
Deeper and Wider Siamese Networks for Real-Time Visual Tracking

Zhipeng Zhang

University of Chinese Academy of Sciences&CASIA

zhipeng.zhang@nlpr.ia.ac.cn

Houwen Peng∗

Microsoft Research

houwen.peng@micrsoft.com

Abstract

Siamese networks have drawn great attention in visual

tracking because of their balanced accuracy and speed.

However, the backbone networks used in Siamese trackers

are relatively shallow, such as AlexNet [18], which does not

fully take advantage of the capability of modern deep neu-

ral networks. In this paper, we investigate how to lever-

age deeper and wider convolutional neural networks to en-

hance tracking robustness and accuracy. We observe that

direct replacement of backbones with existing powerful ar-

chitectures, such as ResNet [14] and Inception [33], does

not bring improvements. The main reasons are that 1)

large increases in the receptive field of neurons lead to re-

duced feature discriminability and localization precision;

and 2) the network padding for convolutions induces a posi-

tional bias in learning. To address these issues, we propose

new residual modules to eliminate the negative impact of

padding, and further design new architectures using these

modules with controlled receptive field size and network

stride. The designed architectures are lightweight and guar-

antee real-time tracking speed when applied to SiamFC [2]

and SiamRPN [20]. Experiments show that solely due

to the proposed network architectures, our SiamFC+ and

SiamRPN+ obtain up to 9.8%/5.7% (AUC), 23.3%/8.8%

(EAO) and 24.4%/25.0% (EAO) relative improvements over

the original versions [2, 20] on the OTB-15, VOT-16 and

VOT-17 datasets, respectively.

1. Introduction

Visual tracking is one of the fundamental problems in

computer vision. It aims to estimate the position of an ar-

bitrary target in a video sequence, given only its location in

the initial frame. Tracking at real-time speeds plays a vital

role in numerous vision applications, such as surveillance,

robotics, and human-computer interaction [10, 21, 30, 43].

Recently, trackers based on Siamese networks [2, 7, 12,

13, 20, 34, 40] have drawn great attention due to their high

speed and accuracy. However, the backbone network uti-

lized in these trackers is still the classical AlexNet [18],

∗corresponding author

	 �� �
 �� �
 �� ��
��)+%'"���&)

��	�

��	

��	�

��
�

��
�

��
�

��

��
�

�
�
��
%�
��
*�
��
((
��
#%
)

�����(���)������

�����(�$��&������

��$��&������

��$��&������

��#�,� �����

�����(��)�

�����(��)�

�����(��)�

���(��)�

���(��)�

����(��)���*'(�
����(�$��&����*'(�
����(���)���*'(�
�) �'���)(
�$��&)!%$

Figure 1: AUC of success plot vs. network depth and width (in-

dicated by W). Here, width refers to the number of branches in a

module. The results are obtained using SiamFC [2] with different

backbone networks, through evaluation on OTB-13.

rather than modern deep neural networks that have proven

more effective for feature embedding. To examine this

issue, we replace the shallow backbone with deeper and

wider networks, including VGG [29], Inception [33] and

ResNet [14]. Unexpectedly, this straightforward replace-

ment does not bring much improvement, and can even cause

substantial performance drops when the network depth or

width increases, as shown in Fig. 1. This phenomenon runs

counter to the evidence that increasing network depth and

width is beneficial for elevating model capability [14, 33].

One intuitive reasoning is that these deeper and wider

network architectures are primarily designed for image clas-

sification tasks, where the precise localization of the object

is not paramount. To investigate the concrete reason, we an-

alyze the Siamese network architecture and identify that the

receptive field size of neurons, network stride and feature

padding are three important factors affecting tracking accu-

racy. In particular, the receptive field determines the image

region used in computing a feature. A larger receptive field

provides greater image context, while a small one may not

capture the structure of target objects. The network stride

affects the degree of localization precision, especially for

small-sized objects. Meanwhile, it controls the size of out-

put feature maps, which affects feature discriminability and

detection accuracy. Moreover, for a fully-convolutional ar-

chitecture [2], the feature padding for convolutions induces

4591

a potential position bias in model training, such that when

an object moves near the search range boundary, it is dif-

ficult to make an accurate prediction. These three factors

together prevent Siamese trackers from benefiting from cur-

rent deeper and more sophisticated network architectures.

In this paper, we address these issues by designing new

residual modules and architectures that allow deeper and

wider backbone networks to unleash their power in Siamese

trackers. First, we propose a group of cropping-inside

residual (CIR) units based on the “bottleneck” residual

block [14]. The CIR units crop out padding-affected fea-

tures inside the block (i.e., features receiving padding sig-

nals), and thus prevent convolution filters from learning the

position bias. Second, we design two kinds of network ar-

chitectures, namely deeper and wider networks, by stack-

ing the CIR units. In these networks, the stride and neu-

ron receptive field are formulated to enhance localization

precision. Finally, we apply the designed backbone net-

works to two representative Siamese trackers: SiamFC [2]

and SiamRPN [20]. Experiments show that solely due

to the proposed network architectures, the Siamese track-

ers obtain up to 9.8%/5.7%(AUC), 23.3%/8.8%(EAO) and

24.4%/25.0%(EAO) relative improvements over the origi-

nal versions [2, 20] on the OTB-15, VOT-16 and VOT-17

datasets, respectively. In addition, the designed architec-

tures are lightweight and permit the trackers to run at real-

time speed.

The main cotributions of this work are twofold.

• We present a systematic study on the factors of back-

bone networks that affect tracking accuracy, and pro-

vides architectural design guidelines for the Siamese

tracking framework.

