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Abstract

Recent progress in semantic segmentation is driven by

deep Convolutional Neural Networks and large-scale la-

beled image datasets. However, data labeling for pixel-

wise segmentation is tedious and costly. Moreover, a trained

model can only make predictions within a set of pre-defined

classes. In this paper, we present CANet, a class-agnostic

segmentation network that performs few-shot segmentation

on new classes with only a few annotated images avail-

able. Our network consists of a two-branch dense compar-

ison module which performs multi-level feature compari-

son between the support image and the query image, and

an iterative optimization module which iteratively refines

the predicted results. Furthermore, we introduce an atten-

tion mechanism to effectively fuse information from multi-

ple support examples under the setting of k-shot learning.

Experiments on PASCAL VOC 2012 show that our method

achieves a mean Intersection-over-Union score of 55.4%

for 1-shot segmentation and 57.1% for 5-shot segmentation,

outperforming state-of-the-art methods by a large margin of

14.6% and 13.2%, respectively.

1. Introduction

Deep Convolutional Neural Networks have made sig-

nificant breakthroughs in many visual understanding tasks

including image classification [13, 9, 30], object detec-

tion [27, 8, 26], and semantic segmentation [16, 2, 20]. One

crucial reason is the availability of large-scale datasets such

as ImageNet [4] that enable the training of deep models.

However, data labeling is expensive, particularly for dense

prediction tasks, e.g., semantic segmentation and instance

segmentation. In contrast to machine learning algorithms,

humans are able to segment a new concept from the im-

age easily when only seeing a few examples. The gap be-
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Figure 1 – Overview of our proposed network for 1-shot segmentation.

Our framework consists of a dense comparison module (DCM) and an

iterative optimization module (IOM). Given only one annotated training

image, our network is able to segment test images with new classes and

iteratively optimize the results.

tween humans and machine learning algorithms motivates

the study of few-shot learning that aims to learn a model

which can be generalized well to new classes with scarce

labeled training data.

In this paper, we undertake the task of few-shot seman-

tic segmentation that only uses a few annotated training

images to perform segmentation on new classes. Previ-

ous work [29, 24, 5] on this task follows the design of

two-branch structure which includes a support branch and

a query branch. The support branch aims to extract infor-

mation from the support set to guide segmentation in the

query branch. We also adopt the two-branch design in our

framework to solve the few-shot segmentation problem.

Our network includes a two-branch dense comparison

module, in which a shared feature extractor extracts rep-

resentations from the query set and the support set for com-

parison. The design of the dense comparison module takes

inspiration from metric learning [37, 31] on image classi-

fication tasks where a distance function evaluates the simi-

larity between images. However, different from image clas-

sification where each image has a label, image segmenta-

tion needs to make predictions on data with structured rep-

resentation. It is difficult to directly apply metric learning

to dense prediction problems. To solve this, one straight-
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forward approach is to make comparisons between all pairs

of pixels. However, there are millions of pixels in an image

and comparison of all pixel pairs takes enormous compu-

tational cost. Instead, we aim to acquire a global repre-

sentation from the support image for comparison. Here, to

only focus on the assigned category, we use global average

pooling over the foreground area to filter out irrelevant in-

formation. Then the global feature is compared with each

location in the query branch, which can be seen as a dense

form of the metric learning approach.

Under the few-shot setting, the network should be able to

handle new classes that are never seen during training. Thus

we aim to mine transferable representations from CNNs for

comparison. As is observed in feature visualization liter-

ature [39, 38], features in lower layers relate to low-level

cues, e.g., edges and colors while features in higher layers

relate to object-level concepts such as categories. We fo-

cus on middle-level features that may constitute object parts

shared by unseen classes. For example, if the CNN learns

a feature that relates to wheel when the model is trained on

the class car, such feature may also be useful for feature

comparison on new vehicle classes, e.g., truck and bus. We

extract multiple levels of representations in CNNs for dense

comparison.

