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Abstract

A dominant paradigm for learning-based approaches in

computer vision is training generic models, such as ResNet

for image recognition, or I3D for video understanding, on

large datasets and allowing them to discover the optimal

representation for the problem at hand. While this is an ob-

viously attractive approach, it is not applicable in all sce-

narios. We claim that action detection is one such challeng-

ing problem - the models that need to be trained are large,

and the labeled data is expensive to obtain. To address

this limitation, we propose to incorporate domain knowl-

edge into the structure of the model to simplify optimization.

In particular, we augment a standard I3D network with a

tracking module to aggregate long term motion patterns,

and use a graph convolutional network to reason about in-

teractions between actors and objects. Evaluated on the

challenging AVA dataset, the proposed approach improves

over the I3D baseline by 5.5% mAP and over the state-of-

the-art by 4.8% mAP.

1. Introduction

Consider the video sequence from the AVA dataset [15]

shown in Figure 1. It shows a person getting up and then

receiving a letter from another person, who is seated behind

a table. Out of the 2359296 pixels in the 36 frames of this

clip, what information is actually important for recognizing

and localizing this action? Key cues include the location

of the actor, his motion, and his interactions with the other

actor and the letter. The rest of the video content, such as

the color of the walls or the lamp on the table are irrelevant

and should be marginalized over. We use these intuitive

observations to design a new method for action detection.

State-of-the-art action detection approaches put a lot of

emphasis on actor localization [15, 21, 24, 48], but other

cues are largely ignored. For instance, Gu et al. [15] detect

humans and model their actions with an I3D [4] representa-

tion that is capable of capturing short-term motion patterns.

This allows them to achieve a significant improvement on

the challenging AVA dataset, but the performance on activi-

ties with large temporal extent remains poor. In our method,

Video	Sequence

Figure 1. For action detection, it is critical to capture both the long-

term temporal information and spatial relationships between actors

and objects. We propose to incorporate this domain knowledge

into the architecture of deep learning models for action detection.

we aggregate local I3D features over actor tracks, which re-

sults in a significant gain in performance.

A few recent approaches model human-object interac-

tion. Gkioxari et al. [13] use a state-of-the-art 2D-object de-

tection framework [17] to detect action specific objects and

model human-object interactions in static images. Their ap-

proach assumes the object categories given and does not in-

tegrate any temporal information. Sun et al. [50] addressed

the problem of modeling human-human and human-object

interaction, by applying relational networks to explicitly

capture interactions between actors and objects in a scene.

Their method, however, does not directly model objects,

but instead considers every pixel in the frame to be an

object proxy. While this approach is indeed generic and

object-category agnostic, we argue that the lack of proper

object modeling hinders its performance. In a concurrent

work to [50], Wang et al. [56] use object proposals to lo-

calize the regions of interest and then employ graph con-

volutional networks [27] to combine the actor and object

representations and produce video-level action classifica-

tion. However, their approach does not address the action

detection problem. In our method we also model activ-

ities with actor-object graphs, but instead of aggregating

features over all the objects and actors in a scene we pro-

pose to structurally modeling actor-object and actor-actor

separately during both training and testing. Other works

that propose to capture action recognition with actor-object

graphs include [22, 40]. These methods, however, require

ground truth annotations of both actors and objects during
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training and focus on a closed vocabulary of object cat-

egories. Our method addresses both of these limitations

by first adopting a weakly-supervised object detection ap-

proach for localizing the correct objects during training

time without explicit supervision, and secondly proposing a

simple modification to the state-of-the-art object detection

framework [17] which makes it category agnostic.

In this work we propose a model for action detection in

videos that explicitly models long-term human behaviour,

as well as human-human and human-object interactions. In

particular, our model extracts I3D [4] features for the frames

in a video sequence and, in parallel, detects persons and ob-

jects with an object detection approach modified from He

et al. [17] (Sec 3.1). It then tracks every actor over a 3-

second interval producing a set of tubelets, e.g. sequences

of bounding boxes over time [24, 26]. To this end a simple

and efficient heuristic tracker is proposed (Sec 3.2.1). The

tubelets are then combined with the detected objects to con-

struct an actor-centric graph (Sec 3.2.2). Features from an

I3D frame encoding are pooled to obtain a representation

for the nodes. Every edge in the graph captures a possible

human-human or human-object interaction. A classifier is

then trained on the edge features to produce the final pre-

dictions. Naively, such an approach requires ground truth

object annotation to train. To remove this requirement we

build on intuition from weakly-supervised object detection

and learn to integrate useful information from the objects at

training time automatically.