• We design new deeper and wider network architec-

tures for Siamese trackers, based on our proposed no-

padding residual units. Experimental results demon-

strate that the new architectures provide clear im-

provements over the baseline trackers. Code and

models are available at https://github.com/

researchmm/SiamDW.

In the remainder of this paper, we first review back-

ground on Siamese tracking in Sec. 2. This is followed by

an analysis of performance degradation in Sec. 3. Based on

the analysis, we propose new residual modules and network

architectures in Sec. 4. Experiments and comparisons are

reported in Sec. 5. We end the paper with a discussion of

related work and the conclusion in Sec. 6 and 7.

2. Background on Siamese Tracking

Before analyzing the reasons for the performance degra-

dation shown in Fig. 1, we briefly review the fully-

convolutional Siamese tracker SiamFC [2], which serves as

the basic framework discussed in this work. The standard

Siamese architecture takes an image pair as input, compris-

ing an exemplar image z and a candidate search image x.

The image z represents the object of interest (e.g., an image

patch centered on the target object in the first video frame),

while x is typically larger and represents the search area

in subsequent video frames. Both inputs are processed by

a ConvNet ϕ with parameters θ. This yields two feature

maps, which are cross-correlated as

fθ(z,x) = ϕθ(z) ⋆ ϕθ(x) + b · ✶, (1)

where b ·✶ denotes a bias term which takes the value b ∈ R

at every location. Eq. 1 amounts to performing an exhaus-

tive search of the pattern z over the image x. The goal is to

match the maximum value in response map f to the target

location.

To achieve this goal, the network is trained offline with

random image pairs (z,x) taken from training videos and

the corresponding ground-truth label y. The parameters θ

of the ConvNet are obtained by minimizing the following

logistic loss ℓ over the training set:

argmin
θ

E
(z,x,y)

ℓ(y, fθ(z,x)). (2)

Previous methods [2, 12, 13, 20, 40, 42] commonly uti-

lize the classic and relatively shallow AlexNet [18] as the

backbone network ϕ in this framework. In our work, we

study the problem of how to design and leverage a more

advanced ConvNet ϕ to learn an effective model θ that en-

hances tracking robustness and accuracy.

3. Analysis of Performance Degradation

In this section, we analyze the underlying reasons for

the performance degradation presented in Fig. 1. We con-

duct ablation experiments on the internal factors of network

structures, and identify the ones most responsible for per-

formance drops. We then propose a set of practical guide-

lines for network architecture design, aimed to alleviate the

negative effects.

3.1. Analysis

Quantitative analysis. Performance degradation can di-

rectly be attributed to network structure, as it is the only

setting that changes in the experiments of Fig. 1. Therefore,

we first identify the structural differences among these net-

work architectures1. As shown in Tab. 2, besides depth and

width, there are several other internal network factors that

differ among the networks, including stride (STR), padding

(PAD), receptive field (RF) of neurons in the last layers, and

output feature size (OFS).

To investigate the impact of these factors, we conduct an

ablation study. We modify the structures of AlexNet, VGG,

1Note that the network structures are slightly different from their orig-

inal versions [14, 29, 33], where the network stride and padding are modi-

fied according to SiamFC [2].

4592

Table 1: Analysis of network internal factors on AlexNet, VGG-10, Incep.-22 and ResNet-33. The numbers ①-⑩ represent different ver-

sions, in which the convolution kernel size, downsampling layer and padding are modified to show the trends. Details on the modifications

are given in the supplementary material due to limited space.

NUM ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ # NUM ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨

RF1 Max(127) +24 +16 +8 ±0 (87) ±0 -8 -16 +16 +16 RF +32 +16 +8 ±0 (91) ±0 -8 -16 +16 +16

STR 8 8 8 8 8 8 8 8 16 4 STR 8 8 8 8 8 8 8 16 4

OFS 1 3 4 5 6 16 7 8 2 7 OFS 1 3 4 5 16 6 7 2 6

PAD ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ PAD ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Alex 0.56 0.57 0.60 0.60 0.61 0.55 0.59 0.58 0.55 0.59 ResNet 0.56 0.59 0.60 0.62 0.56 0.60 0.60 0.54 0.58

VGG 0.58 0.59 0.61 0.61 0.62 0.56 0.59 0.58 0.54 0.58 Incep.2 0.58 0.60 0.61 0.63 0.58 0.62 0.61 0.56 0.59

1 To better show the trends, we denote ±0 as the original RF size of the network. + and − represent increasing and decreasing size over the originals.

Max(127) represents the maximum effective RF, which is identical to the size of the exemplar image, i.e. 127× 127 pixels.
2 For the Inception network, its RF size lies in a range. Here we only list the theoretically maximum size, to align with ResNet for comparison.

Alex VGG-10 Incep.-16 Res.-17 Incep.-22 Res.-33

RF 87 103 23~183 227 39~519 739

STR 8 8 8 8 16 16

OFS 6 4 16 16 8 8

PAD ✗ ✗ ✓ ✓ ✓ ✓

W 1 1 4 1 4 1

AUC 0.61 0.61 0.59 0.57 0.56 0.55

Table 2: Internal factors of different networks: receptive field

(RF) of neurons in the last layer of network, stride (STR), output

feature size (OFS), padding (PAD) and width (W). Since Inception

contains multiple branches in one block, its RF lies within a range.

Inception and ResNet, and expose the effects of the inter-

nal factors. As shown in Tab. 1, when network stride (STR)

increases from 4 or 8 to 16, the performance drops signifi-

cantly (⑩ vs. ③ vs. ⑨ on AlexNet and VGG, ⑨ vs. ② vs. ⑧

on Incep. and ResNet). This illustrates that Siamese track-

ers prefer mid-level features (stride 4 or 8), which are more

precise in object localization than high-level features (stride

≥ 16). For the maximum size of receptive field (RF), the

optima lies in a small range. Specifically, for AlexNet, it

ranges from 87–8 (Alex⑦) to 87+16 (Alex③) pixels; while

for Incep.-22, it ranges from 91–16 (Incep.⑦) to 91+8 (In-

cep.③) pixels. VGG-10 and ResNet-17 also exhibit similar

phenomena. In these cases, the optimal receptive field size

is about 60%∼80% of the input exemplar image z size (e.g.

