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Abstract

Accurate microcalcification (µC) detection is of great

importance due to its high proportion in early breast can-

cers. Most of the previous µC detection methods belong

to discriminative models, where classifiers are exploited to

distinguish µCs from other backgrounds. However, it is still

challenging for these methods to tell the µCs from amounts

of normal tissues because they are too tiny (at most 14

pixels). Generative methods can precisely model the nor-

mal tissues and regard the abnormal ones as outliers, while

they fail to further distinguish the µCs from other anoma-

lies, i.e. vessel calcifications. In this paper, we propose

a hybrid approach by taking advantages of both genera-

tive and discriminative models. Firstly, a generative model

named Anomaly Separation Network (ASN) is used to gen-

erate candidate µCs. ASN contains two major components.

A deep convolutional encoder-decoder network is built to

learn the image reconstruction mapping and a t-test loss

function is designed to separate the distributions of the re-

construction residuals of µCs from normal tissues. Sec-

ondly, a discriminative model is cascaded to tell the µCs

from the false positives. Finally, to verify the effectiveness

of our method, we conduct experiments on both public and

in-house datasets, which demonstrates that our approach

outperforms previous state-of-the-art methods.

1. Introduction

Breast cancer is the most common cancer among women

worldwide [28]. To discover it at the early state, breast

screening is necessarily applied [27]. Among the signs of

early breast cancers, the microcalcifications (µCs) belongs

to one of the most common kinds [2]. To analyze them, the

1Authors contributed equally.

mammogram images are widely used. As shown in Fig.1,

µCs are tiny and vary in brightness, contrast, shape with

diverse surroundings. It is obviously difficult and time con-

suming for radiologists to detect them one by one. There-

fore, an automatical µCs detection methods with high accu-

racy in mammography images is of great importance.

To achieve this goal, different methods are proposed,

among which most are discriminative models, i.e., classi-

fication models. Usually, various features, such as harr-like

features [31, 3], shape and texture features [14] and deep

features [4, 23] are extracted from images to train a binary

classifier that can tell µC pixels from the normal ones. How-

ever, these methods suffer from extremely imbalanced sam-

ples. The reason lies in that µCs are commonly too tiny,

generally smaller than 14 pixels in mammogram images,

and the vast majority of such image regions are normal tis-

sues. Therefore, it is challenging to extract efficient features

for such small objects and also lead to terrible distribution

of µC and other tissues. In our experiments, the ratio be-

tween positive (µCs) samples and negative (normal tissues)

samples is around 4× 103.

To address the aforementioned problem, we try to firstly

distinguish normal pixels and abnormal ones, while µCs be-

longs to abnormal regions. In this way, we can reduce a lot

of negative samples that exist in discriminative models. To

this end, we rethink the µC detection task from the point of

image reconstruction. The normal samples are those regular

backgrounds and there are a huge mount of these regions.

Hence it is supposed to be not hard to find a dictionary to

reconstruct these normal samples. On the contrary, µCs are

irregular, rare and hard to be reconstructed. Therefore, it is

natural to learn a reconstruction model that normal samples

can be well reconstructed while µCs not. In this paper, we

design an image reconstruction network, which is modeled

as a deep convolutional encoder-decoder network, provid-

ing the reconstruction function with powerful learning abil-
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Figure 1. An illustration of µCs in mammogram images. (a) is sampled from INBreast dataset [19], (b) and (c) are from our in-house

dataset. Three columns in each sub-figure represent the raw mammogram image, patches zooming in µCs, and the corresponding circled

µCs, respectively. Most µCs are within 1mm, which is about 14 pixels in a mammogram image with 70um pixel spacing. Images from

INBreast and in-house dataset have very different gray-level histograms due to different data resources. µCs from (b) and (c) show diversity

in brightness, contrast, shape and surroundings.

ity. Moreover, to extract informative features for such tiny

objects, U-Net [24] is exploited as the backbone network.