To summarize, this work has two main contributions: (1)

We propose a new method for action detection that explic-

itly captures long-term behaviour as well as human-human

and human-object interactions; (2) We demonstration state-

of-the-art results on the challenging AVA dataset, improv-

ing over the best published method by 4.8%, and provide a

comprehensive ablative analysis of our approach.

2. Related work

Action classification is one of the fundamental problems in

computer vision. Early approaches relied on hand-crafted

features [54] that track pixels over time and then aggre-

gated their motion statistics into compact video descriptors.

With the arrival of deep learning these methods have been

outperformed by two-stream networks [47] that take both

raw images and optical flow fields as input to CNNs [30],

which are trained end-to-end on large datasets. These meth-

ods are limited by the 2D nature of CNN representations.

This limitation has been addressed by Tran et al. [53] who

extended CNN filters to the temporal dimension resulting

in 3D convolutional networks. More recently, Carreira and

Zisserman [4] have integrated 3D convolutions into a state-

of-the-art 2D CNN architecture [51], resulting in Inflated

3D ConvNet (I3D). Wang et al. [55], have extended this ar-

chitecture with non-local blocks that facilitate fine-grained

action recognition. We use an I3D with non-local blocks as

the video feature representation in our model.

Action localization can refer to spatial, temporal, or spatio-

temporal localization of actions in videos. In this work we

study the problem of spatial action localization. Early ac-

tion detection methods [28, 39] generate hand-crafted fea-

tures from videos and train SVM classifier. Early deep-

learning based action localization models [14, 37, 44, 48,

57] are developed on top of 2D object detection architec-

tures. They detect actors in every frame and recognize ac-

tivities using 2D appearance features. Kalogeiton et al. [24]

proposed to predict short tubelets instead of boxes by tak-

ing several frames as input. However their model only uses

tubelets for temporal localization. In Li et al. [31] the au-

thors apply an LSTM [10] on top of the tubelet features to

exploit long-term temporal information for action detection.

However, their model also relies on a 2D representation and

is not trained end-to-end. TCNN [21] uses C3D as a feature

representation for action localization, but they only extract

features for a single bounding box in the middle of a short

sequence of frames. Finally, Gu et al. [15] propose to use

I3D as a feature representation, which takes longer video

sequences as input, but also does not aggregate the features

over a tubelet. Our model builds upon the success of I3D for

feature extraction. Instead of extracting I3D features for the

entire video given a single location, we track actors based

on their appearance and extract their feature representations

along the entire video clip, which enables learning discrim-

inate features for actions with long temporal dependency.

Object detection is a key component of most of the ac-

tion detection frameworks. Traditional approaches relied on

hand-crafted features and part-based models [9]. Modern

deep-learning based methods are either based on RCNN-

like [11, 12, 17, 42], or SSD-like architectures [33, 41]. In

our model, we use Mask-RCNN [17] for person and object

detection. To detect any objects that participate in interac-

tions we employ the method of Dave et al. [7], who propose

a simple modification of the training procedure of Mask-

RCNN, making the model category-agnostic.

Object tracking is a well studied problem. Traditional

tracking algorithms [1, 18, 23] used hand-crafted appear-

ance features to perform online tracking of the bounding

box in the first frame. Despite their efficiency, the perfor-

mance of these methods on realistic videos is sub-optimal.

State-of-the-art, deep learning-based trackers [8, 20, 34,

52, 61] demonstrate a better performance and are more ro-

bust. Our tracking module, following the tracking by de-

tection paradigm, first detects all humans in consecutive

video frames. Instead of online fine-tuning the model on

the detected actors in the first frame, we propose to train a

siamese-network [3] offline with a triplet loss.

