Bound)[10] 11.6 17.1 16.9 16.3 14.1

Random rescaled [16](Lower Bound) 17.5 23.0 24.5 23.2 20.6

Context [5] 16.2 23.3 30.2 31.7 29.6

Context Encoders [22] 14.1 20.7 21.0 19.8 15.5

Colorization[30] 12.5 24.5 30.4 31.5 30.3

Jigsaw Puzzles [18] 18.2 28.8 34.0 33.9 27.1

BiGAN [6] 17.7 24.5 31.0 29.9 28.0

Split-Brain [29] 17.7 29.3 35.4 35.2 32.8

Counting [19] 18.0 30.6 34.3 32.5 25.7

RotNet [10] 18.8 31.7 38.7 38.2 36.5

(Ours) AET-project 19.2 32.8 40.6 39.7 37.7

DeepCluster* [4] 13.4 32.3 41.0 39.6 38.2

(Ours) AET-project* 19.3 35.4 44.0 43.6 42.4

0.01, and it is dropped by a factor of 10 at epoch 100 and

150. AET is trained for 200 epochs in total. Finally, the

projective transformations applied are randomly sampled in

the same fashion as on CIFAR-10.

Results. First we report the Top-1 accuracies of compared

methods in Table 3 on ImageNet by following the evalua-

tion protocol in [18]. Two settings are adopted for evalua-

tion – Conv4 and Conv5 denote to train the remaining part

of AlexNet on top of Conv4 and Conv5 with the labeled da-

ta, while all the bottom convolutional layers up to Conv4

and Conv5 are frozen after they are trained in an unsuper-

vised fashion. For example, in the Conv4 setting, Conv5

and three fully connected layers are trained on the labeled

examples, including the last 1000-way output layer. From

the results, in both settings, the AET model successfully

beats the other compared unsupervised models. In partic-

ular, among the compared models is the BiGAN [6] that

trains a GAN-based unsupervised model, and learns a data-

based auto-encoder as well to map an image to an unsuper-

vised representation. Thus, it can be seen as combing the

strengths of both GAN and AED models. The results show

AET outperforms BiGAN by a significant lead, suggesting

its advantage over the GAN and AED paradigms at least in

this experiment setting.

We also compare with the fully supervised models that

give the upper bounded performance by training the entire

AlexNet with all labeled data. The classifiers of random

models are trained on top of Conv4 and Conv5 with ran-

domly sampled weights, and they set up the lower bounded

performance. From the comparison, the AET models great-

ly narrow the performance gap to the upper bound – the gap

to the upper bound Top-1 accuracy has been decreased from

9.7% and 15.7% by RotNet and DeepCluster on Conv4 and

Conv5, respectively, to 6.5% and 12.7% by AET, which is

relatively narrowed by 33% and 19%, respectively.

Moreover, we also follow the testing protocol adopted in

[29] to compare the models by training a 1, 000-way linear

classifier on top of different numbers of convolutional layers

in Table 4. Again, AET obtains the best accuracy among all

the compared unsupervised models.

4.3. Places Experiments

We also conduct experiments on the Places dataset. As

shown in Table 5, we evaluate unsupervised models that are

pretrained on the ImageNet dataset. Then a single-layer

logistic regression classifier is trained on top of differen-

t layers of feature maps with Places labels. Thus, we as-

sess the generalizability of unsupervised features from one

dataset to another. Our models are still based on AlexNet

variants like those used in the ImageNet experiments. We

also compare with the fully supervised models trained with

the Places labels and ImageNet labels,as well as the random

networks. The results show the AET models outperform the

other unsupervised models in most of cases, except on Con-

v1 and Conv2, Counting [19] performs slightly better.

4.4. Analysis of Predicated Transformations

Although our ultimate goal is to learn good representa-

tions of images, it is insightful to look into the accuracy of

predicting transformations and its relation with the super-
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Table 5: Top-1 accuracy on the Places dataset with linear layers. A 205-way logistic regression classifier is trained on top

of various layers of feature maps that are spatially resized to have about 9, 000 elements. All unsupervised features are

pre-trained on the ImageNet dataset, which are frozen when training the logistic regression layer with Places labels. We also

compare them with fully-supervised networks trained with Places Labels and ImageNet labels, along with random models.

The highest accuracy values are in bold and the second highest accuracy values are underlined.

Method Conv1 Conv2 Conv3 Conv4 Conv5

Places labels [31] 22.1 35.1 40.2 43.3 44.6

ImageNet labels 22.7 34.8 38.4 39.4 38.7

Random 15.7 20.3 19.8 19.1 17.5

Random rescaled [16] 21.4 26.2 27.1 26.1 24.0

Context [5] 19.7 26.7 31.9 32.7 30.9

Context Encoders [22] 18.2 23.2 23.4 21.9 18.4

Colorization[30] 16.0 25.7 29.6 30.3 29.7

Jigsaw Puzzles [18] 23.0 31.9 35.0 34.2 29.3

BiGAN [6] 22.0 28.7 31.8 31.3 29.7

Split-Brain [29] 21.3 30.7 34.0 34.1 32.5

Counting [19] 23.3 33.9 36.3 34.7 29.6

RotNet [10] 21.5 31.0 35.1 34.6 33.7

(Ours) AET-project 22.1 32.9 37.1 36.2 34.7

(a) CIFAR-10 (b) ImageNet

Figure 4: Error rate(top-1 accuracy) vs. AET loss over e-

pochs on the CIFAR-10 and ImageNet datasets.

vised classification performance. As illustrated in Figure 4,

the trend of transformation prediction loss (i.e. the AET loss

being minimized to train the model) is well aligned with that

of classification error and Top-1 accuracy on CIFAR-10 and

ImageNet. This suggests that better prediction of transfor-

mations is a good surrogate of better classification result by

using the learned features. This justifies our choice of AET

to supervise the learning of feature representations.

In Figure 5, we also compare some examples of orig-

inal images, along with the transformed images at the in-

put and the output ends of the AET model. These exam-

ples show how well the model can decode the transforma-

tions from the encoded image features, thereby delivering

unsupervised representations that offer competitive perfor-

mances on classifying images in our experiments.

5. Conclusions
In this paper, we present a novel Auto-Encoding Trans-

formation (AET) paradigm for unsupervised training of

Figure 5: Some examples of original images (top), along

with the counterparts of input (middle) and predicted (bot-

tom) transformations by the AET model.

neural networks in contrast to the conventional Auto-

Encoding Data (AED) approach. By estimating random-

ly sampled transformations at output end, AET forces the

encoder to learn good representations so that they contain

sufficient information about visual structures of both the

original and transformed images. We demonstrate that a

wide variety of transformations can be easily incorporated

into this framework and the experiment results demonstrate

substantial improvements over the state-of-the-art perfor-

mances, significantly narrowing the gap with the fully su-

pervised counterparts in literature.
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