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Abstract

Accurate microcalcification (uC) detection is of great
importance due to its high proportion in early breast can-
cers. Most of the previous uC detection methods belong
to discriminative models, where classifiers are exploited to
distinguish pCs from other backgrounds. However, it is still
challenging for these methods to tell the Cs from amounts
of normal tissues because they are too tiny (at most 14
pixels). Generative methods can precisely model the nor-
mal tissues and regard the abnormal ones as outliers, while
they fail to further distinguish the uCs from other anoma-
lies, i.e. vessel calcifications. In this paper, we propose
a hybrid approach by taking advantages of both genera-
tive and discriminative models. Firstly, a generative model
named Anomaly Separation Network (ASN) is used to gen-
erate candidate (1Cs. ASN contains two major components.
A deep convolutional encoder-decoder network is built to
learn the image reconstruction mapping and a t-test loss
function is designed to separate the distributions of the re-
construction residuals of uCs from normal tissues. Sec-
ondly, a discriminative model is cascaded to tell the uCs
from the false positives. Finally, to verify the effectiveness
of our method, we conduct experiments on both public and
in-house datasets, which demonstrates that our approach
outperforms previous state-of-the-art methods.

1. Introduction

Breast cancer is the most common cancer among women
worldwide [28]. To discover it at the early state, breast
screening is necessarily applied [27]. Among the signs of
early breast cancers, the microcalcifications (uCs) belongs
to one of the most common kinds [2]. To analyze them, the
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mammogram images are widely used. As shown in Fig.1,
pCs are tiny and vary in brightness, contrast, shape with
diverse surroundings. It is obviously difficult and time con-
suming for radiologists to detect them one by one. There-
fore, an automatical pCs detection methods with high accu-
racy in mammography images is of great importance.

To achieve this goal, different methods are proposed,
among which most are discriminative models, i.e., classi-
fication models. Usually, various features, such as harr-like
features [31, 3], shape and texture features [14] and deep
features [4, 23] are extracted from images to train a binary
classifier that can tell C pixels from the normal ones. How-
ever, these methods suffer from extremely imbalanced sam-
ples. The reason lies in that uCs are commonly too tiny,
generally smaller than 14 pixels in mammogram images,
and the vast majority of such image regions are normal tis-
sues. Therefore, it is challenging to extract efficient features
for such small objects and also lead to terrible distribution
of uC and other tissues. In our experiments, the ratio be-
tween positive (uCs) samples and negative (normal tissues)
samples is around 4 x 103.

To address the aforementioned problem, we try to firstly
distinguish normal pixels and abnormal ones, while ;.Cs be-
longs to abnormal regions. In this way, we can reduce a lot
of negative samples that exist in discriminative models. To
this end, we rethink the xC detection task from the point of
image reconstruction. The normal samples are those regular
backgrounds and there are a huge mount of these regions.
Hence it is supposed to be not hard to find a dictionary to
reconstruct these normal samples. On the contrary, uCs are
irregular, rare and hard to be reconstructed. Therefore, it is
natural to learn a reconstruction model that normal samples
can be well reconstructed while ;Cs not. In this paper, we
design an image reconstruction network, which is modeled
as a deep convolutional encoder-decoder network, provid-
ing the reconstruction function with powerful learning abil-
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Figure 1. An illustration of ¢Cs in mammogram images. (a) is sampled from INBreast dataset [19], (b) and (c) are from our in-house
dataset. Three columns in each sub-figure represent the raw mammogram image, patches zooming in ©Cs, and the corresponding circled
u1Cs, respectively. Most pCs are within 1mm, which is about 14 pixels in a mammogram image with 70um pixel spacing. Images from
INBreast and in-house dataset have very different gray-level histograms due to different data resources. pCs from (b) and (c) show diversity

in brightness, contrast, shape and surroundings.

ity. Moreover, to extract informative features for such tiny
objects, U-Net [24] is exploited as the backbone network.