To further improve the performance of such reconstruc-

tion procesure, a novel t-test loss is designed to drive

the distribution of the residual of µCs away from that of

normal regions. The proposed t-test loss is inspired by

the two-sample t-test, which is a classical hypothesis test

method. Here, we alternate it into a data-driven loss func-

tion. Specifically, we regard the reconstruction residuals of

positive (µCs) and negative (normal tissues) pixels as two

independent random variables learned by the reconstruction

network. Instead of determining whether such two distribu-

tions are different or not, our t-test loss forces the recon-

struction network to constrain these two distributions dif-

ferently as much as possible. Since the normal tissues are

easy to reconstruct while µCs are not, we minimize the re-

construction residuals of negative pixels and implement a

hard thresholding to constrain the positive ones to be large

than a pre-set threshold. So far, we have explained all neces-

sary components of the proposed generative module, which

is called Anomaly Separation Network (ASN).

After the reconstruction, abnormal regions are obtained,

which contain both candidates µCs and other kinds of cal-

cifications, such as vessel calcifications, rod-like calcifica-

tions, etc. Although they all belong to calcifications, we ob-

serve that they are quite different from each other in shape.

Benefited from such a property, we build a discriminative

model, i.e., a deep binary classification network, to classify

µCs and others. This discriminative model is designed to

implement the False Positive Reduction (FPR).

To verify the effectiveness of the proposed method, we

implement evaluation on both public dataset INBreast [19]

and our in-house dataset. We achieve a recall of 78.35% at

5 false positive per image (simplified as R@5) and a R@10

of 85.96% on InBreast; a R@5 of 90.71% and a R@10 of

92.24% on in-house dataset, which outperforms previous

state-of-the-art methods.

To summary, our contributions are mainly three-fold: 1)

To solve the imbalanced problem that previous discrimina-

tive models suffer, we propose a generative model to dis-

tinguish the normal regions from abnormal ones where the

candidates µCs lie in. Moreover, U-Net is applied to extract

informative features for such tiny objects. 2) To further en-

hance the performance, a novel t-test loss is designed to en-

large the distribution diversity between normal regions and

abnormal ones. 3) The proposed ASN achieves the best per-

formance on both public and in-house datasets, compared

with previous state-of-the-art methods.

2. Related Works

2.1. Microcalcification Detection

Most existing µC detection approaches can be coarsely

classified into two categories: image processing based and

learning based. The first category is mainly based on the

fact that µCs are commonly brighter with higher frequency

than their surrounding tissues. Mammogram images are

first enhanced with wavelet transform [1, 14] and then hes-

sian matrix response [20], morphological filtering [1] are

applied to identify µCs. However, such methods are eas-

ily affected by dense tissues and also suffer from the large

mount of false positives.

The second category is based on supervised learning. Ef-

fective binary classifiers can be trained to tell the µCs from
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normal tissues. Khalaf et al. [14] extract several shape and

texture descriptiors, and apply Students t-test and SVM with

RBF kernels for feature selection and training. Harr-like

features [31] are used in [3], where a set of cascaded classi-

fiers are trained to cope with the class imbalance problem.

Cai et al. [4] apply CNN to learn deep features for classi-

fication. The network is trained on proposals generated by

thresholding on band-pass filtered images.

2.2. Image Reconstruction

Image reconstruction is the problem of reconstructing

original image which might be noisy and blurred [22].

One typically applied method is sparse dictionary learn-

ing which aims at learning the sparse linear representation

of the elements that altogether compose dictionary. Imple-

mented with L1 regularization, the learned representation is

robust to occlusion. For example, a classification algorithm

based on sparse coding was proposed [33] to successfully

handle occlusion and corruption uniformly and robustly in

recognition of face images.

To benefit from the powerful representation ability of

CNN, Turchenko et al. [30] present a deep convolutional

auto-encoder to achieve dimension reduction, clustering

and image reconstruction. Kingma and Welling [16] design

the auto-encoding variational bayes algorithm which allows

us to perform very efficient approximate posterior inference

that can also be used for a host of tasks such as recognition,

denoising, representation and visualization purposes. John-

son et al. [13] propose the use of perceptual loss functions

for training feed-forward networks for image transforma-

tion tasks. Goodfellow et al. [8] build a new framework

for estimating generative models via an adversarial process,

which can be widely used for image generation.

2.3. Two­sample T­test

The two-sample T-test is a statistical hypothesis testing

method to determine whether the two sets of data are signifi-

cantly different from each other. Assuming that the samples

in each group are independent and identically distributed

from normal distribution1, then the computed t-statistics
follows a Student’s t-distribution under null hypothesis that

two groups are not differently distributed. By product, the

corresponding p-value, which measures the probability that

the null hypothesis holds, can also be calculated. Hence,

one can reject the null hypothesis when the p-value is less

than pre-defined threshold level α, which means that the

two groups of data are thought to be differently distributed.