As there exist variances in appearance within the same

category, objects from the same class may only share a few

similar features. Dense feature comparison is not enough

to guide segmentation of the whole object area. Neverthe-

less, this gives an important clue of where the object is. In

semi-automatic segmentation literature, weak annotations

are given for class-agnostic segmentation, e.g., interactive

segmentation with click or scribble annotations [36, 14]

and instance segmentation with bounding box or extreme

point priors [10, 21]. Transferable knowledge to locate the

object region is learned in the training process. Inspired

by semi-automatic segmentation tasks, we hope to gradu-

ally differentiate the objects from the background given the

dense comparison results as priors. We propose an iterative

optimization module (IOM) that learns to iteratively refine

the predicted results. The refinement is performed in a re-

current form that the dense comparison result and the pre-

dicted masks are sent to an IOM for optimization, and the

output is sent to the next IOM recurrently. After a few itera-

tions of refinement, our dense comparison module is able to

generate fine-grained segmentation maps. Inside each IOM,

we adopt residual connections to efficiently incorporate the

predicted masks in the last iteration step. Fig. 1 shows an

overview of our network for one-shot segmentation.

Previous methods for k-shot segmentation is based on

the 1-shot model. They use non-learnable fusion methods to

fuse individual 1-shot results, e.g., averaging 1-shot predic-

tions or intermediate features. Instead, we adopt an atten-

tion mechanism to effectively fuse information from multi-

ple support examples.

To further reduce the labeling efforts for few-shot seg-

mentation, we explore a new test setting: our model uses

the bounding box annotated support set to perform segmen-

tation in the query image. We conduct comprehensive ex-

periments on the PASCAL VOC 2012 dataset and COCO

dataset to validate the effectiveness of our network. Main

contributions of this paper are summarized as follows.

• We develop a novel two-branch dense comparison

module which effectively exploits multiple levels of

feature representations from CNNs to make dense fea-

ture comparison.

• We propose an iterative optimization module to re-

fine predicted results in an iterative manner. The abil-

ity of iterative refinement can be generalized to un-

seen classes with few-shot learning for generating fine-

grained maps.

• We adopt an attention mechanism to effectively fuse

information from multiple support examples in the k-

shot setting, which outperforms non-learnable fusion

methods of 1-shot results.

• We demonstrate that given support set with weak an-

notations, i.e., bounding boxes, our model can still

achieve comparable performance to the result with ex-

pensive pixel-level annotated support set, which fur-

ther reduces the labeling efforts of new classes for few-

shot segmentation significantly.

• Experiments on the PASCAL VOC 2012 dataset

show that our method achieves a mean Intersection-

over-Union score of 55.4% for 1-shot segmentation

and 57.1% for 5-shot segmentation, which signifi-

cantly outperform state-of-the-art results by 14.6% and

13.2%, respectively.

2. Related Work

Few-shot learning. Few-shot learning aims to learn

transferable knowledge that can be generalized to new

classes with scarce labeled training data. There exist many

formulations on few-shot classification, including recurrent

neural network with memories [28, 23], learning to fine-

tune models [6, 25], network parameter prediction [1, 35],

and metric learning [31, 37, 11]. Metric learning based

methods achieve state-of-the-art performance in the few-

shot classification tasks and they have the trait of being

fast and predicting in a feed-forward manner. Our work is

most related to Relation Network [37]. Relation Network

meta-learns a deep distance metric to compare images and

compute the similarity score for classification. The network

consists of an embedding module which generates the rep-

resentations of the images and a relation module that com-

pares the embeddings and outputs a similarity score. Both

modules are in the form of convolutional operations. The
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dense comparison module in our network can be seen as an

extension of Relation Network in a dense form to tackle the

task of segmentation.

Few-shot semantic segmentation. Fully supervised se-

mantic segmentation is the task of classifying each pixel in

an image to a set of pre-defined categories [16, 2, 20, 15,

17]. Few-shot semantic segmentation, on the other hand,

aims to generalize the segmentation ability to any new cat-

egories with only a few annotated examples. Previous work

on few-shot semantic segmentation employs two-branch

structures. Shaban et al. [29] first adopt few-shot learning

on semantic segmentation. The support branch directly pre-

dicts the weights of the last layer in the query branch for

segmentation. In [24], the support branch generates an em-

bedding which is fused to the query branch as additional

features. Our network also follows the two-branch design.