To further improve the performance of such reconstruc-
tion procesure, a novel t-test loss is designed to drive
the distribution of the residual of uCs away from that of
normal regions. The proposed t-test loss is inspired by
the two-sample t-test, which is a classical hypothesis test
method. Here, we alternate it into a data-driven loss func-
tion. Specifically, we regard the reconstruction residuals of
positive (uCs) and negative (normal tissues) pixels as two
independent random variables learned by the reconstruction
network. Instead of determining whether such two distribu-
tions are different or not, our t-test loss forces the recon-
struction network to constrain these two distributions dif-
ferently as much as possible. Since the normal tissues are
easy to reconstruct while uCs are not, we minimize the re-
construction residuals of negative pixels and implement a
hard thresholding to constrain the positive ones to be large
than a pre-set threshold. So far, we have explained all neces-
sary components of the proposed generative module, which
is called Anomaly Separation Network (ASN).

After the reconstruction, abnormal regions are obtained,
which contain both candidates ©Cs and other kinds of cal-
cifications, such as vessel calcifications, rod-like calcifica-
tions, etc. Although they all belong to calcifications, we ob-
serve that they are quite different from each other in shape.
Benefited from such a property, we build a discriminative
model, i.e., a deep binary classification network, to classify
1Cs and others. This discriminative model is designed to
implement the False Positive Reduction (FPR).

To verify the effectiveness of the proposed method, we
implement evaluation on both public dataset INBreast [19]

and our in-house dataset. We achieve a recall of 78.35% at
5 false positive per image (simplified as R@5) and a R@10
of 85.96% on InBreast; a R@5 of 90.71% and a R@10 of
92.24% on in-house dataset, which outperforms previous
state-of-the-art methods.

To summary, our contributions are mainly three-fold: 1)
To solve the imbalanced problem that previous discrimina-
tive models suffer, we propose a generative model to dis-
tinguish the normal regions from abnormal ones where the
candidates uCs lie in. Moreover, U-Net is applied to extract
informative features for such tiny objects. 2) To further en-
hance the performance, a novel t-test loss is designed to en-
large the distribution diversity between normal regions and
abnormal ones. 3) The proposed ASN achieves the best per-
formance on both public and in-house datasets, compared
with previous state-of-the-art methods.

2. Related Works
2.1. Microcalcification Detection

Most existing uC detection approaches can be coarsely
classified into two categories: image processing based and
learning based. The first category is mainly based on the
fact that 4Cs are commonly brighter with higher frequency
than their surrounding tissues. Mammogram images are
first enhanced with wavelet transform [1, 14] and then hes-
sian matrix response [20], morphological filtering [1] are
applied to identify uCs. However, such methods are eas-
ily affected by dense tissues and also suffer from the large
mount of false positives.

The second category is based on supervised learning. Ef-
fective binary classifiers can be trained to tell the pCs from
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normal tissues. Khalaf et al. [14] extract several shape and
texture descriptiors, and apply Students t-test and SVM with
RBF kernels for feature selection and training. Harr-like
features [31] are used in [3], where a set of cascaded classi-
fiers are trained to cope with the class imbalance problem.
Cai et al. [4] apply CNN to learn deep features for classi-
fication. The network is trained on proposals generated by
thresholding on band-pass filtered images.

2.2. Image Reconstruction

Image reconstruction is the problem of reconstructing
original image which might be noisy and blurred [22].
One typically applied method is sparse dictionary learn-
ing which aims at learning the sparse linear representation
of the elements that altogether compose dictionary. Imple-
mented with L; regularization, the learned representation is
robust to occlusion. For example, a classification algorithm
based on sparse coding was proposed [33] to successfully
handle occlusion and corruption uniformly and robustly in
recognition of face images.

To benefit from the powerful representation ability of
CNN, Turchenko et al. [30] present a deep convolutional
auto-encoder to achieve dimension reduction, clustering
and image reconstruction. Kingma and Welling [16] design
the auto-encoding variational bayes algorithm which allows
us to perform very efficient approximate posterior inference
that can also be used for a host of tasks such as recognition,
denoising, representation and visualization purposes. John-
son et al. [13] propose the use of perceptual loss functions
for training feed-forward networks for image transforma-
tion tasks. Goodfellow et al. [8] build a new framework
for estimating generative models via an adversarial process,
which can be widely used for image generation.