2.4. Anomaly Detection

Anomaly detection, also referred as outlier detection, is

the problem of identification of patterns in data that do not

1The assumption of normal distribution can be relaxed according to

central limit theorem

conform to expected behavior [5]. Such non-conforming

patterns, i.e. outliers are generally defined as the anoma-

lies, rare events or aberrant data suspected to be generated

from a different mechanism that is deviate markedly from

the most common or expected pattern [7]. The detection of

outliers may provide us important information, e.g. credit

card fraud, medical problems in clinical trials. Moreover,

the existence of such outliers may result in the instability in

estimation, inference, and model selection, etc. Hence, the

outlier identification is a critical task to obtain robust pa-

rameter estimation and detecting anomalies given new data

[12]. In our paper, we consider the µCs as outliers since

the number of positive image pixels are rare and differently

distributed compared to regular negative ones.

Various methods have been proposed for outlier de-

tection, including univariate models [17] and multivariate

models [32, 12, 25]. For unsupervised outlier detection

where the anomalies are unlabeled, one can typically apply

robust regression with Hubers loss [12], which minimizes

square loss for normal data and absolute loss for abnormal

ones. It has been proved in [26] that this scheme is equiva-

lent to a LASSO problem, which translates the detection of

anomalies into a model selection problem.

3. Methodology

As shown in Fig. 2, our system mainly consists of two

cascaded modules: Anomaly Separation Network (ASN)

and False Positive Reduction (FPR) model. The outputs of

ASN are directly fed into FPR, which predicts the final re-

sults. In this section, we will demonstrate ASN and FPR

separately.

3.1. Anomaly Separation Network

ASN includes two core components: deep reconstruc-

tion network and reconstruction residual learning with t-test

loss. During training process, mammogram images are cut

into patches and sent into a deep reconstruction network.

Then we apply the t-test loss on the reconstruction residu-

als, which encourages the residuals of normal pixels to be

small, while µCs pixels to be relatively large. During test-

ing process, for each whole mammogram, we calculate the

reconstruction residual map and predict points and scores

based on it. In this section, we will first demonstrate our re-

construction network and reconstruction residual learning,

then explain the connection between t-test loss and Huber’s

loss [12] which is widely used for anomaly detection.

3.1.1 Deep Reconstruction Network

We design a deep reconstruction network to provide a

learnable reconstruction function. Deep ConvNet has been

proved robust and effective for many image tasks. To take
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Figure 2. The pipeline of the proposed method. There are two cascaded models: Anomaly Separation Network (ASN) and False Positive

Reduction (FPR) model. The outputs of ASN are directly fed into FPR, which predicts the final results. For ASN, during training process,

the U-Net based reconstruction network is trained with mammogram patches. T-test loss is applied on the reconstruction residual pixels

to drive the normal residuals and µC residuals away from each other. During testing process, given a mammogram image, after pre-

processing, the reconstruction residual is computed, which can generate predicted points (show in red circles). FPR model is a ResNet50,

trained by hard negatives of ASN and positives of ground truth. The final prediction is a fusion of both models by product in score level.

the great representation ability, we use a U-Net [24] for pix-

elwise reconstruction. Our U-Net consists of 3 downsample

stages and 3 upsample stages with skip connections. Each

stage includes 3 convolution layers.

We design such a network for three reasons. Firstly,

the downsampling operations can lead to effective receptive

field size, which is advantageous for the reconstruction of

each pixel and the coherence of reconstructed image. Sec-

ondly, sizes of µCs are within 14 pixels. Therefore, we only

downsample the image by the factor of 8 to avoid too much

information loss for reconstruction. Thirdly, the skip con-

nections can keep low-level information, which is necessary

for accurate localization.

3.1.2 Reconstruction Residual Learning

Let f(·) denote the reconstruction network function. Given

an image I , the reconstruction residual value is,

r(I) = |f(Θ; I)− I|

=
∑

P∈I

|f(Θ;P)− P|
(
f(Θ;P)

∆
= f(Θ; I)[P]

)
(1)

where P denotes the pixel and Θ denotes the parameters

in the reconstruction network. The reconstruction residual

of positive and negative pixels are desired to have different

distributions. Therefore, we propose the t-test loss. In the

following sections, we will firstly review the two-sample t-

test, and then demonstrate effectiveness of the t-test loss.