However, different from previous work where two branches

have different structures, the two branches in our network

share the same backbone network. The models in previous

methods focus on the 1-shot setting, and when extending 1-

shot to k-shot, they apply 1-shot method independently to

each support example and use non-learnable fusion meth-

ods to fuse individual predicted results at the image level or

feature level. For example, Shaban et al. [29] propose to use

logic OR operation to fuse individual predicted masks and

Rakelly et al. [24] average the embedding in the support

branch generated by different support examples. Instead,

we adopt a learnable method through an attention mecha-

nism to effectively fuse information from multiple support

examples.

3. Task Description

Suppose that our model is trained on a dataset with the

class set Ctrain, our goal is to use the trained model to make

the prediction on a different dataset with new classes Ctest
where only a few annotated examples are available. Intu-

itively, we train the model to have the ability that for a new

class c 6∈ Ctrain, our model is able to segment the class from

the images when only sees a few pictures of this class. Once

the model is trained, the parameters are fixed and require no

optimization when tested on a new dataset.

We align training and testing with the episodic

paradigm [33] to handle the few-shot scenario. Specifically,

given a k-shot learning task, each episode is constructed by

sampling 1) a support (training) set S = {(xi
s, y

i
s(c))}

k
i=1

,

where xi
s ∈ R

Hi×Wi×3 is an RGB image and yis(c) ∈
R

Hi×Wi is a binary mask for class c in the support image;

and 2) a query (test) set Q = {xq, yq(c)} where xq is the

query image and yq(c) is the ground-truth mask for class c

in the query image. The input to the model is the support set

S and the query image xq , and the output is the predicted

mask ŷq(c) for class c in the query image. As there may

be multiple classes in one query image xq , the ground truth

query mask is different when a different label c is assigned.

Fig. 1 shows an illustration of the task when k = 1.

4. Method

We propose a new framework that solves the few-shot

semantic segmentation problem. We begin with the illustra-

tion of our model in the 1-shot setting first without loss of

generality. Our network consists of two modules: the dense

comparison module (DCM) and the iterative optimization

module (IOM). The DCM performs dense feature compar-

ison between the support example and the query example,

while IOM performs iterative refinement of predicted re-

sults. Fig. 2 (a) shows an overview of our framework. To

generalize our network from 1-shot learning to k-shot learn-

ing, we adopt an attention mechanism to fuse information

from different support examples. Moreover, we propose a

new test setting that uses support images with bounding box

annotations for few-shot segmentation, which is described

subsequently.

4.1. Dense Comparison Module

We develop a two-branch dense comparison module that

densely compares each position in the query image with the

support example, as shown in Fig. 2 (b). The module con-

sists of two sub-modules: a feature extractor that extracts

representations and a comparison module that performs fea-

ture comparison.

Feature extractor. The feature extractor aims to har-

vest different levels of representations from CNNs for fea-

ture matching. We use a ResNet-50 [9] as the backbone

of the feature extractor. As done in previous few-shot seg-

mentation work, the backbone model is pre-trained on Ima-

genet [4]. As is observed in CNN feature visualization lit-

erature [39, 38], features in lower layers often relate to low-

level cues, e.g., edges and colors while features in higher

layers relate to object-level concepts such as object cate-

gories. In the few-shot scenario, our model should adapt to

any unseen classes. Thus we can not assume that a feature

corresponding to an unseen category is learned during train-

ing. Instead, we focus on middle-level features that may

constitute object parts shared by unseen classes. The lay-

ers in ResNet are divided into 4 blocks based on the spatial

resolution which naturally correspond to 4 different levels

of representation. We choose features generated by block2
and block3 for feature comparison and abandon layers af-

ter block3. We use dilated convolutions [2] in layers after

block2 to maintain the spatial resolution of feature maps.

All feature maps after block2 have a fixed size of 1/8 of the

input image. Features after block2 and block3 are concate-

nated and encoded to 256 dimensions by 3×3 convolutions.

We investigate the choice of features for comparison in Sec-

tion 5.1.3. Both the support branch and the query branch use
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Figure 2 – CANet for 1-shot semantic segmentation. (a) Overview of our network structure. (b) Dense Comparison Module. (c) Iterative Optimization

Module.

the same feature extractor. We keep the weights in ResNet

fixed during training.