Visual relationship modeling for human-human and

human-object pairs increases performance in a variety of
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Figure 2. Overview of our proposed framework. We model both long-term person behaviour and human-human, human-object interactions

structurally in a unified framework. The actors across the video are associated to generate actor tubelets for learning long temporal

dependency. The features from actor tubelets and object proposals are then used to construct a relation graph to model human-object

manipulation and human-human interaction actions. The output of our model are actor-centric actions.

tasks including action recognition [56] and image cap-

tioning [35, 38]. There have been several works [5, 13,

16] on human-object interaction modeling in images that

achieved significant improvements on HICO-DET [6] and

V-COCO [32] datasets. Kalogeiton et al. [25] train ob-

ject and action detection models together and jointly predict

object-action pairs. Their model requires all annotation of

objects and only uses 2D CNNs. Mettes et al. [36] encode

the features from actors, objects and their spatial relation

into a single representation to model actions for zero-shot

learning. Recently, Qi et al. [40] propose a framework for

action localization in videos which represents humans, ob-

jects and their interactions with a graphical model. It then

uses convolutional LSTMs [59] to model the evolution of

the graph over time. Their model, however, uses 2D CNNs

for feature representation, requires ground truth annotations

of the object boxes for training and is only evaluated on a

toy dataset [29]. Baradel et al. [2] propose to use object rela-

tion network to model the temporal evolution of objects for

action recognition. However, their method also relies on ob-

ject class annotation and they are not modeling the relation-

ship between the objects and the actors. Our model does not

require object annotations which allows us to demonstrate

results in a more realistic scenario. Similarly to us, Sun et

al. [50] propose to implicitly model the interactions between

actors and objects without object annotations for training.

To this end they use relational networks [45] which avoid

explicitly modeling objects by treating each location in an

image as an object proxy and aggregating the representa-

tions across all the locations. In our evaluation we show that

explicit modeling of objects and integration of the relevant

objects in a frame allows us to learn more discriminative

features.

3. Method

We propose a method for action detection in videos

that explicitly models the long-term behaviour of individual

people, along with human-human and human-object inter-

actions. The architecture of our model is shown in Figure 2.

It takes a sequence of video frames as input (a) and passes

them through an I3D network (b). In parallel, a state-of-

the-art object detection model [17] (c) is applied to each

frame to produce human and object bounding boxes. Hu-

man bounding boxes are then combined into tubelets (a se-

quence of bounding boxes over time) (d) with an association

module. The tubelets and object boxes (as nodes) are then

used to construct an actor-centric graph for every actor in

the video clip (e).

In the actor-centric graph, we define two kinds of nodes,

the actor node and the object node, along with two kinds of

edges, representing human-object manipulation and human-

human interaction. The object nodes are generated by per-

forming Region of Interest (ROI) Pooling from the I3D rep-

resentation. The actor nodes, whose temporal behavior we

wish to model, are obtained by aggregating I3D features

with graph convolutions over the corresponding tubelets.

The features from the graph edges are used as the final rep-

resentation for action classification. The whole model, ex-

cept for the 2D object detector, is trained in an end-to-end

fashion requiring only actor bounding boxes and ground

truth actions. In the rest of this section, we will first present

our models for video representation and object detection.

Then, we explain how we integrate temporal information

using an appearance-based multi-object tracking module.

Finally, we will demonstrate how we build the actor-centric

graph, and how it is used to generate action predictions.

3.1. Spatio­temporal feature extraction

The first step in our action detection pipeline is to extract

two sets of features from videos: an unstructured video em-

bedding, and a collection of object and actor region propos-

als.

Unstructured video embedding. To exploit the spatio-

temporal structure of the video input, we use an inflated 3D

ConvNet (I3D) with non-local layers [56]. In a 3D Con-
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vNet, videos are modeled as a dense sampling of x, y, t

coordinates, and the corresponding learned filters operate

in both spatial and temporal domains, thus capturing short-

term motion patterns. We also use non-local layers [55] to

aggregate features across the entire image, allowing our net-

work to reason beyond the extend of local convolutional fil-

ters. In our scenario, the input is a 3 seconds video clip with

36 frames. Our final video embedding retains its temporal

dimension, enabling us to explicitly use temporal informa-

tion in the later stages of our model.

Appearance based actors/objects proposal. We take ad-

vantage of the success of RCNN-like models [42] for ob-

ject detection to identify regions of interest. In our model,

we are interested in identifying the spatial location of the

actors and potential objects that are being manipulated by

them. Since our goal is to understand actions performed by

humans, independent of the categories of objects, we use

a category-agnostic detector proposed in [7] to localize the

objects. This model achieves a higher recall for the objects

that are not among the 80 categories labeled in MS-COCO.