Two-Sample T-test Given two groups of samples

x1, ..., xNx

iid
∼ N(µx, σ

2
x) and y1, ..., yNy

iid
∼ N(µy, σ

2
y),

to test whether µx > µy or not, we build null hypothesis

(H0) and alternative hypothesis (H1) [6] as,

H0 : µx <= µy H1 : µx > µy (2)

And a t-statistics is generated using the following for-

mula:

t =
x̄− ȳ√
S2
x

Nx
+

S2
y

Ny

(3)

where ·̄ denotes the mean value of a group of samples, Sx

and Sy are sample variances of x and y, respectively. We

choose to accept H1 (reject H0) if t ⩾ tν,α where tν,α is

the critical value at significant level α of the Student’s t-

distribution with degrees of freedom ν, i.e. P (t ⩾ tν,α) =
α, where

ν =





(

σ2
x

Nx
+

σ2
y

Ny

)

2

σ2
x

Nx

1

Nx−1
+

σ2
y

Ny

1

Ny−1

, if σx ̸= σy

Nx +Ny − 2, if σx = σy

(4)

In real applications, the {xi}i=1,...,Nx
and {yj}j=1,...,Ny

may not ideally satisfy normal distribution. However, ac-

cording to the central limit theorem, the x̄ and ȳ are ap-

proximate to normal distribution when Nx and Ny are large

enough, in which the two-sample t-test can also be applied.

Since the normal tissues are regular and calcifications are

not hence scattered distributed, we estimate the degree of

freedom as

ν̃ =

(
S2

x

Nx
+

S2

y

Ny

)2

S2
x

Nx

1

Nx−1
+

S2
y

Ny

1

Ny−1

(5)
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T-test Loss Given independent negative and posi-

tive samples, we use Eq. 1 to compute the residual

value of reconstruction, denoted as {rip(Θ)}i=1,...,Np
and

{rin(Θ)}i=1,...,Nn
. In the rest of the paper, we denote the

above residual values as {rip}i=1,...,Np
and {rin}i=1,...,Nn

for simplicity. We then proposing the following t-test loss,

L = max(β − r̄p, 0) + r̄n + λpS
2
rp

+ λnS
2
rn

(6)

where the threshold hyper-parameter β denotes the margin

between the means of positive and negative residual distri-

butions; λp and λn are regularization hyper-parameters.

Minimizing such t-test loss can be viewed as maximizing

the t-statistics defined in Eq. 2, which is commonly used

to determine whether two groups of data are different from

each other. Our goal instead, is accurate classification, i.e.

ability to discriminate the µCs from negative image pixels

in a supervised way. To achieve this goal, we in turn pro-

pose to drive reconstruction of labeled positive pixels away

from negative ones by minimizing L.

In more details, note that max(β− r̄p, 0)+ r̄n hopes the

reconstruction parameter (Θ) to well fit the negative pix-

els while leave the reconstruction of positive pixels with a

large margin. In another way, Θ is trained to learn the neg-

ative pixels and also the remaining pixels except the µCs

in the positive patch. Therefore, for positive pixels in the

test data, the Θ can reconstruct with big margin. In such

way, it can be successfully predicted as positive label and

the corresponding residue can be regarded as the µC.

Besides such part in Eq. 6, we additionally regularize Sx

and Sy . Without such regularization, the estimation of Θ
tends to be unstable. That’s because large values of Sx and

Sy can make rit=n,p easy to be either small or large since

they tend to be distributed in a widely spread way.

In contrast, the estimation error loss min r̄n + r̄p may

suffer from the model collapse problem that the learned

mapping function tends to be identity. Therefore, they are

unable to model the underlying structure of positive image

pixels and hence can not be generalized to detect µC in the

test phase. Moreover, compared with the estimation error

loss, our loss is more task-driven since it’s agreed with the

rule of outlier detection in the test phase, i.e. the patch i is

detected as outlier if ri > β.

In addition, the estimated Θ, which is supervised (the µC

are labeled) to model the residual values of negative (pos-

itive) samples less (larger) than the threshold parameter β,

can be directly used to detect µC in the test phase. Hence,

the t-test loss can be incorporated into the whole end-to-end

procedure, which is illustrated in Fig. 2.