Dense Comparison. As there may be multiple object

categories and cluttered backgrounds in the support image,

we want to acquire an embedding that only corresponds to

the target category for comparison. Here, we use global av-

erage pooling over the foreground area to squeeze the fea-

ture maps to a feature vector. Global image features turn out

to be useful in segmentation tasks [19, 40, 3], which can be

easily achieved by global average pooling. In our network,

we only average features over the foreground area to filter

out irrelevant areas. After we obtain the global feature vec-

tor from the support set, we concatenate the vector with all

spatial locations in the feature map generated by the query

branch. This operation aims to compare all the spatial loca-

tions in the query branch to the global feature vector from

the support branch. Then, the concatenated feature maps go

through another convolutional block with 256 3× 3 convo-

lutional filters for comparison.

For efficient implementation, we first bilinearly down-

sample the binary support mask to the same spatial size of

the feature maps and then apply element-wise multiplica-

tion with the feature maps. As a result, features belong-

ing to the background area become zero. Then we adopt

global sum pooling and divide the resulting vector by the

foreground area to obtain the average feature vector. We

upsample the vector to the same spatial size of query fea-

tures and concatenate them for dense comparison.

…

Support sample k

…

Support sample 2
Support sample 1

IOM

Attention

Attention

Attention መ𝜆𝑘
Attention Module

Figure 3 – Attention mechanism for k-shot semantic segmentation. We

use the softmax function to normalize the outputs of the attention mod-

ule from different support examples.

4.2. Iterative Optimization Module

As there exist variances in appearance within the same

category, dense comparison can only match a part of the

object, which may not be sufficiently powerful to accurately

segment the whole object in the image. We observe that the

initial prediction is an important clue about the rough po-

sition of the objects. We propose an iterative optimization

module to optimize the predicted results iteratively. The

structure is shown in Fig. 2 (c). The module’s input is
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the feature maps generated by the dense comparison mod-

ule and predicted masks from the last iteration. Directly

concatenating feature maps with predicted masks as addi-

tional channels causes mismatch to the feature distribution

as there is no predicted mask for the first forward pass. In-

stead, we propose to incorporate the predicted masks in a

residual form:

Mt = x+ F (x, yt−1), (1)

where x is the output feature of the dense comparison mod-

ule; yt−1 is the predicted masks from the last iteration step,

and Mt is the output of the residual block. Function F (·) is

the concatenation of feature x and predicted masks yt−1,

followed by two 3 × 3 convolution blocks with 256 fil-

ters. Then we add two vanilla residual blocks with the

same number of convolutional filters. On top of that, we

use Atrous Spatial Pyramid Pooling module (ASPP) pro-

posed in Deeplab V3 [3] to capture multi-scale information.

The module consists of four parallel branches that include

three 3 × 3 convolutions with atrous rates of 6, 12, and 18

respectively and a 1 × 1 convolution. The 1 × 1 convolu-

tion is operated on the image-level feature which is achieved

by global average pooling. Then the resulting vector is bi-

linearly upsampled to the original spatial size. The output

features from 4 branches are concatenated and fused by an-

other 1 × 1 convolution with 256 filters. Finally, we use

1× 1 convolution to generate the final masks which include

a background mask and a foreground mask. We use a soft-

max function to normalize the score in each location, which

outputs the confidence maps of the foreground and the back-

ground. The confidence maps are then fed to the next IOM

for optimization. Our final result is achieved by bilinearly

upsampling the confidence map to the same spatial size of

the query image and classifying each location according to

the confidence maps. At the training time, to avoid the iter-

ative optimization module over-fitting the predicted masks,

we alternatively use predicted masks in the last epoch and

empty masks as the input to IOM. The predicted masks yt−1

is reset to empty masks with a probability of pr. This can

be seen as dropout of the whole mask, an extension of the

standard dropout [32]. In comparison to previous iterative

refinement methods in segmentation literature [14, 34, 22],

our method integrates the refinement scheme into the model

with residual connection so that the whole model could run

in a feed-forward manner and is trained end-to-end.

4.3. Attention Mechanism for k­shot Segmentation

In order to efficiently merge information in the k-shot

setting, we use an attention mechanism to fuse the compari-

son results generated by different support examples. Specif-

ically, we add an attention module parallel to the dense

comparison convolution in DCM (see Fig. 3). The atten-

tion branch consists of two convolutional blocks. The first

Support set Query set

CANet（a）

（b） CANet

Support set Query set

Figure 4 – (a) CANet with pixel-wise annotated support set. (b) CANet

with bounding box annotated support set.

one has 256 3×3 filters, followed by 3×3 max pooling. The

second one has one 3× 3 convolution followed by a global

average pooling. The result from the attention branch serves

as the weight λ. Then, the weights from all support exam-

ples are normalized by a softmax function:

λ̂i =
eλi

∑k

j=1
eλj

. (2)

The final output is the weighted sum of features generated

by different support samples.