2.3. Two-sample T-test

The two-sample T-test is a statistical hypothesis testing
method to determine whether the two sets of data are signifi-
cantly different from each other. Assuming that the samples
in each group are independent and identically distributed
from normal distribution’, then the computed t-statistics
follows a Student’s t-distribution under null hypothesis that
two groups are not differently distributed. By product, the
corresponding p-value, which measures the probability that
the null hypothesis holds, can also be calculated. Hence,
one can reject the null hypothesis when the p-value is less
than pre-defined threshold level «, which means that the
two groups of data are thought to be differently distributed.

2.4. Anomaly Detection

Anomaly detection, also referred as outlier detection, is
the problem of identification of patterns in data that do not

IThe assumption of normal distribution can be relaxed according to
central limit theorem

conform to expected behavior [5]. Such non-conforming
patterns, i.e. outliers are generally defined as the anoma-
lies, rare events or aberrant data suspected to be generated
from a different mechanism that is deviate markedly from
the most common or expected pattern [7]. The detection of
outliers may provide us important information, e.g. credit
card fraud, medical problems in clinical trials. Moreover,
the existence of such outliers may result in the instability in
estimation, inference, and model selection, etc. Hence, the
outlier identification is a critical task to obtain robust pa-
rameter estimation and detecting anomalies given new data
[12]. In our paper, we consider the uCs as outliers since
the number of positive image pixels are rare and differently
distributed compared to regular negative ones.

Various methods have been proposed for outlier de-
tection, including univariate models [17] and multivariate
models [32, 12, 25]. For unsupervised outlier detection
where the anomalies are unlabeled, one can typically apply
robust regression with Hubers loss [12], which minimizes
square loss for normal data and absolute loss for abnormal
ones. It has been proved in [26] that this scheme is equiva-
lent to a LASSO problem, which translates the detection of
anomalies into a model selection problem.

3. Methodology

As shown in Fig. 2, our system mainly consists of two
cascaded modules: Anomaly Separation Network (ASN)
and False Positive Reduction (FPR) model. The outputs of
ASN are directly fed into FPR, which predicts the final re-
sults. In this section, we will demonstrate ASN and FPR
separately.

3.1. Anomaly Separation Network

ASN includes two core components: deep reconstruc-
tion network and reconstruction residual learning with t-test
loss. During training process, mammogram images are cut
into patches and sent into a deep reconstruction network.
Then we apply the t-test loss on the reconstruction residu-
als, which encourages the residuals of normal pixels to be
small, while Cs pixels to be relatively large. During test-
ing process, for each whole mammogram, we calculate the
reconstruction residual map and predict points and scores
based on it. In this section, we will first demonstrate our re-
construction network and reconstruction residual learning,
then explain the connection between t-test loss and Huber’s
loss [12] which is widely used for anomaly detection.

3.1.1 Deep Reconstruction Network

We design a deep reconstruction network to provide a
learnable reconstruction function. Deep ConvNet has been
proved robust and effective for many image tasks. To take
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Figure 2. The pipeline of the proposed method. There are two cascaded models: Anomaly Separation Network (ASN) and False Positive
Reduction (FPR) model. The outputs of ASN are directly fed into FPR, which predicts the final results. For ASN, during training process,
the U-Net based reconstruction network is trained with mammogram patches. T-test loss is applied on the reconstruction residual pixels
to drive the normal residuals and pC residuals away from each other. During testing process, given a mammogram image, after pre-
processing, the reconstruction residual is computed, which can generate predicted points (show in red circles). FPR model is a ResNet50,
trained by hard negatives of ASN and positives of ground truth. The final prediction is a fusion of both models by product in score level.

the great representation ability, we use a U-Net [24] for pix-
elwise reconstruction. Our U-Net consists of 3 downsample
stages and 3 upsample stages with skip connections. Each
stage includes 3 convolution layers.

We design such a network for three reasons. Firstly,
the downsampling operations can lead to effective receptive
field size, which is advantageous for the reconstruction of
each pixel and the coherence of reconstructed image. Sec-
ondly, sizes of /Cs are within 14 pixels. Therefore, we only
downsample the image by the factor of 8 to avoid too much
information loss for reconstruction. Thirdly, the skip con-
nections can keep low-level information, which is necessary
for accurate localization.