Specifically, we train Mask-RCNN [17] on MS-COCO [32]

by collapsing all the category labels into a single object

label, resulting in a category-agnostic object detector. We

use a standard person detector for localizing the actors [17].

3.2. Action detection with temporal context

To enable our action detection system to capture long-

term temporal dependencies, we integrate multi-object

tracking into our action detection framework. Instead of

generating explicit action proposals, we track each actor

across frames in the entire video. Then, with the actor ap-

pearance information stored in a node and tracking infor-

mation in edges, we aggregate each actor’s movement by

using graph convolutions.

3.2.1 Multi-actor association module

We note that some actions are composed of multiple unit

movements, for example, the action ’get up’ is composed

of siting, moving upward, and standing. We posit that con-

fidently tracking actors across multiple frames and integrat-

ing these local representations in a principled way is cru-

cial for learning discriminative representations for actions

that are composed of multiple movements. Previous meth-

ods that recognize actions from a few frames and link them

via actioness score [48] are not able to maintain consistent

tracks, since, unlike the appearance features, the features

of a model trained for action recognition differ significantly

across frames due to the actor’s movement.

Motivated by this observation, we introduce a multi-

actor association module that aims to associate the bound-

ing box proposals of each actor throughout the video clip.

Instead of linking action bounding box proposals based on

actionness scores, we associate actor bounding boxes based

on the similarity of actor appearance features.

We follow the tracking-by-detection paradigm, and build

an association module to perform the linking. Specifically,

we first train an appearance feature encoding, and then ex-

plicitly search over neighbor regions in the next frame for an

appearance match. To learn an appearance feature encoding

for distinguishing different actors, we train a Siamese net-

work [19] with a triplet loss [46]. After we obtain the ap-

pearance feature encoding, we search among the bounding

box proposals in consecutive frames and match the bound-

ing boxes with highest appearance similarity.

3.2.2 Actor tubelet learning using graphs

Recent works in action detection attempt to predict an ac-

tion directly from the features extracted from I3D [15]. We

claim that integrating I3D features over multiple frames is

crucial for recognizing long-term activities. A naive ap-

proach would be to simply average these features along

the temporal dimension. Instead we propose to model

the behavior of each actor with graph convolutional net-

works [27]. We propose to encode the nodes of the person

graph with features extracted from an I3D backbone with

RoIAlign [17]. The edges are obtained from the tubelets

constructed by our multi-actor association module. While

performing graph convolutions, the movement information

of each actor box is aggregated by the graph. Formally, let

us assume that there are N actors in a video. Each actor is

represented by a feature vector of dimension D. T is the

temporal dimension. We denote by G the affinity matrix of

the actor tubelet graph with dimension N×T , and by X the

actor features with dimension T × D. The graph convolu-

tion operation can the be written as Y = GXW , where W

is the matrix of weights with dimension D×D. The output

of the graph Y has the dimension N × D and aggregates

the actors’ features along the temporal axis. The graph con-

volution operations can also be stacked in multiple layers to

learn more discriminative features.

3.3. Interactions between actors and objects

To recognize actions associated with interactions, it is

critical to exploit the relations between the actor of interest,

other actors, and objects in the scene. However, modeling

all such possible relationships can become intractable. We

propose to use class-agnostic features from ROI proposals

to build a relation graph and implicitly perform relation rea-

soning given only action annotations.

To integrate information from the other actors and ob-

jects, we construct two relation graphs, one to model

human-object manipulation and the other one to model

human-human interaction. The human-object graph con-

nects each actor of interest with the other objects and the
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human-human graph connects each actor of interest with

the other actors. The features of actor nodes come from the

actor tubelets after the multi-actor association module and

we denote them with H = [h1, h2, ..., hN ] where N is the

number of actors in the middle frame of a clip. The features

of the objects are generated by ROI pooling of I3D repre-

sentation and are denoted as O = [o1, o2, ...oM ] where M

is the number of objects in the whole video.

To model relationships between a selected actor and

other subjects, we can build on the concepts of hard and soft

attention models [60]. One way to represent the features of

the actions is to first localize the correct subjects among all

the objects and all the other actors (except the target ac-

tor). Then, one can use the features from the actor and the

identified subjects, which we refer as hard relation graph.

Alternatively, in the soft relation graph, instead of explic-

itly localizing the subjects, we integrate this information by

implicitly learning how much they relate to the target actor.