4.4. Bounding Box Annotations

As the essence of our dense comparison module is to

densely compare each location in the query image to the

global representation provided by the support example, we

explore a new form of support set annotation that uses

bounding boxes. Compared with pixel-wise annotations,

the bounding box annotation uses a rectangular box to de-

note the object area, which is often used in object detection

tasks. Labeling bounding box annotations is much cheaper

than pixel-wise labeling. We relax the support set by treat-

ing the whole bounding box area as the foreground. We test

our model under this setting to evaluate the capability of

our framework. The comparison of the two test settings is

shown in Fig. 4.

5. Experiments

To evaluate the performance of our proposed method, we

conduct extensive experiments on the PASCAL VOC 2012

dataset and COCO dataset. Our network is trained end-to-

end. The loss function is the mean of cross-entropy loss

over all spatial locations in the output map. Our network is

trained using SGD for 200 epochs with the PyTorch library

on Nvidia Tesla P100 GPUs. We set the learning rate to

0.0025 and set probability pr to 0.7. We use a mini-batch of

4 episodes for training on PASCAL-5i and 8 on COCO. At

inference time, we iteratively optimize the predicted results

for 4 times after the initial prediction.
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Method
1-shot 5-shot

split-0 split-1 split-2 split-3 mean split-0 split-1 split-2 split-3 mean

OSLSM[29] 33.6 55.3 40.9 33.5 40.8 35.9 58.1 42.7 39.1 43.9

CANet 52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1

(a) 1-shot and 5-shot results under the meanIoU evaluation metric.

Method
1-shot 5-shot

split-0 split-1 split-2 split-3 mean split-0 split-1 split-2 split-3 mean

OSLSM [29] - - - - 61.3 - - - - 61.5

co-FCN [24] - - - - 60.1 - - - - 60.2

PL [5] - - - - 61.2 - - - - 62.3

CANet 71.0 76.7 54.0 67.2 66.2 74.2 80.3 57.0 66.8 69.6

(b) 1-shot and 5-shot results under the FB-IoU evaluation metric.

Table 1 – Results on the PASCAL-5i dataset. Our proposed method outperforms all previous methods under both evaluation metrics and sets a new

state-of-the-art performance (bold).

Evaluation metric. There is a minor difference of eval-

uation metrics in previous work. Shaban et al. [29] measure

the per-class foreground Intersection-over-Union (IoU) and

use the average IoU over all classes (meanIoU) to report the

results. While in [24, 5], they ignore the image categories

and calculate the mean of foreground IoU and background

IoU over all test images (FB-IoU). We choose the meanIoU

evaluation metric for our analysis experiments due to the

following reasons: 1) The numbers of test samples in differ-

ent classes are not balanced (e.g., 49 of class sheep vs. 378

of class person). Ignoring the image categories may lead to

a biased result towards the class with more images. Also,

we can observe the effectiveness of our model in different

classes with the meanIoU evaluation metric. 2) As most

objects are small relative to the whole image, even though

the model fails to segment any objects, the background IoU

can still be very high, thus failing to reflect the capability of

the model. 3) Foreground IoU is more often used in binary

segmentation literature (e.g., video segmentation and inter-

active segmentation). Nevertheless, we still compare our

results with previous work under both evaluation metrics.

5.1. PASCAL­5i

PASCAL-5i is a dataset for few-shot semantic segmen-

tation proposed in [29]. It is built on images from PASCAL

VOC 2012 and extra annotations from SDS [7]. 20 object

categories from PASCAL VOC are evenly divided into 4

splits with three splits for training and one split for testing.

At test time, 1000 support-query pairs are randomly sam-

pled in the test split. More details of PASCAL-5i can be

found in [29].