3.1.3 Connection to Huber’s loss

We claim that the proposed t-test loss, i.e. Eq 6 can

be viewed as the variation of robust regression with Hu-

ber’s loss [12], which is an unsupervised outlier detection

method. In more details, note that the Huber’s loss in our

scenario can be written as:

LHuber(Θ) =

N∑

i=1

ρβ(P
i, f(Θ;Pi)) (7)

where N denotes the number of patches in training set and

ρβ(P
i, f(Θ;Pi)) =

{
1

2

(
Pi − f(Θ;Pi)

)2
,

∣∣Pi − f(Θ;Pi)
∣∣ ⩽ β

β
(∣∣Pi − f(Θ;Pi)

∣∣− 1

2
β
)
, otherwise

(8)

Eq. 7 is the combination of square loss (mean unbiased es-

timators) and absolute loss (median unbiased estimators). It

has been proved in [26] that the minimization of Eq. 7 is

equivalent to

min
Θ

Nn∑

i=1

1

2

(
Pi
n − f(Θ;Pi

n)− γi
)2

+

Np∑

i=1

1

2

(
Pi
p − f(Θ;Pi

p)− γi
)2

+ λ∥γ∥1, (9)

i is outlier, i.e. γi ̸= 0 if and only if
∣∣Pi − f(Θ;Pi)

∣∣ > β.

Here the outliers are unlabeled and they can be regarded as

the elements with non-zero value of γ.

In our experiments, the outliers (positive image pixels

Pp) in the training data are labeled. Hence, to remove the

deviating effect of such outliers, we in turn propose to con-

strain such outliers to satisfy the definition in Huber’s loss,

i.e.
∣∣Pi

p − f(Θ;Pi
p)
∣∣ > β for each i. Combined with the

absolute loss for Pn, the total loss can be correspondingly

designed as:

L̃ = max(β − r̄p, 0) + r̄n. (10)

The r̄p is expected to be larger than the threshold parameter

β, which is a relaxation of the constraint in Huber’s loss for

more robustness and better generalization. By removing the

outliers’ effect, a robust estimation of Θ can be achieved,

which in turn can lead to accurate detection of outliers in the

test data. Besides, we additionally regularize variances to

prevent unstable parameter estimation, as mentioned earlier.

3.1.4 Setting Hyper-parameters

The threshold parameter β > 0 is inversely proportional to

significance level α. From the view of outlier detection, it

is the trade-off between “masking effect” and “swamping

effect” [12]. Too small β may lead to incorrectly identify-

ing negative pixel as outlier, i.e. swamping effect; while too

12582



Figure 3. Examples of comparison vessel calcifications (left, mark-

ing in green rectangles) with µCs (right, marking in orange cir-

cles).

Table 1. Evaluations on INBreast dataset (%).

Method R@1 R@5 R@10 R@15 R@20

FPN FRCN 39.72 71.47 72.48 72.48 72.48

U-Net w FPR 29.45 77.61 82.84 83.67 84.50

Proposed 36.70 78.35 85.96 88.26 88.90

large value may result in missing some outliers, i.e. mask-

ing effect.

Larger λs=n,p implies more regularization on variances.

Here, we incorporate the heterogenous regularization (λp ̸=
λn) into our loss, which means that the variances are differ-

ent. In our experiments, the µC is irregular hence the recon-

struction may vary a lot. Hence, it’s reasonable to imple-

ment larger regularization on Sp to prevent Sp from being

too large. As what’ll be shown in the experiment section,

the best prediction results are given when λp > λn.

3.2. False Positive Reduction

The proposed ASN can reconstruct normal tissues well

and regard µCs as anomalies. However, there are kinds

of calcifications in breast mammograms. As is shown in

Fig.3, the green rectangles in the left patch are vessel cal-

cifications, which can be considered as lots of calcification

pixels. To ASN, they are also outliers for reconstruction

even though they are very different with true µCs in shape,

which are shown with orange circles in the right patch in

Fig.3. While they are not hard to distinguish for discrimi-

native models. Therefore, we cascade a deep classification

network to further reduce the false positives.

We use ResNet50 [10] in FPR stage. Given an image, we

use a simple threshold on the reconstruction residual map

generated by ASN. For each connected component, we use

the center as predicted location and the summed score of

the reconstruction residual value as its ASN score. For each

ASN prediction, a patch with size of 56×56 is cropped and

resized to 224 × 224, and then fed into ResNet50. We use

the product of both ASN and FPR scores as the final score.