We will further demonstrate how we implement soft rela-

tion graph and hard relation graph to learn discriminative

feature representation for interactions.

Hard relation graph. We explicitly localize the correct ob-

jects and actors for each target actor to represent the object

manipulation actions and human interaction actions. The

object manipulation action is represented through linking

an actor node and the object nodes, while the human in-

teraction action is represented through the edges between

one actor and the other actor nodes. Given actor node

features H = [h1, h2, ..., hN ] and object node features

O = [o1, o2, ...oM ], the object-manipulation relation fea-

ture for the ith target actor and the jth object can be repre-

sented by concatenating the features of the two nodes with

fhi,oj = Fo([hi, oj ]), (1)

where Fo is the feature extraction function for object ma-

nipulation. Similarly, with Fh being the feature extraction

function for human interaction, we represent the human in-

teraction relation feature for the ith and the kth actor with

fhi,hk
= Fh([hi, hk]), (2)

In the absence of ground truth annotations for the target

objects, we resort to an approach inspired by multi-instance

learning for object detection, and select the region with the

maximal score for the ground truth action. Specifically, for

an object manipulation action centered at the ith actor,

p̂io = max
j

σ(fhi,oj ), (3)

where σ is the sigmoid function, and p̂io is the human-

object manipulation action prediction for the ith actor. Sim-

ilarly, the prediction for human interaction actions is

p̂ih = max
k

σ(fhi,hk
), (4)

where p̂ih is the human-human interaction action prediction

for the ith actor.

Soft relation graph. The hard approach described above

is appealing conceptually, but results in instability during

training. We thus propose an alternative method that avoids

making hard decisions about the ground truth objects by ag-

gregating the information over all the objects in the scene.

We define the strength of a relation between the actor of

interest and another actor or object as the inverse of Eu-

clidean distance between the two nodes’ features after a fea-

ture transformation.

The transformations for actor features and object fea-

tures are defined with with φh and φo respectively. Given

actor node features H = [h1, h2, ..., hN ] and object node

features O = [o1, o2, ...oM ], we first transform them to

obtain φh(H) = [φh(h1), φh(h2), ..., φh(hN )], φo(O) =
[φo(o1), φo(o2), ..., φo(oN )]. The edge between the ith ac-

tor and the jth object is represented with

fo(hi, oj) =
1

‖φh(hi)− φo(oj)‖2
. (5)

The edge between the ith actor and the kth actor is repre-

sented similarly.

We further normalize the edge weights above so that they

sum to one. We adopt softmax function for each actor with

Go
ij =

exp fo(hi, oj)∑M

m=1
exp fo(hi, om)

, (6)

Gh
ik =

exp fh(hi, hk)∑N−1

n=1
exp fh(hi, hn)

, (7)

where k is 1...N except i.

After computing the graph representation, the object ma-

nipulation and human interaction actions for the ith actor

are represented with

F o
i = φh(hi) +

M∑

j=1

Go
ijφo(oj), (8)

Fh
i = φh(hi) +

N−1∑

k=1

Gh
ikφh(hk). (9)

The final action predictions are obtained by logistic clas-

sifiers applied to the feature representation in the Equa-

tions 8 and 9 for human-human, and human-object inter-

action classes respectively.

4. Experiments

In this section, we first introduce the dataset and the

metrics used for the evaluation of our model, and describe

the implementation details. Next, we perform an exten-

sive ablation analysis, demonstrating the effectiveness of
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Figure 3. Per-category results for the proposed model and the baseline on the validation set of AVA.

our model on integrating temporal and spatial context infor-

mation. Finally we compare our model with state-of-the-art

methods both quantitatively and qualitatively.

4.1. Datasets and metric

We develop our model on the AVA version 2.1 bench-

mark dataset [15], where action localization is evaluated

on the middle frame of three seconds videos clips. The

video clips are extracted from movies and extensively anno-

tated with bounding boxes of all the actors and the actions

they are performing. Thus, this dataset is realistic both in

terms of appearance and in terms of the label distribution.

It contains 211k training samples and 57k validation sam-

ples. There are 80 categories in the dataset and 60 categories

with no less than 25 validation samples are used for evalu-

ation. We report frame based mean average precision with

an intersection-over-union (IOU) threshold 0.5.