5.1.1 Comparison with the State-of-the-art Methods

We compare our model with the state-of-the-art methods in

Table 1. Table 1 (a) shows the results evaluated under the

meanIoU evaluation metric and Table 1 (b) shows the re-

sults under the FB-IoU metric. For the performance of [29]

under the FB-IoU metric, we quote the result reproduced

Annotation Result (meanIoU %)

Pixel-wise labels 54.0

Bounding box 52.0

Table 2 – Evaluation with different support set annotations. Our model

with bounding box annotated support set can achieve comparable per-

formance to the result with pixel-wise annotations

in [24]. Our model significantly outperforms the state-of-

the-art methods under both evaluation metrics. Particularly,

our meanIoU score outperforms the state-of-the-art results

by 14.6% for the 1-shot task and 13.2% for the 5-shot task.

Qualitative Results. Fig. 5 shows some qualitative ex-

amples of our segmentation results. Note that given the

same query image, our model is able to segment different

classes when different support examples are presented (See

the 5th and the 6th examples in Fig. 5).

5.1.2 Experiments on Bounding Box Annotations

We evaluate CANet with the bounding box annotated sup-

port set at test time. We acquire bounding box annotations

from the PASCAL VOC 2012 dataset and SDS [7]. The

support mask is the region inside the bounding box of one

instance instead of all instances in a support image. The in-

stance is chosen randomly. As is shown in Table 2, the per-

formance with bounding box annotated support set is com-

parable to the result with expensive pixel-level annotated

support set, which means our dense comparison module is

able to withstand noise introduced by the background area

within the bounding box.

5.1.3 Ablation Study

We implement extensive ablation experiments on the

PASCAL-5i dataset to inspect the effectiveness of different

components in our network. All results are average mean-

IoU over 4 splits on the PASCAL-5i dataset.

Features for Comparison. In Table 3, we compare

our model variants that use different levels of feature in
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Figure 5 – Qualitative examples of 1-shot segmentation on the PASCAL-5i dataset. The first row is query images and support images (right bottom) with

ground-truth annotations. The second row is our predicted results. Note that the 5th and the 6th examples have the same query images and our model is

able to segment different classes when different support examples are presented.

block2 block3 block4 meanIoU

X 46.6

X 50.8

X 48.4

X X 51.2

X X 49.2

X X 49.6

X X X 49.5

Table 3 – Ablation experiments on the choice of features in ResNet

for comparison. The combination of features after block2 and block3

achieves the best result.

ResNet-50 for feature comparison. In all cases, we encode

the features to 256 dimensions before comparison and we

do not adopt iterative optimization. We experiment feature

comparison with single block and multiple blocks. When

single block is used for comparison, block3 performs the

best. When multiple blocks are used for comparison, the

combination of block2 and block3 achieves the best result.

The reason is that block2 corresponds to relatively low-

level cues, which alone is not enough to match object parts.

While block4 corresponds to high-level features, e.g., cate-

gories, and incorporates a great number of parameters (2048

channels), which makes it hard to optimize under the few-

shot setting. The combination of block2 and block3 is the

best for matching class-agnostic object parts. We also im-

plement experiments with VGG16 as the feature extractor.

We choose features of stage 2, 3, and 4 (out of 5). The

final multi-scale test result with VGG as the backbone is

54.3%. Compared with the ResNet50 version (55.4%), the

performance only drops by 1.1% and still significantly out-

performs the state-of-the-art results.

Iterative Optimization Module. To validate the effec-

tiveness of our proposed iterative optimization module, we

compare our network with a baseline model that does not

employ additional IOM for optimization, i.e., the initial pre-

diction from CANet(CANet-Init). We also compare our it-

erative optimization scheme with DenseCRF [12], which

is a post-processing method widely used in segmentation

Method Result (meanIoU %)

CANet-Init 51.2

CANet-Init + DenseCRF 51.9

CANet 54.0

Table 4 – Ablation experiments on the iterative optimization module.

CANet-Init denotes the initial prediction from CANet without additional

optimization. Our iterative optimization scheme outperforms the base-

line models by 2.8% and is more effective in refining the segmentation

maps than DenseCRF.

literature to refine segmentation maps. Table 4 shows the

results of different model variants. As is shown, the itera-

tive optimization yields 2.8% improvement over the initial

prediction. DenseCRF does not significantly improve the

few-shot segmentation prediction. We visualize the results

and find that for the predicted masks which successfully lo-

cate most of the object region, DenseCRF can effectively

improve segmentation results, particularly in the region of

object boundaries. However, for failure masks, e.g., false

localization of objects, DenseCRF expands false positive

regions, which deteriorates the IoU score. Our IOM, on

the other hand, can effectively fill the object region and re-

move irrelevant areas in a learnable way. We visualize the

intermediate results of our iterative optimization process in

Fig. 6.