91 vs 127). Intriguingly, this ratio is robust for various net-

works in our study, and it is insensitive to their structures.

It illustrates that the size of RF is crucial for feature embed-

ding in a Siamese framework. The underlying reason is that

RF determines the image region used in computing a fea-

ture. A large receptive field covers much image context,

resulting in the extracted feature being insensitive to the

spatial location of target objects. On the contrary, a small

one may not capture the structural information of objects,

and thus it is less discriminative for matching. Therefore,

only RF in a certain size range allows the feature to abstract

the characteristics of the object, and its ideal size is closely

related to the size of the exemplar image. For the output

feature size, it is observed that a small size (OFS ≤ 3) does

not benefit tracking accuracy. This is because small fea-

ture maps lack enough spatial structure description of target

objects, and thus are not robust in image similarity calcula-

Input ResNet⑤ CIResNet-22 Input ResNet⑤ CIResNet-22

Figure 2: Visualization of position bias learnt in the model w/ and

w/o padding (ResNet⑤ in Tab. 2 vs. ours). (A) presents the target

at the image center, while (B-D) show it moving to boundaries due

to imprecise tracked position in the previous frame.

tion. Moreover, as shown in Tab. 1 (⑤ vs. ⑥ on AlexNet

and VGG, ④ vs. ⑤ on Incep. and ResNet), we observe that

network padding has a highly negative impact on the final

performance. To examine this further, we conduct a quali-

tative experiment.

Qualitative analysis. The Siamese networks feed pairs

of exemplar and search images as training data, and learn

a feature embedding for matching. If the networks contain

padding operations, the embedding features of an exemplar

image are extracted from the original exemplar image plus

additional (zero)-padding regions. Differently, for the fea-

tures of a search image, some of them are extracted only

from image content itself, while some are extracted from

image content plus additional (zero)-padding regions (e.g.

the features near the border). As a result, there is incon-

sistency between the embeddings of target object appear-

ing at different positions in search images, and therefore the

matching similarity comparison degrades. Fig. 2 presents a

visualization example of such inconsistency-induced effect

in the testing phase. It shows that when the target object

moves to image borders, its peak does not precisely indicate

the location of the target. This is a common case caused by

tracker drifts, when the predicted target location is not pre-

cise enough in the previous frame.

3.2. Guidelines

According to the above analysis, we summarize four ba-

sic guidelines to alleviate the negative impacts of structural

factors in a network architecture.

• Siamese trackers prefer a relatively small network stride.

Network stride affects the overlap ratio of receptive fields

4593

addition

conv 1x1, p 0, s 1

conv 3x3, p 1, s 1

conv 1x1, p 0, s 1

ReLU

BN, ReLU

BN, ReLU

addition

conv 1x1, p 0, s 1

conv 3x3, p 1, s 1

conv 1x1, p 0, s 1

ReLU

BN, ReLU

BN, ReLU

crop: 1:N-1

BN

BN

addition

conv 1x1, p 0, s 1

conv 3x3, p 1, s 2

conv 1x1, p 0, s 1

ReLU

BN, ReLU

BN, ReLU

addition

conv 1x1, p 0, s 1

maxpool s 2

conv 3x3, p 1, s 1

BN, ReLU

BN

BN

conv 1x1, p 0, s 1

BN, ReLU

crop 1:N-1

ReLU

conv 1x1,

p 0, s 2

conv 1x1,

p 0, s 1

concate

conv 1x1,p 0, s 1

conv 3x3, p 1, s 1

conv 1x1, p 0, s 1

ReLU

BN, ReLU

BN, ReLU

crop: 1:N-1

BN

conv 1x1,

p 0, s 1

addition

ReLU

BN, ReLU

BN, ReLU

crop: 1:N-1

BN

256, 1x1, 4 256, 1x1, 4 256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

4, 3x3, 4 4, 3x3, 4

4, 1x1, 256 4, 1x1, 256

BNBN

BN, ReLU BN, ReLU

BN, ReLU BN, ReLU

Total 32 branches

256-d in

256-d out
(a) original (a′) CIR (b) original (b′) CIR-D (c) CIR-Inception (d) CIR-NeXt

Figure 3: The proposed cropping-inside residual units. (a) and (b) are the original residual unit and downsampling unit, while (a′) and (b′)

are our proposed ones. (c) and (d) are the proposed wide residual units. The grey arrows indicate the shortcut paths for easy information

propagation, while the blue boxes highlight the differences from the original units. The letters ‘p’ and ‘s’ indicate the padding size and

stride, respectively. The settings of ‘p’ and ‘s’ in (d) are the same as in (c).

for two neighboring output features. It thereby deter-

mines the basic degree of localization precision. There-

fore, when network depth increases, the stride should not

increase accordingly. With regards to accuracy and effi-

ciency, an empirically effective choice is to set the stride

to 4 or 8.

• The receptive field of output features should be set based

on its ratio to the size of the exemplar image. An empir-

ically effective ratio is 60%∼80% for an exemplar im-

age. A proper ratio allows the network to extract a set

of features, each of which captures the information of

different spatial parts of a target object. This leads the

extracted features to be robust in calculating region simi-

larity. Particularly, the maximum RF should not be larger

than the exemplar image, otherwise the performance will

drop significantly.