4. Experiments

4.1. Implementation Details

Mammogram image is commonly stored as 12-bit or 14-

bit data in DICOM format. To convert it into 8-bit gray

Table 2. Evaluations on in-house dataset (%).

Method R@1 R@5 R@10 R@15 R@20

FPN FRCN 78.27 81.33 81.33 81.33 81.33

U-Net w FPR 84.90 88.06 88.67 88.67 88.67

Proposed 85.31 90.71 92.24 92.65 92.76

image, we simply map all the raw pixels into 0 ∼ 255 lin-

early. For pre-processing, we first normalize the image to

have the same pixel spacing of 70 µm. And then, we seg-

ment the breast region with Otsus method [21] and remove

the background of the mammogram.

We implement proposed model with pytorch. ASN is

trained from scratch with weights initialized by [9]. We

use Adam [15] with a weight decay of 10−4 and a starting

learning rate 0.001. The running averages of gradient and

its square are 0.9 and 0.999 respectively. The margin param-

eter β in Eq.6 is set to 0.8, while the weighting parameters

λp and λn are set to 1 and 0.1 respectively. During the train-

ing process, mammogram images are cropped into patches

with size of 112 × 112 and fed into ASN. We do not use

the whole images since they are usually of high resolution

(e.g. ∼ 3500× 2500 pixels), which is too large for memory

limitation. We sample the positive and negative patches to

be 1:1 to extract more proposals.

FPR model is pretrained by ImageNet. We use SGD with

learning rate starting from 0.001. All predictions by ASN

and all ground truth µCs are used to train FPR model with-

out any extra sampling.

4.2. Datasets

We evaluate the performances on both a public dataset

named INBreast [19] and an in-house dataset. There are

several public mammogram datasets, i.e. MIAS [29],

DDSM [11], INBreast and so on. We choose INBreast be-

cause the image quality and µCs annotations are relatively

better. INBreast contains 115 cases with 410 mammogram

images, in which 6880 individual calcifications have been

found by two radiologists. After filtering the calcifications

larger than 1mm, we pick up 5782 µCs for experiments.

We randomly divide the dataset into training, validation and

testing sets by 3:1:1. The detailed division is shown in sup-

plementary materials.

We also collected an in-house dataset for further evalu-

ation, which contains 439 cases and 1799 images. Images

of different study years but from the same woman are taken

as the same case. Two radiologists with experiences more

than 10 years annotated the dataset. We pick up 7588 µCs

identified by both radiologists as ground truth. We select

339 cases with 1386 images and 5479 µCs as training set,

50 cases with 208 images and 1129 µCs as validation set,

50 cases with 205 images and 980 µCs as testing set.

12583



10−1 100 101 102

False Positive per Image

0.0

0.2

0.4

0.6

0.8

Re
ca

ll

FPN FRCN
ASN
Proposed
U-net
U-net w FPR

FROC on INbreast dataset

Figure 4. FROCs for INBreast dataset.
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Figure 5. FROCs for in-house dataset.

4.3. Baseline Methods

For both datasets, we build two baselines:

FPN FRCN: Faster RCNN [23] with Feature Pyramid

Network (FPN) [18]. FPN is a state-of-the-art detection

model especially for small objects. We use ResNet50 as

backbone. For each predicted bounding box, the center

point is used for final evaluation.

U-Net w FPR: U-Net with FPR. U-Net [24] is proved

to be effective for medical imaging segmentation. The skip

connections are helpful for small object segmentation. Here

we compare U-Net with ASN to verify the effectiveness of

the proposed generative model. To deal with the extreme

unbalanced samples, and also to be fair comparison with

the proposed model, we design a two stage segmentation

model similar with ASN. We first train a segmentation task

using the same network structure with ASN supervised by

cross-entropy loss. We also sample the positive and neg-

ative patches to be 1:1 to extract more proposals. We se-

lect the connected regions of the predicted mask as proposal

similar to the proposed method. Then an FPR model is cas-

caded to reduce the false positives.

Table 3. Proposal evaluations on INBreast dataset (%).

Method R@5 R@10 R@15 R@20 R@30

U-Net 43.39 58.35 72.20 82.02 85.32

ASN 44.13 65.14 78.72 84.95 88.35

Table 4. Proposal evaluations on in-house dataset (%).