We also evaluate the performance of our model on the

UCF-101 [49] dataset. We report the results on split1 which

contains 2293 training and 914 validation clips. There are

24 action categories. As in AVA, we report frame based

mean average precision with an IOU threshold 0.5.

4.2. Implementation details

Our model is implemented in the Caffe2 framework. We

follow the schema as proposed in [4, 55] to pre-train our

video backbone model. We use the ResNet-50 architecture

and pretrain it on the ImageNet dataset [43]. The model is

then inflated into 3D ConvNet as proposed in [4] (I3D), and

pretrained on Kinetics dataset [4]. We augment our back-

bone model with non-local operations [55] after Res2, Res3,

and Res4 blocks. We further fine tune it end-to-end with

our proposed spatio-temporal model. Our video backbone

model takes video clips of 36 frames as input corresponding

to 3-second video clips at 12 fps. The frames are first scaled

to 272 × 272, and randomly cropped to 256 × 256.

For region proposal model, we use Mask-RCNN [17]

with a ResNet-50 backbone. We limit the set of labels to

person and object only. The region proposal model is

pretrained on COCO dataset [32] and further fine tuned on

AVA. We use 0.5 as threshold for object bounding boxes

Model mAP

Baseline 16.7

Person similarity graph on ROIs 20.1

Object similarity graph on ROIs 20.3

Actor tubelets model 21.1

Actor tubelets + hard relation graph module 21.5

Actor tubelets + soft relation graph module 22.2

Table 1. Analysis of different components of our model on the

validation set of AVA.

and 0.9 for person bounding boxes.

We trained our model on 8-GPU machine where each

GPU has 3 video clips as mini-batch. The total batch size

is 24. We freeze parameters in batch normalization layers

during training and apply a drop out layer before the final

layer. We use a drop out rate of 0.3. We first train for 90K it-

eration with learning rate 0.00125 and then train for another

10K iterations with learning rate 0.000125.

For the tracking module, we use a ResNet-50 architec-

ture for appearance feature encoding and triplet loss [46] to

learn representative appearance features for tracking actors

in the video. The model takes three images as input where

two of them are the cropped images of the same actor at dif-

ferent time (ranging from 0.02s to 10s) and the third one is

the cropped area of a different actor sampled from the same

period. The output feature dimension is 128 and we use

L2 distance as similarity metric. The model is fine tuned

from ImageNet pretrained weights for 100K iterations with

a batch size of 64. While tracking, we search over region

of interest proposals with an overlap larger than 0.5 with

the bounding box in the previous frame, and link the boxes

which minimize the L2 distance in the embedding space.

4.3. Ablation analysis

We first perform an ablation analysis of our framework

to understand the effect of each component of the model in

Table 1. We then perform a more in-depth analysis of the

model by separately evaluating human pose, object manip-

ulation, and human interaction classes in Table 2.

All our models are developed on the non-local aug-

mented I3D backbone. The baseline averages the I3D fea-
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Model Human pose Object manipulation Human interaction

Baseline 35.7 8.9 16.9

Person similarity graph on ROIs 39.1 12.1 20.1

Object similarity graph on ROIs 39.3 13.0 20.0

Actor tubelets model 40.6 13.4 20.9

Actor tubelets + hard relation graph module 41.0 13.2 22.2

Actor tubelets + soft relation graph module 41.9 14.3 22.0

Table 2. Ablation analysis on human pose, human-object manipulation and human-human interaction categories.

tures over the temporal dimension, and uses actor bounding

boxes to pool the features for action recognition. It achieves

an mAP of 16.7 on the validation set, which is slightly im-

proved compared to the baseline established in [50].

We now introduce two additional baselines. Wang et al.

[56] propose to use a similarity graph and a spatio-temporal

graph to integrate information spatially and temporally for

action recognition. We adapt their work to the domain of

action detection, where actor proposals occur across the

frames and the similarity graph integrates information over

frames. We observe that the model that explicitly builds a

similarity graph on all human proposals in the whole video

achieves an mAP 20.1 on the validation set. As a second

baseline, we build a similarity graph model over all the ob-

ject proposals in the video clip. This model includes both

humans and objects to provide information for modeling in-

teractions, and achieves a score of 20.3 mAP. By integrating

information from regions of interest spatially and tempo-

rally, both the person similarity graph and the object simi-

larity graph achieve a significant increase over the baseline.

We now analyze different components of our approach.