• Network stride, receptive field and output feature size

should be considered as a whole when designing a net-

work architecture. These three factors are not indepen-

dent of one another. If one changes, the others will

change accordingly. Considering them together can help

the designed network to extract more discriminative fea-

tures in a Siamese framework.

• For a fully convolutional Siamese matching network, it

is critical to handle the problem of perceptual inconsis-

tency between the two network streams. There are two

feasible solutions. One is to remove the padding opera-

tions in networks, while the other is to enlarge the size

of both input exemplar and search images, and then crop

out padding-affected features.

4. Deeper and Wider Siamese Networks

In this section, we design new modules, i.e. cropping-

inside residual (CIR) units, to eliminate the underlying posi-

tion bias. Then, we build up deeper and wider backbone net-

works by stacking the new residual modules. The network

stride and receptive field size are well controlled according

to the guidelines. We further apply the designed networks

to two representative Siamese trackers, i.e. SiamFC [2] and

SiamRPN [20].

4.1. Cropping­Inside Residual (CIR) Units

The residual unit [14] is a key module in network ar-

chitecture design due to its easy optimization and powerful

representation. It consists of 3 stacked convolution layers

and a shortcut connection that bypasses them, as shown in

Fig. 3(a). The three layers are 1×1, 3×3 and 1×1 convo-

lutions, where the 1×1 layers are responsible for reducing

and then restoring dimensions, leaving the 3×3 layer as a

bottleneck with smaller input and output dimensions. This

bottleneck convolution includes zero-padding of size 1, to

ensure a compatible output size before the addition.

CIR Unit. As discussed in Sec. 3, network padding may

introduce position bias in the Siamese framework. Hence,

it is necessary to remove the padding in residual units when

utilizing them to build a Siamese network. To this end,

we augment the residual unit with a cropping operation,

which is incorporated after the feature addition, as shown

in Fig. 3(a′). The cropping operation removes features

whose calculation is affected by the zero-padding signals.

Since the padding size is one in the bottleneck layer, only

the outermost features on the border of the feature maps

are cropped out. This simple operation neatly removes

padding-affected features in residual unit.

Downsampling CIR (CIR-D) Unit. The downsampling

residual unit is another key building block for network de-

sign. It is utilized to reduce the spatial size of feature maps

while doubling the number of feature channels. Similar

to the residual unit, the downsampling unit also contains

padding operations, as shown in Fig. 3(b). Thus, we also

modify its structure to remove the negative effects caused

by the padding. As shown in Fig. 3(b′), we change the con-

volutional stride from 2 to 1 within both the bottleneck layer

and shortcut connection. Cropping is again inserted after

the addition operation to remove the padding-affected fea-

tures. Finally, max-pooling is employed to perform spatial

downsampling of the feature map. The key idea of these

modifications is to ensure that only the features influenced

by padding are removed, while keeping the intrinsic block

structure unchanged. If we were only to insert cropping

after the addition operation, as done in the proposed CIR

unit, without changing the position of downsampling, the

4594

Table 3: Architectures of designed backbone networks for Siamese trackers. The CIR-D units are used in the first block of the ‘conv3’

stage, except for CIResNet-43, in which CIR-D is located in the fourth block.

Stage CIResNet-16 CIResNet-19 CIResNet-22 CIResInception-22 CIResNeXt-22 CIResNet-43

conv1 7×7, 64, stride 2

conv2

2×2 max pool, stride 2




1 × 1, 64

3 × 3, 64

1 × 1, 256



 × 1





1 × 1, 64

3 × 3, 64

1 × 1, 256



 × 2





1 × 1, 64

3 × 3, 64

1 × 1, 256



 × 3





1 × 1, 64

3 × 3, 64

1 × 1, 256



 × 3





1 × 1, 64

3 × 3, 64, C = 32

1 × 1, 256



 × 3





1 × 1, 64

3 × 3, 64

1 × 1, 256



 × 14

[1 × 1, 64] × 3

conv3





1 × 1, 128

3 × 3, 128

1 × 1, 512



 × 4





1 × 1, 128

3 × 3, 128

1 × 1, 512



 × 4





1 × 1, 128

3 × 3, 128

1 × 1, 512



 × 4





1 × 1, 128

3 × 3, 128

1 × 1, 512



 × 4





1 × 1, 128

3 × 3, 128, C = 32

1 × 1, 512



 × 4

[1 × 1, 128] × 4

cross correlation Eq. 1

RF 77 85 93 13∼93 93 105

OFS 7 6 5 5 5 6

Params 1.304 M 1.374 M 1.445 M 1.695 M 1.417 M 1.010 M

FLOPs 2.43 G 2.55 G 2.65 G 2.71 G 2.52 G 6.07 G

features after cropping would not receive any signal from

the outermost pixels in the input image. As the network

depth increases, this would effectively cause even more im-

age content to be removed, resulting in noisy/incomplete

extracted features.

CIR-Inception and CIR-NeXt Units. We further equip

the CIR unit with a multi-branch structure, enabling it to be

used in building wide networks. Similar to Inception [33]

and ResNeXt [39], we widen the CIR unit with multiple

feature transformations, generating the CIR-Inception and

CIR-NeXt modules as shown in Fig. 3(c-d). Specifically,

in the CIR-Inception structure, we insert a 1×1 convolu-

tion into the shortcut connection, and merge the features

of the two branches by concatenation, rather than by addi-

tion. In CIR-ResNeXt, we split the bottleneck layer into 32
transformation branches, and aggregate them by addition.

Moreover, for the downsampling units of CIR-Inception

and CIR-NeXt, the modifications are the same as those in

CIR-D (Fig. 3(b′)), where the convolution stride is reduced

and max-pooling is added. These two multi-branch struc-

tures enable the units to learn richer feature representations.