Method R@5 R@10 R@15 R@20 R@30

U-Net 86.63 88.37 88.67 88.67 88.67

ASN 88.16 90.00 91.33 91.84 92.24

4.4. Performances

We report the recalls at k false positive per image (sim-

plified as R@k), where k ∈ {1, 5, 10, 15, 20} for final mod-

els and k ∈ {5, 10, 15, 20, 30} for proposal models. A µC

is considered as recalled if there is at least one prediction

point within 1mm of it.

As shown in Tab. 1 and 2, the proposed models out-

perform the state-of-the-art methods on both datasets. The

FPN models suffer from relatively lower recalls. The main

reason is that some µCs are extremely tiny (≤ 5 pixels).

The resolution of the finest prediction level of FPN is only

1/4 with respect to the origin image. For the first 3 ex-

amples in Fig.6, FPN fails to detect either of them. More-

over, small size also means less positive anchors in RPN,

which can lead to low recall. U-Net models can deal with

the small µC size, since they predict pixelwisely. However,

some obscure samples are still challenging and missed in

the first stage, while the proposed models suffer less from

them. Tab. 3 and 4 show the proposal quantitative eval-

uation results. ASN outperforms U-Net by around 3% on

both datasets. According to Fig.4 and 5, both recall and

false positive rate of ASN are higher than U-Net, which in-

dicate that the generative method is more sensitive to µCs

and other noisy outliers.

The fourth row of Fig.6 shows a vessel calcification ex-

ample, which is predicted to be µCs by ASN. The vessel

calcification regions can be seen as combinations of very

local calcification pixels. However, they are very different

to µCs in global patterns, which is not hard for FPR model

to learn. In a nutshell, the generative model and the discrim-

inative model is complementary in a way. Therefore, pro-

posed model can take both advantages and achieve higher

recall and lower false positive.

4.5. Ablation Study

To verify the effectiveness of t-test loss, we first train a

plain reconstruction model with loss function that minimize

the mean squared error between original image and recon-

structed image. However, the model seems to collapse into

a simple bluring function, where only a few high frequency

contents appear in the reconstruction residual. It fails to

identify most µCs. This phenomenon also indicates that
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Figure 6. Comparison examples of detection results in INBreast dataset. The annotations by doctors are drawn in the second column with

cyan circles. The third to sixth columns show the comparison between the proposed models and state-of-the-art models. Each detected

calcification is shown by a circle in center of the predicted position.

proposed t-test loss is essential.

Then, to validate the necessity of regularizations, we set

λp = λn = 0 and the loss function turns into Eq. 10, i.e.

without the regularizations of variances of negative and pos-

itive residuals. The improvement of ours over the last line

in as shown in Table 5 may be contributed to that the regu-

larizations can avoid the estimations to be so scattered that

the residuals are unstable.

In addition, we compare some variants to reveal the con-

tribution of different components. In Eq.1, L1 distance is

used to compute reconstruction residual. We replace it with

L2 and SmoothL1 [23] to further study the influences. As

shown in Table 5, such variants yield comparable results.

5. Discussions and Conclusions

In this paper, we propose a novel model by cascading

a discriminative model to a generative model to tackle the

µC detection problem in mammogram images. The µCs

are very tiny and also rare to the normal tissues, which is

challenging for discriminative models. We first propose a

novel generative model named Anomaly Separation Net-

work (ASN) to extract proposals, and then train a classi-

Table 5. Ablation study on INBreast dataset (%).

Method R@1 R@5 R@10 R@15 R@20

L1 36.70 78.35 85.96 88.26 88.90

L2 37.41 80.00 85.41 87.98 88.53

SmoothL1 35.83 78.26 85.23 87.98 89.08

L1 w/o λ 29.90 72.02 83.30 86.06 86.88

fication network as False Positive Reduction (FPR) model.

In ASN, a deep convolutional encoder-decoder network is

applied to learn the reconstruction and a t-test loss func-

tion is proposed to train this network in a supervised way.

Experiments on both public and in-house datasets demon-

strate that our model outperforms previous state-of-the-art

methods. However, it is still challenging for the proposed

method when µCs are too close (the last row of Fig.6). In

the future, we will work on it. Additionally, we will try to

make the total pipeline training in an end-to-end manner.
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