3.1.2 Reconstruction Residual Learning

Let f(-) denote the reconstruction network function. Given
an image I, the reconstruction residual value is,

r(I) = £(6;1) ~ 1|
= > 11©:P) - P| (f(&:P

Pel

)2

fe:nP) M

where P denotes the pixel and © denotes the parameters
in the reconstruction network. The reconstruction residual
of positive and negative pixels are desired to have different
distributions. Therefore, we propose the t-test loss. In the
following sections, we will firstly review the two-sample t-
test, and then demonstrate effectiveness of the t-test loss.
Two-Sample T-test Given two groups of samples
X1,y TN, £ N(pz,02) and y1,...,yn, & N(py,07),

to test whether i, > 1, or not, we build null hypothesis
(Hp) and alternative hypothesis (H7) [6] as,

Hy : ps <= Uy H11U1>Ny 2
And a t-statistics is generated using the following for-
mula:

Z—j
t= —— 3)
N, " N,

where ~ denotes the mean value of a group of samples, S,
and S, are sample variances of = and y, respectively. We
choose to accept Hy (reject Hyp) if t > t, , where ¢, , is
the critical value at significant level « of the Student’s t-
distribution with degrees of freedom v, i.e. P(t > t,) =

«, where
2
<ﬁ +i)
Nz T Ny

ifo o
v=_7T 7 Tt
Ny No—1 1T Ny Ny—1
Ny + N, -2, if 0, = 0,

In real applications, the {x;};—1,... n, and {y;};=1,... N,
may not ideally satisfy normal distribution. However, ac-
cording to the central limit theorem, the ¥ and y are ap-
proximate to normal distribution when IV, and N, are large
enough, in which the two-sample t-test can also be applied.

Since the normal tissues are regular and calcifications are

not hence scattered distributed, we estimate the degree of

freedom as
(ﬁ+ﬁf
- N, T N,
YT s 1 E ®
Z‘/N?/_l

Ny Np—1 + N,
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T-test Loss Given independent negative and posi-
tive samples, we use Eq. 1 to compute the residual
value of reconstruction, denoted as {r}(0)}i—1,.. n, and
{ri(©)}i=1... N, In the rest of the paper, we denote the
above residual values as {r}}i—1 .. n, and {r}}i=1, . N,
for simplicity. We then proposing the following t-test loss,

L =max(8 —7p,0) + 7 + ApS2 + XS0 (6)

where the threshold hyper-parameter /3 denotes the margin
between the means of positive and negative residual distri-
butions; A, and A,, are regularization hyper-parameters.

Minimizing such t-test loss can be viewed as maximizing
the t-statistics defined in Eq. 2, which is commonly used
to determine whether two groups of data are different from
each other. Our goal instead, is accurate classification, i.e.
ability to discriminate the p©Cs from negative image pixels
in a supervised way. To achieve this goal, we in turn pro-
pose to drive reconstruction of labeled positive pixels away
from negative ones by minimizing L.

In more details, note that max(3 — 75, 0) + 7, hopes the
reconstruction parameter (©) to well fit the negative pix-
els while leave the reconstruction of positive pixels with a
large margin. In another way, O is trained to learn the neg-
ative pixels and also the remaining pixels except the uCs
in the positive patch. Therefore, for positive pixels in the
test data, the © can reconstruct with big margin. In such
way, it can be successfully predicted as positive label and
the corresponding residue can be regarded as the pC.

Besides such part in Eq. 6, we additionally regularize .S,
and Sy,. Without such regularization, the estimation of ©
tends to be unstable. That’s because large values of .S, and
Sy can make r,ﬁzmp easy to be either small or large since
they tend to be distributed in a widely spread way.

In contrast, the estimation error loss min 7, + 7, may
suffer from the model collapse problem that the learned
mapping function tends to be identity. Therefore, they are
unable to model the underlying structure of positive image
pixels and hence can not be generalized to detect C in the
test phase. Moreover, compared with the estimation error
loss, our loss is more task-driven since it’s agreed with the
rule of outlier detection in the test phase, i.e. the patch i is
detected as outlier if r* > .