4.2. Network Architectures

By stacking the above CIR units, we build up deeper and

wider networks. The constructions follow our design guide-

lines. First, we determine the network stride. A stride of 8
is used to build a 3-stage network, while a stride of 4 is em-

ployed in constructing a 2-stage one. Then, we stack CIR

units. We control the number of units and the position of

downsampling units in each stage. The goal is to ensure

that the receptive field size of neurons in the final layer lies

within the derived range, i.e. 60%-80% of the exemplar

image. Additionally, when network depth increases, the re-

ceptive field may exceed this range. Therefore, we halve the

stride to 4 to control the receptive field.

Deeper Networks. We construct deeper networks us-

ing CIR and CIR-D units. The structures are similar to

ResNet [14], but with different network stride, receptive

field size, and building blocks. In Tab. 3, we present four

deep cropping-inside residual networks, i.e. CIResNet-16,

19, 22 and 43. Since these networks have similar structure,

we present details for just two of them: CIResNet-22 and

CIResNet-43.

CIResNet-22 has 3 stages (stride=8) and consists of 22
weighted convolution layers. Except for the first 7×7 con-

volution, the others are all CIR units. A cropping opera-

tion (with size of 2) follows the 7×7 convolution to remove

padding-affected features. The feature downsampling in the

first two stages are performed by a convolution and a max-

pooling of stride 2, following the original ResNet [14]. In

the third stage, downsampling is performed by the proposed

CIR-D unit, which is located at the first block in this stage

(4 blocks in total). When the feature map size is down-

sampled, the number of filters is doubled to increase feature

discriminability. The spatial size of the output feature map

is 5×5, with each feature receiving signals from a region of

size 93×93 pixels on the input image plane, i.e. the corre-

sponding size of receptive field.

We further increase network depth to 43 layers in build-

ing CIResNet-43. Because of its large depth, CIResNet-43
is designed with only 2 stages, to keep its receptive field

size within the suggested range. In the second stage of

CIResNet-43, there are 14 blocks, where the fourth one has

a CIR-D unit for feature downsampling. It is worth notic-

ing that CIResNet-43 almost reaches the maximum depth

of backbone networks that can achieve real-time speed in

the SiamFC [2] framework. It has 6.07G FLOPs (multiply-

adds) and runs at an average of ∼35 fps in SiamFC frame-

work on a GeForce GTX 1080 GPU.

Wider Networks. We construct two types of wide

network architectures using CIR-Inception and CIR-NeXt

units, respectively. Here, we only present a 22-layer struc-

ture as an example, since other wider networks are similar

to this case. As presented in Tab. 3, the wide networks,

i.e. CIResInception-22 and CIResNeXt-22, have similar

structure to CIResNet-22 in terms of network stride, build-

ing block number and output feature size. But the network

4595

widths are increased by 2 and 32 times respectively, through

the multi-branch building blocks. Also, the receptive field

size becomes diverse (i.e. 13∼93) in CIResInception-22
due to multi-branch concatenation, but the maximum size

still remain within the suggested range.

4.3. Applications

We apply the designed deeper and wider networks to two

representative Siamese trackers: the classical SiamFC [2]

and the most recently proposed SiamRPN [20]. In both of

these two trackers, we replace the original shallow back-

bones, i.e. the 5-layer AlexNet [18], with our designed net-

works, which is the only modification to the original frame-

works.

5. Experiments

This section presents the results of our deeper and wider

Siamese networks on multiple benchmark datasets, with

comparisons to the state-of-the-art tracking algorithms. Ab-

lation studies are also provided to analyze the effects of the

components in the proposed networks.

5.1. Experimental Details

Training. The parameters of our networks are initial-

ized with the weights pre-trained on ImageNet [28]. During

training, we freeze the weights of the first 7×7 convolu-

tion layer, and gradually fine-tune other layers from back

to front. We unfreeze the weights of the layers in each

block (i.e. the proposed cropping-inside residual units) af-

ter every five training epochs. There are 50 epochs in total,

the same as in [2, 20]. The learning rates are decreased

logarithmically from 10−3/10−2 to 10−7/10−5 for SiamFC

and SiamRPN, respectively. The weight decay is set to

10−4, and the momentum is set to 0.9 (for both SiamFC

and SiamRPN). We use synchronized SGD [19] on 4 GPUs,

with each GPU hosting 32 images, hence the mini-batch

size is 128 images per iteration.

The training image pairs for SiamFC are collected from

the ImageNet VID dataset [28], while for SiamRPN, it is

generated from ImageNet VID [28] and Youtube-BB [27],

which is the same as those in the original frameworks [2,

20]. The size of an exemplar image is 127×127 pixels,

while the size of a search image is 255×255 pixels.

Testing. Tracking follows the same protocols as in

SiamFC [2] and SiamRPN [20]. The embedding ϕθ(z) of

the target object is computed once at the first frame, and

then is continuously matched to subsequent search images

ϕθ(x). To handle scale variations, SiamFC searches for

the object over three scales 1.0482{−1,0,1} and updates the

scale by linear interpolation with a factor of 0.3629 to pro-

vide damping. SiamRPN searches over only one scale since

it employs proposal refinement to handle scale change. The

penalty for large change of proposal size and aspect ratio is

Backbone
OTB(AUC) VOT-17(EAO) FPS

SiamFC SiamRPN SiamFC SiamRPN SiamFC SiamRPN

AlexNet 0.608[2] 0.637[20] 0.188[17] 0.244[20] 101[2] 190[20]

CIResNet-16 0.632 0.651 0.202 0.260 75 160

CIResNet-19 0.640 0.660 0.225 0.279 73 155

CIResNet-22 0.662 0.662 0.234 0.301 70 150

CIResIncep.-22 0.666 0.673 0.215 0.296 67 145

CIResNeXt-22 0.654 0.660 0.230 0.285 72 155

CIResNet-43 0.638 0.652 0.207 0.265 35 75

Table 4: Performance of our network architectures in SiamFC

and SiamRPN. To compare with the original results reported

in [2, 17, 20], SiamFCs are evaluated on OTB-2013 and VOT-17,

while SiamRPNs are evaluated on OTB-2015 and VOT-17. The

speed (FPS) is measured on a GeForce GTX 1080 GPU.