The actor tubelets model explicitly connects the same actor

across frames and applies graph convolutions to aggregate

the motion information. This basic variant, which does not

model actor interactions achieves an mAP score of 21.1,

which is a 4.4% improvement over the baseline and 1%

improvement over the person similarity graph. Notice that

both approaches use person regions of interest. The better

performance of actor tubelets model shows that explicitly

tracking the actor helps our model to learn a better repre-

sentation for action detection. Next we evaluate our hard re-

lation and soft relation graph for learning actions involving

interaction. The hard relation graph model achieves mAP

21.5 and the soft relation graph model achieves the best

performance with mAP 22.2. This is probably due to the

instability in training of the hard variant. The performance

boost from our relation graph models further validates the

efficiency of our proposed structured network architecture

for modelling temporal dependencies and interactions.

In addition to the averaged score over all 60 test classes,

we also show performance on the three action categories:

human pose, object manipulation and human interaction in

Table 2. We observe that our actor tubelet model largely

Model mAP

Single Frame model [15] 14.2

ACRN [50] 17.4

Our model 22.2

Table 3. Comparison of our model to the state-of-the-art methods

on the validation set of AVA.

outperforms the person graph model and the baseline on

human pose categories and object manipulation categories.

Further with soft relation graph, we observe that the mAP

on human pose, object manipulation and human interaction

action increases 6.2, 5.4 and 5.1 compared to the baseline

respectively which demonstrates the effectiveness of our

model for modeling both temporal dependency and inter-

actions. We also visualize per-class mAP comparing our

actor tubelet with soft relation graph model and the baseline

in Figure 2. According to our observation, the largest im-

provement over the baseline is achieved on categories drive,

play musical instrument and hand clap which are actions re-

quiring learning long term temporal dependencies and cap-

turing interactions with objects.

4.4. Comparison to the state­of­the­art

In this section we compare our best model to the state-

of-the-art models on the AVA dataset and on UCF-101-24

dataset [49]. The performance on AVA is shown in the

Table 3. Our proposed approach outperforms the method

of Sun et al., [50] by 4.8%. This is due to the inductive

biases encoded into the architecture of our model via the

actor tracking module, human-human and human-object re-

lational graphs. In contrast, ACRN [50] models relation

by considering every pixel in the frame as an object proxy

which is a less strong constraint. It is also not able to inte-

grate long-term human motion information.

We additionally evaluate our model on UCF-101-24

dataset, where our model with an actor tubelet and a human-

object soft relation graph achieves an mAP score of 77.9,

compared to 72.0 achieved by the baseline. We note that our

model is still 0.9 mAP points bellow the state-of-the-art re-

ported in [58]. However, their model uses an S3D network

as a backbone, which is shown to give a 6.8 mAP boost

compared to the I3D. This suggests that our performance

can be further improved by switching to a better backbone.

9981



Actor	and	Object	Detection Human-Object	Relation	Graph

0.96

0.04 0.00

0.00

(Eat)

Actor	Detection

Baseline

Human – Object

Manipulation

(Hold)

Human – Human

Interaction

Human-Human	Relation	Graph

0.92

0.08

0.00

(Fight)

Baseline

(Watch)

Human Pose

Actor	Detection

(Fall	down)

Temporal	Tubelets Baseline

(Run)

0.00

Figure 4. We visualize the performance of our model and the baseline. We show actor and object detections used by our model in the first

column, the corresponding instantiations of the graphs in the second column, and baseline results in the third column.

4.5. Qualitative analysis

In order to qualitatively evaluate our model, we verify its

ability to capture temporal information and contextual rela-

tions. We visualize video clips and provide a performance

comparison on several challenging examples in Figure 4. In

these examples actors are performing actions with nontriv-

ial temporal behavior and challenging object interactions.

In the first row, we show a man eating with a fork. The

baseline confuses the action with hold, failing to incor-

porate information spatially from the dining table and the

fork. Our human-object relational graph in contrast is able

to aggregate this information efficiently. As shown in the

third column, the edge between the person and the fork has

a high value, which helps our model to make a correct pre-

diction.

The second row shows two children who are fighting.

The baseline mistakenly predicts the category watch, since

it does not integrate the features from both actors. Our

model, however, use a human-human relation graph to rea-

son about both actors jointly. As shown in the visualization

of the graph, the edge between the key actor and the boy he

is fighting with has a high value, which helps our model to

correctly recognize the action.