In addition, the estimated ©, which is supervised (the uC
are labeled) to model the residual values of negative (pos-
itive) samples less (larger) than the threshold parameter 3,
can be directly used to detect C in the test phase. Hence,
the t-test loss can be incorporated into the whole end-to-end
procedure, which is illustrated in Fig. 2.

3.1.3 Connection to Huber’s loss

We claim that the proposed t-test loss, i.e. Eq 6 can
be viewed as the variation of robust regression with Hu-

ber’s loss [12], which is an unsupervised outlier detection
method. In more details, note that the Huber’s loss in our
scenario can be written as:

N
Liuver(©) =Y pa(P', f(&;P")) (7
=1

where NV denotes the number of patches in training set and

pB(Pia f((aa PIL)) =
PP, [P e <8
B(|P"— f(©;P)| — 4B), otherwise
()

Eq. 7 is the combination of square loss (mean unbiased es-
timators) and absolute loss (median unbiased estimators). It
has been proved in [26] that the minimization of Eq. 7 is
equivalent to

N,
N~ L i i\ 2
Ny
_ _ 9
35 (Pa=1O:P) =)+ Allls. )
i=1

i is outlier, i.e. 7% # 0 if and only if |P* — f(©;P%)| > 3.
Here the outliers are unlabeled and they can be regarded as
the elements with non-zero value of 7.

In our experiments, the outliers (positive image pixels
Pp) in the training data are labeled. Hence, to remove the
deviating effect of such outliers, we in turn propose to con-
strain such outliers to satisfy the definition in Huber’s loss,
ie. [Pl — f(©;Pi)| > B for each i. Combined with the
absolute loss for P, the total loss can be correspondingly
designed as:

L = max(8 — 7,0) + 7. (10)

The 7, is expected to be larger than the threshold parameter
B, which is a relaxation of the constraint in Huber’s loss for
more robustness and better generalization. By removing the
outliers’ effect, a robust estimation of © can be achieved,
which in turn can lead to accurate detection of outliers in the
test data. Besides, we additionally regularize variances to
prevent unstable parameter estimation, as mentioned earlier.

3.1.4 Setting Hyper-parameters

The threshold parameter 5 > 0 is inversely proportional to
significance level a. From the view of outlier detection, it
is the trade-off between “masking effect” and “swamping
effect” [12]. Too small S may lead to incorrectly identify-
ing negative pixel as outlier, i.e. swamping effect; while too
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Figure 3. Examples of comparison vessel calcifications (left, mark-
ing in green rectangles) with uCs (right, marking in orange cir-
cles).

Table 1. Evaluations on INBreast dataset (%).

Method R@l R@5 R@10 R@15 R@20
FPNFRCN | 39.72 7147 7248 7248 7248
U-Netw FPR | 2945 77.61 82.84 83.67 84.50
Proposed 36.70 7835 8596 88.26 88.90

large value may result in missing some outliers, i.e. mask-
ing effect.

Larger As—,,, implies more regularization on variances.
Here, we incorporate the heterogenous regularization (A, #
) into our loss, which means that the variances are differ-
ent. In our experiments, the uC is irregular hence the recon-
struction may vary a lot. Hence, it’s reasonable to imple-
ment larger regularization on S, to prevent .S;, from being
too large. As what’ll be shown in the experiment section,
the best prediction results are given when A, > A;,.

3.2. False Positive Reduction

The proposed ASN can reconstruct normal tissues well
and regard ;Cs as anomalies. However, there are kinds
of calcifications in breast mammograms. As is shown in
Fig.3, the green rectangles in the left patch are vessel cal-
cifications, which can be considered as lots of calcification
pixels. To ASN, they are also outliers for reconstruction
even though they are very different with true xCs in shape,
which are shown with orange circles in the right patch in
Fig.3. While they are not hard to distinguish for discrimi-
native models. Therefore, we cascade a deep classification
network to further reduce the false positives.

We use ResNet50 [10] in FPR stage. Given an image, we
use a simple threshold on the reconstruction residual map
generated by ASN. For each connected component, we use
the center as predicted location and the summed score of
the reconstruction residual value as its ASN score. For each
ASN prediction, a patch with size of 56 x 56 is cropped and
resized to 224 x 224, and then fed into ResNet50. We use
the product of both ASN and FPR scores as the final score.