Figure 4: Expected average overlap (EAO) plot for VOT-15,

16 and 17. The listed methods, such as EBT[41], LDP[24],

nSAMF[22], TCNN[25], MLDF[36], CFWCR[36] and CFCF[11]

are compared in VOT challenges [9, 16, 17].

set to 0.439.

Our networks and trackers are implemented using

Python 3.6 and PyTorch 0.3.1. The experiments are con-

ducted on a PC with a GeForce GTX 1080 GPU and a Xeon

E5 2.4GHz CPU.

5.2. Comparison with Baselines

We first compare our deeper and wider networks to the

baseline AlexNet in the SiamFC and SiamRPN frameworks.

As presented in Tab. 4, on OTB-13, OTB-15 and VOT-17

datasets, our proposed networks outperform the baseline

AlexNet. In particular, SiamFC equipped with a CIResNet.-

22 backbone obtains relative improvements of 9.8% (AUC)

and 24.4% (EAO) over the original AlexNet on OTB-2015

and VOT-17, respectively. Meanwhile, SiamRPN armed

with CIResNet-22 achieves 4.4% and 23.3% relative gains.

4596

Table 5: Performance comparisons on five tracking benchmarks. Red, Green and Blue fonts indicate the top-3 trackers, respectively.

Tracker Year
OTB-2013 OTB-2015 VOT15 VOT16 VOT17

AUC Prec. AUC Prec. A R EAO A R EAO A R EAO

SRDCF [5] 2015 0.63 0.84 0.60 0.80 0.56 1.24 0.29 0.54 0.42 0.25 0.49 0.97 0.12
SINT [34] 2016 0.64 0.85 - - - - - - - -
Staple [1] 2016 0.60 0.80 0.58 0.78 0.57 1.39 0.30 0.54 0.38 0.30 0.52 0.69 0.17
SiamFC [2] 2016 0.61 0.81 0.58 0.77 0.53 0.88 0.29 0.53 0.46 0.24 0.50 0.59 0.19
ECO-HC [4] 2017 0.65 0.87 0.64 0.86 - - - 0.54 0.3 0.32 0.49 0.44 0.24
PTAV [8] 2017 0.66 0.89 0.64 0.85 - - - - - - - - -
DSiam [12] 2017 0.64 0.81 - - - - - - - - - - -
CFNet [35] 2017 0.61 0.80 0.59 0.78 - - - - - - - - -
StructSiam [40] 2018 0.64 0.88 0.62 0.85 - - - - - 0.26 - - -
TriSiam [7] 2018 0.62 0.82 0.59 0.78 - - - - - - - - 0.20
SiamRPN [20] 2018 - - 0.64 0.85 0.58 1.13 0.35 0.56 0.26 0.34 0.49 0.46 0.24

SiamFC+ Ours 0.67 0.88 0.64 0.85 0.57 - 0.31 0.54 0.38 0.30 0.50 0.49 0.23
SiamRPN+ Ours 0.67 0.92 0.67 0.90 0.59 - 0.38 0.58 0.24 0.37 0.52 0.41 0.30

This verifies that our designed architectures resolve the

performance degradation problem shown in Fig. 1. Also,

it shows the effectiveness of our proposed CIR units for

Siamese networks.

It is worth noting that when the depth of CIResNets in-

creases from 16 to 22 layers, the performance improves ac-

cordingly. But when increasing to 43 layers, CIResNet does

not obtain further gains. There are two main reasons. 1) The

network stride is changed to 4, such that the overlap be-

tween the receptive fields of two adjacent features is large.

Consequently, it is not as precise as networks with stride

of 8 in object localization. 2) The number of output fea-

ture channels is halved, compared to the other networks in

Tab. 3 (i.e. 256 vs. 512 channels). The overall parame-

ter size is also smaller. These two reasons together limit the

performance of CIResNet-43. Furthermore, wider networks

also bring gains for Siamese trackers. Though CIResNeXt-

22 contain more transformation branches, its model size is

smaller (see Tab. 3). Therefore, its performance is inferior

to CIResIncep.-22 and CIResNet-22.

5.3. Comparison to State­of­the­Art Trackers

We further compare our enhanced Siamese trackers to

state-of-the-art tracking algorithms. We select some of

the currently best performing trackers in general, as well

as other recent Siamese trackers for comparison. Our

enhanced trackers employ the best performing CIResNet-

22 as the backbone, and are denoted as SiamFC+ and

SiamRPN+. The comparison is conducted on five datasets:

OTB-2013, OTB-2015, VOT15, VOT16 and VOT17.

OTB Benchmarks. The evaluation on OTB-2013 and

OTB-2015 follows the standard protocols proposed in [37,

38]. Two metrics, i.e. precision and area under curve (AUC)

of success plots, are used to rank the trackers. The re-

sults are reported within Tab. 5. It shows that our SiamFC+

and SiamRPN+ surpass other Siamese trackers, such as the

recent proposed StructSiam [40] and TriSiam [7]. This

demonstrates the effectiveness of our designed architecture.

Moreover, compared with other state-of-the-art algorithms,

such as ECO-HC [4] and CFNet [35], our trackers are still

superior in terms of precision and speed.