In the third row, we show the action fall down. To

model this action, it is crucial to integrate information from

both temporal and spatial domains as it is uniquely defined

as a sequence of movements from standing to lying. Our

model is able to correctly recognize this class by accumu-

lating the temporal information with large spatial displace-

ments. However, the baseline model mistakenly predicts

the action as run, since it only integrates features in a fixed

bounding box area.

5. Conclusion

We proposed a structured model for action detection that

explicitly models long-term temporal behavior as well as

object manipulation and human interaction. Our model

demonstrates large performance gains over the state-of-the-

art, which highlights the effectiveness of our method in

modeling temporal dependencies and reasoning about inter-

actions. More importantly, the success of our model shows

the importance of integrating temporal and relational infor-

mation in the model architecture for the task of action de-

tection.
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[28] Alexander Kläser, Marcin Marszałek, Cordelia Schmid, and

Andrew Zisserman. Human focused action localization in

video. In ECCV, 2010. 2

[29] Hema S Koppula and Ashutosh Saxena. Anticipating hu-

man activities using object affordances for reactive robotic

response. TPAMI, 38(1):14–29, 2016. 3

[30] Yann LeCun, Yoshua Bengio, et al. Convolutional networks

for images, speech, and time series. The handbook of brain

theory and neural networks, 3361(10):1995, 1995. 2

[31] Dong Li, Zhaofan Qiu, Qi Dai, Ting Yao, and Tao Mei. Re-

current tubelet proposal and recognition networks for action

detection. In ECCV, 2018. 2

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014. 3, 4, 6

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In ECCV, 2016.

2

[34] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual tracking.

In ICCV, 2015. 2

[35] Chih-Yao Ma, Asim Kadav, Iain Melvin, Zsolt Kira, Ghassan

AlRegib, and Hans Peter Graf. Attend and interact: Higher-

order object interactions for video understanding. CVPR,

2018. 3

[36] Pascal Mettes and Cees GM Snoek. Spatial-aware object

embeddings for zero-shot localization and classification of

actions. In ICCV, pages 4443–4452, 2017. 3

[37] Xiaojiang Peng and Cordelia Schmid. Multi-region two-

stream r-cnn for action detection. In ECCV, 2016. 2

[38] Julia Peyre, Ivan Laptev, Cordelia Schmid, and Josef Sivic.

Weakly-supervised learning of visual relations. In ICCV,

2017. 3

[39] Alessandro Prest, Vittorio Ferrari, and Cordelia Schmid.

Explicit modeling of human-object interactions in realistic

videos. TPAMI, 35(4):835–848, 2013. 2

9983



[40] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen,

and Song-Chun Zhu. Learning human-object interactions by

graph parsing neural networks. ECCV, 2018. 1, 3

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, 2016. 2

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NIPS, 2015. 2, 4

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 115(3):211–252,

2015. 6

[44] Suman Saha, Gurkirt Singh, Michael Sapienza, Philip HS

Torr, and Fabio Cuzzolin. Deep learning for detecting multi-

ple space-time action tubes in videos. BMVC, 2016. 2

[45] Adam Santoro, David Raposo, David G Barrett, Mateusz

Malinowski, Razvan Pascanu, Peter Battaglia, and Tim Lilli-

crap. A simple neural network module for relational reason-

ing. In NIPS, 2017. 3

[46] Florian Schroff, Dmitry Kalenichenko, and James Philbin.

FaceNet: A unified embedding for face recognition and clus-

tering. In CVPR, 2015. 4, 6

[47] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In

NIPS, pages 568–576, 2014. 2

[48] Gurkirt Singh, Suman Saha, Michael Sapienza, Philip HS

Torr, and Fabio Cuzzolin. Online real-time multiple spa-

tiotemporal action localisation and prediction. In ICCV,

2017. 1, 2, 4

[49] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

UCF101: A dataset of 101 human actions classes from

videos in the wild. coRR, 2012. 6, 7

[50] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Kevin Mur-

phy, Rahul Sukthankar, and Cordelia Schmid. Actor-centric

relation network. ECCV, 2018. 1, 3, 7

[51] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 2

[52] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In CVPR, 2016. 2

[53] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015. 2

[54] Heng Wang, Alexander Kläser, Cordelia Schmid, and
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