4. Experiments
4.1. Implementation Details

Mammogram image is commonly stored as 12-bit or 14-
bit data in DICOM format. To convert it into 8-bit gray

Table 2. Evaluations on in-house dataset (%).

Method R@1 R@5 R@10 R@15 R@20
FPN FRCN | 78.27 8133 81.33 81.33  81.33
U-Netw FPR | 8490 88.06 88.67 88.67 88.67
Proposed 8531 90.71 9224 92.65 92.76

image, we simply map all the raw pixels into 0 ~ 255 lin-
early. For pre-processing, we first normalize the image to
have the same pixel spacing of 70 ym. And then, we seg-
ment the breast region with Otsus method [21] and remove
the background of the mammogram.

We implement proposed model with pytorch. ASN is
trained from scratch with weights initialized by [9]. We
use Adam [15] with a weight decay of 10~* and a starting
learning rate 0.001. The running averages of gradient and
its square are 0.9 and 0.999 respectively. The margin param-
eter 3 in Eq.6 is set to 0.8, while the weighting parameters
Ap and A, are set to 1 and 0.1 respectively. During the train-
ing process, mammogram images are cropped into patches
with size of 112 x 112 and fed into ASN. We do not use
the whole images since they are usually of high resolution
(e.g. ~ 3500 x 2500 pixels), which is too large for memory
limitation. We sample the positive and negative patches to
be 1:1 to extract more proposals.

FPR model is pretrained by ImageNet. We use SGD with
learning rate starting from 0.001. All predictions by ASN
and all ground truth pCs are used to train FPR model with-
out any extra sampling.

4.2. Datasets

We evaluate the performances on both a public dataset
named INBreast [19] and an in-house dataset. There are
several public mammogram datasets, i.e. MIAS [29],
DDSM [11], INBreast and so on. We choose INBreast be-
cause the image quality and pCs annotations are relatively
better. INBreast contains 115 cases with 410 mammogram
images, in which 6880 individual calcifications have been
found by two radiologists. After filtering the calcifications
larger than 1mm, we pick up 5782 uCs for experiments.
We randomly divide the dataset into training, validation and
testing sets by 3:1:1. The detailed division is shown in sup-
plementary materials.

We also collected an in-house dataset for further evalu-
ation, which contains 439 cases and 1799 images. Images
of different study years but from the same woman are taken
as the same case. Two radiologists with experiences more
than 10 years annotated the dataset. We pick up 7588 uCs
identified by both radiologists as ground truth. We select
339 cases with 1386 images and 5479 uCs as training set,
50 cases with 208 images and 1129 pCs as validation set,
50 cases with 205 images and 980 uCs as testing set.
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Figure 4. FROCs for INBreast dataset.
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Figure 5. FROCs for in-house dataset.
4.3. Baseline Methods

For both datasets, we build two baselines:

FPN FRCN: Faster RCNN [23] with Feature Pyramid
Network (FPN) [18]. FPN is a state-of-the-art detection
model especially for small objects. We use ResNet50 as
backbone. For each predicted bounding box, the center
point is used for final evaluation.

U-Net w FPR: U-Net with FPR. U-Net [24] is proved
to be effective for medical imaging segmentation. The skip
connections are helpful for small object segmentation. Here
we compare U-Net with ASN to verify the effectiveness of
the proposed generative model. To deal with the extreme
unbalanced samples, and also to be fair comparison with
the proposed model, we design a two stage segmentation
model similar with ASN. We first train a segmentation task
using the same network structure with ASN supervised by
cross-entropy loss. We also sample the positive and neg-
ative patches to be 1:1 to extract more proposals. We se-
lect the connected regions of the predicted mask as proposal
similar to the proposed method. Then an FPR model is cas-
caded to reduce the false positives.