Table 6: Ablation for residual unit vs. CIR unit on SiamFC.

CIResNet-20 CIResNet-22 CIResIncep.-22

Res. Unit 0.204 0.213 0.227

CIR Unit 0.271 0.301 0.282

Table 7: Ablation over different downsampling settings used in

SiamFC. See main text for explanations.

CIResNet-20 CIResNet-22 CIResIncep.-22

Setting 1 0.264 0.292 0.266

Setting 2 0.259 0.287 0.275

CIR-D 0.271 0.301 0.282

VOT Benchmarks. The evaluation on VOT benchmarks

is performed by the official toolkit [17], in which accuracy

(A), robustness (R) and expected average overlap (EAO)

serve as the metrics.

VOT-15. We compare our SiamFC+ and SiamRPN+

with the state-of-the-art trackers on the vot-2015 challenge.

The results are reported in Fig. 4 (top). Our SiamRPN+

achieves the best result, slightly better than MDNet [26].

Also, SiamRPN+ runs much faster than MDNet, which op-

erates at ∼1 fps. Compared to the baselines, i.e. SiamFC

and SiamRPN, our deeper network enhanced trackers ob-

tain 8.8% and 8.9% relative improvements, respectively.

VOT-16. The video sequences in VOT-16 are the same

as those in VOT-15, but the ground-truth bounding boxes

are precisely re-annotated. We compare our trackers to the

top-10 trackers in the challenge. As shown in Fig. 4(mid-

dle), SiamRPN+ ranks first in terms of EAO. It surpasses

CCOT [6], the champion of the vot-2016 challenge, by 3.9
points, as well as the most recent VITAL [31] by 4.7 points.

Moreover, SiamFC+ also improves over the baseline by a

large margin, i.e. 6.0 points on EAO.

VOT-17. Fig. 4(bottom) shows the comparison with

the trackers in the vot-2017 challenge. Our SiamRPN+

achieves an EAO of 3.01, slightly inferior to the best

performing LSART tracker [32]. However, SiamRPN+

runs at 150 fps, which is 150× faster than LSART. Com-

pared to real-time trackers, SiamRPN+ ranks first in terms

of accuracy and robustness. Surprisingly, even the plain

SiamFC+ surpasses the real-time tracker champion of vot-

2017 CSRDCF++[23] by 2.2 points. This further verifies

the effectiveness of our deeper network architecture de-

signed for Siamese trackers.

4597

5.4. Ablation Study

In Tab. 6−8, we evaluate the effects of different factors

in our designed networks on the VOT-16 dataset.

With vs. without CIR unit. The cropping-inside residual

unit is a key component in our network architectures. To

evaluate its impact, we replace it with the original residual

unit [14] in the networks. As shown in Tab. 6, this replace-

ment causes remarkable performance drops, e.g. a degra-

dation of 8.8 points from 0.301 to 0.213 on CIResNet.-

22. It clearly verifies the importance of padding removal in

the CIR unit, which essentially eliminates position bias in

learning. The predicted heatmaps of CIResNet-22 in Fig. 2

also prove this point.

With vs. without CIR-D unit. We compare three differ-

ent downsampling settings in networks: 1) directly using

the original downsampling residual unit, i.e. Fig. 3(b), 2)

inserting a cropping operation after addition in the down-

sampling residual unit, and 3) the proposed CIR-D unit,

i.e. Fig. 3(b′). Tab. 7 presents the results. It shows that the

first two settings are comparable, but inferior to the third

one. This indicates our CIR-D unit is effective. In particu-

lar, the cropping introduced in the second setting does not

bring improvements, since it removes parts of internal fea-

tures (i.e. not the padding-affected features), resulting in

information loss from the original input.

Impact of receptive field, feature size and stride. We tune

the sizes of these factors and show their impacts on final

performance. Specifically, we vary the convolutional kernel

size in the last cropping-inside residual block to change the

size of receptive field and output feature. Taking CIResNet-

22 as an example, we vary the kernel size from 1 to 6, which

causes the feature size to change from 7 to 2. To change the

network stride, we replace one CIR unit with a CIR-D unit

in the networks. Tab. 8 shows the results. We can observe

that when RF becomes large, the performance drops signif-

icantly (i.e. from ④ to ① in Tab. 8). The underlying reason

is that a large RF covers much image context, resulting in

the extracted feature being insensitive to the spatial location

of the target object. For output features, it is observed that

a small size (OFS ≤ 3) does not benefit accuracy. Also, a

large network stride, i.e. 16, is not as precise as a medium

sized one, i.e. 8. These results echo our analysis and guide-

lines presented at the beginning of this paper.

6. Discussions

Network Architectures. The problem addressed in this

paper can be seen as a subtask of network architecture de-

sign, which mainly develops in two ways: making net-

works deeper [29, 14] or wider [33, 39]. To make networks

deeper, ResNets [14] introduce an identity mapping that

makes training ultra deep networks possible. To make net-

works wider, GoogLeNet [33] and its descendants employ

Table 8: Analysis of network internal factors.

NUM ① ② ③ ④ ⑤ ⑥ ⑦ ⑧

RF +24 +16 +8 ±0 (93) -8 -16 +16 +16

OFS 2 3 4 5 6 7 6 2

STR 8 8 8 8 8 8 4 16

CIResNet-16 0.22 0.23 0.24 0.26 0.25 0.24 0.23 0.20

CIResNet-19 0.23 0.26 0.26 0.28 0.27 0.26 0.24 0.21

CIResNet-22 0.25 0.27 0.28 0.30 0.29 0.27 0.26 0.23

CIResIncep.-22 0.24 0.26 0.27 0.28 0.27 0.26 0.25 0.22

an Inception module to introduce multiple feature transfor-

mations and thus enhance model representation capacity.