Attention vs. Feature Fusion vs. Mask Fusion. In

the k-shot setting, we compare our attention mechanism to

several solutions in previous work: 1) Feature-level average

fusion. We experiment the method in [24], which is to av-

erage the features generated by different support examples.

2) Logic OR fusion for masks. Shaban et al. [29] use 1-shot

model to make predictions with each support example and

use logic OR operation to fuse individual predicted masks.

Logic OR operation means that a position is predicted as

foreground if any support example predicts it as foreground.

3) Average fusion for masks. Moreover, we also experiment

with average operation to fuse individual 1-shot predicted

confidence maps. We report the results of CANet with dif-

ferent fusion solutions in Table 5. Our attention mechanism
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ground

truth

Number of iterations (N)

Figure 6 – Visualization of the iterative optimization process. The first

column shows the query and support images with ground-truth masks

annotated. The rest columns show our iterative optimization results.

Method Result (meanIoU %) Increment

1-shot baseline 54.0 0

Feature-Avg 55.0 1.0

Mask-Avg 54.5 0.5

Mask-OR 53.4 -0.6

Attention 55.8 1.8

Table 5 – Comparison of different 5-shot solutions. Our attention

method performs the best and brings the most increment in the mean-

IoU score over the 1-shot baseline.

performs the best and brings the most increment over 1-shot

baseline. This indicates that a learned attention module can

be more effective in fusing information from different sup-

port examples than non-learnable fusion methods in feature

level or image level. Using logic OR operation to fuse pre-

dicted masks does not show improvement over the 1-shot

result.

Multi-scale evaluation. We also experiment multi-scale

evaluation as is commonly done in segmentation literature.

Specifically, we re-scale the query image by [0.7, 1, 1.3 ]

and average their predicted results. Multi-scale evaluation

brings 1.4% and 1.3% meanIoU improvement in 1-shot and

5-shot settings, respectively.

5.2. COCO

COCO 2014 [18] is a challenging large-scale dataset,

which contains 80 object categories. The original dataset

contains 82,783 and 40,504 images for training and vali-

dation respectively. Directly experimenting on the original

dataset is very demanding on time and computation. In-

stead, we choose a subset of the original dataset to evalu-

ate our model and for further research on this topic. We

choose 40 classes for training, 20 for validation and 20 for

test, which contain 39,107 (train), 5,895 (validation) and

9,673 (test) samples, respectively. Training images are cho-

Method MS Result (meanIoU %)

CANet-Init 42.2

CANet 46.3

CANet X 49.9

(a) 1-shot results on COCO dataset.

Method MS Result (meanIoU %)

Feature-Avg 48.9

Mask-Avg 49.2

Mask-OR 46.2

Attention 49.7

Attention X 51.6

(b) 5-shot results on COCO dataset.

Table 6 – MeanIoU results on COCO dataset. MS denotes multi-scale

evaluation.

sen from the COCO training set, while validation and test

images are chosen from the COCO validation set.

For the 1-shot task, we compare our network with the

baseline model that does not employ additional iterative op-

timization (CANet-Init), and for the 5-shot task, we com-

pare our attention mechanism with three non-learnable fu-

sion methods described in Section 5.1.3. The result is

shown in Table 6. In the 1-shot setting, our iterative

optimization scheme brings 4.1% meanIoU improvement.

Multi-scale evaluation shows extra 3.3% increase. In the 5-

shot setting, our attention mechanism outperforms all non-

learnable methods. Multi-scale evaluation obtains another

1.9% gain.

6. Conclusion

We have presented CANet, a novel class-agnostic seg-

mentation network with few-shot learning. The dense com-

parison module exploits multiple levels of feature in CNNs

to perform dense feature comparison and the iterative opti-

mization module learns to iteratively refines the predicted

results. Our attention mechanism for solving the k-shot

problem turns out to be more effective than non-learnable

methods. Comprehensive experiments show the effective-

ness of our framework, and the performance significantly

outperforms all previous work.
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