Table 3. Proposal evaluations on INBreast dataset (%).
Method | R@5 R@10 R@15 R@20 R@30
U-Net | 43.39 58.35 7220 82.02 85.32
ASN 44.13 65.14 78.72 8495 88.35

Table 4. Proposal evaluations on in-house dataset (%).
Method | R@5 R@10 R@15 R@20 R@30
U-Net | 86.63 88.37 88.67 88.67 88.67
ASN 88.16 90.00 9133 91.84 92.24

4.4. Performances

We report the recalls at k false positive per image (sim-
plified as R@k), where k € {1, 5, 10, 15, 20} for final mod-
els and k € {5,10, 15,20, 30} for proposal models. A uC
is considered as recalled if there is at least one prediction
point within Imm of it.

As shown in Tab. 1 and 2, the proposed models out-
perform the state-of-the-art methods on both datasets. The
FPN models suffer from relatively lower recalls. The main
reason is that some uCs are extremely tiny (< 5 pixels).
The resolution of the finest prediction level of FPN is only
1/4 with respect to the origin image. For the first 3 ex-
amples in Fig.6, FPN fails to detect either of them. More-
over, small size also means less positive anchors in RPN,
which can lead to low recall. U-Net models can deal with
the small pC size, since they predict pixelwisely. However,
some obscure samples are still challenging and missed in
the first stage, while the proposed models suffer less from
them. Tab. 3 and 4 show the proposal quantitative eval-
uation results. ASN outperforms U-Net by around 3% on
both datasets. According to Fig.4 and 5, both recall and
false positive rate of ASN are higher than U-Net, which in-
dicate that the generative method is more sensitive to ;Cs
and other noisy outliers.

The fourth row of Fig.6 shows a vessel calcification ex-
ample, which is predicted to be ©Cs by ASN. The vessel
calcification regions can be seen as combinations of very
local calcification pixels. However, they are very different
to uCs in global patterns, which is not hard for FPR model
to learn. In a nutshell, the generative model and the discrim-
inative model is complementary in a way. Therefore, pro-
posed model can take both advantages and achieve higher
recall and lower false positive.

4.5. Ablation Study

To verify the effectiveness of t-test loss, we first train a
plain reconstruction model with loss function that minimize
the mean squared error between original image and recon-
structed image. However, the model seems to collapse into
a simple bluring function, where only a few high frequency
contents appear in the reconstruction residual. It fails to
identify most puCs. This phenomenon also indicates that
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Figure 6. Comparison examples of detection results in INBreast dataset. The annotations by doctors are drawn in the second column with
cyan circles. The third to sixth columns show the comparison between the proposed models and state-of-the-art models. Each detected

calcification is shown by a circle in center of the predicted position.

proposed t-test loss is essential.

Then, to validate the necessity of regularizations, we set
Ap = A, = 0 and the loss function turns into Eq. 10, i.e.
without the regularizations of variances of negative and pos-
itive residuals. The improvement of ours over the last line
in as shown in Table 5 may be contributed to that the regu-
larizations can avoid the estimations to be so scattered that
the residuals are unstable.

In addition, we compare some variants to reveal the con-
tribution of different components. In Eq.1, L1 distance is
used to compute reconstruction residual. We replace it with
L2 and SmoothL1 [23] to further study the influences. As
shown in Table 5, such variants yield comparable results.

5. Discussions and Conclusions

In this paper, we propose a novel model by cascading
a discriminative model to a generative model to tackle the
pC detection problem in mammogram images. The uCs
are very tiny and also rare to the normal tissues, which is
challenging for discriminative models. We first propose a
novel generative model named Anomaly Separation Net-
work (ASN) to extract proposals, and then train a classi-

Table 5. Ablation study on INBreast dataset (%).

Method | R@l R@5 R@10 R@l5 R@20
L1 36.70 7835 8596 88.26 88.90

L2 3741 80.00 8541 8798  88.53
SmoothL1 | 35.83 78.26 8523 8798  89.08
Llw/oXx | 2990 7202 8330 86.06 86.88

fication network as False Positive Reduction (FPR) model.
In ASN, a deep convolutional encoder-decoder network is
applied to learn the reconstruction and a t-test loss func-
tion is proposed to train this network in a supervised way.
Experiments on both public and in-house datasets demon-
strate that our model outperforms previous state-of-the-art
methods. However, it is still challenging for the proposed
method when pCs are too close (the last row of Fig.6). In
the future, we will work on it. Additionally, we will try to
make the total pipeline training in an end-to-end manner.
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