Our work takes advantage of these deep and wide net-

work architectures, and modifies them to adapt effectively

to Siamese networks. Two key principles for Siamese back-

bone design are presented. One is to remove padding op-

erations inside network architectures, the other is to control

the receptive field size and network stride. Both of them are

shown to have significant impact on tracking performance.

Moreover, this is the first work that systematically studies

how to design robust backbone networks in visual tracking.

Siamese Trackers. Siamese trackers follow a tracking

by similarity matching strategy. The pioneering works are

SINT [34] and SiamFC [2], which each employ a Siamese

network to offline train a similarity metric between the ob-

ject target and candidate image patches. A large amount

of follow-up work [7, 12, 13, 20, 40] have been proposed,

and they fall into two camps. One improves matching pre-

cision with high-level semantic information or a localiza-

tion model [13, 15, 40, 20]. The other enhances the offline

Siamese model with online updates [12, 35, 42].

There is a recent work also studying how to leverage

deep networks for visual tracking [3]. But it approaches

the problem from the direction of data augmentation and

feature fusion. Differently, our work studies how to de-

sign network architectures and successfully equips Siamese

trackers with deeper and wider backbones.

7. Conclusion

In this paper, we design deep and wide network architec-

tures for Siamese trackers. This is motivated by the obser-

vation that direct replacement of backbones with existing

powerful networks does not bring improvements. We care-

fully study the key causes and determine that receptive field

size, network padding and stride are crucial factors. Exper-

iments on five benchmarks demonstrate the effectiveness of

the proposed architectures, leading to competitive perfor-

mance on five datasets.

Acknowledgement. This work was done in Microsoft Re-

search Asia. Thanks to Steve Lin and Zhirong Wu for

helpful discussions. Zhipeng Zhang is partly supported by

NSFC U1803119, 2016QY01W0106 and JQ18018.

4598

References

[1] Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej

Miksik, and Philip HS Torr. Staple: Complementary learn-

ers for real-time tracking. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

1401–1409, 2016. 7

[2] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016. 1, 2, 4,

5, 6, 7, 8

[3] Goutam Bhat, Joakim Johnander, Martin Danelljan, Fa-

had Shahbaz Khan, and Michael Felsberg. Unveiling the

power of deep tracking. arXiv preprint arXiv:1804.06833,

2018. 8

[4] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan,

Michael Felsberg, et al. Eco: Efficient convolution opera-

tors for tracking. In CVPR, volume 1, page 3, 2017. 7

[5] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and

Michael Felsberg. Learning spatially regularized correlation

filters for visual tracking. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4310–4318,

2015. 7

[6] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

European Conference on Computer Vision, pages 472–488.

Springer, 2016. 7

[7] Xingping Dong and Jianbing Shen. Triplet loss in siamese

network for object tracking. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 459–

474, 2018. 1, 7, 8

[8] Heng Fan and Haibin Ling. Parallel tracking and verifying:

A framework for real-time and high accuracy visual track-

ing. In Proc. IEEE Int. Conf. Computer Vision, Venice, Italy,

2017. 7

[9] Michael Felsberg, Amanda Berg, Gustav Hager, Jorgen

Ahlberg, Matej Kristan, Jiri Matas, Ales Leonardis, Luka

Cehovin, Gustavo Fernandez, Tomas Vojir, et al. The ther-

mal infrared visual object tracking vot-tir2015 challenge re-

sults. In Proceedings of the IEEE International Conference

on Computer Vision Workshops, pages 76–88, 2015. 6

[10] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey.

Learning background-aware correlation filters for visual

tracking. In ICCV, pages 1144–1152, 2017. 1

[11] Erhan Gundogdu and A Aydın Alatan. Good features to cor-

relate for visual tracking. IEEE Transactions on Image Pro-

cessing, 27(5):2526–2540, 2018. 6

[12] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and

Song Wang. Learning dynamic siamese network for visual

object tracking. In The IEEE International Conference on

Computer Vision (ICCV).(Oct 2017), 2017. 1, 2, 7, 8

[13] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A

twofold siamese network for real-time object tracking. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4834–4843, 2018. 1, 2, 8

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 2, 4, 5, 8

[15] David Held, Sebastian Thrun, and Silvio Savarese. Learn-

ing to track at 100 fps with deep regression networks. In

European Conference on Computer Vision, pages 749–765.

Springer, 2016. 8

[16] Matej Kristan, Ale? Leonardis, and Ji?i Matas. et. The visual

object tracking vot2016 challenge results. In Proceedings,

European Conference on Computer Vision (ECCV) work-

shops, pages 777–823, 8Oct. 2016. 6

[17] M. Kristan, A. Leonardis, J. Matas, and M. Felsberg. et. The

visual object tracking vot2017 challenge results. In 2017

IEEE International Conference on Computer Vision Work-

shop (ICCVW), volume 00, pages 1949–1972, Oct. 2017. 6,

7

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 1, 2, 6

[19] Yann LeCun, Bernhard Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne Hubbard, and

Lawrence D Jackel. Backpropagation applied to handwrit-

ten zip code recognition. Neural computation, 1(4):541–551,

1989. 6

[20] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8971–

8980, 2018. 1, 2, 4, 6, 7, 8

[21] Xi Li, Weiming Hu, Chunhua Shen, Zhongfei Zhang, An-

thony Dick, and Anton Van Den Hengel. A survey of appear-

ance models in visual object tracking. ACM transactions on

Intelligent Systems and Technology (TIST), 4(4):58, 2013. 1

[22] Yang Li and Jianke Zhu. A scale adaptive kernel correlation

filter tracker with feature integration. In European confer-

ence on computer vision, pages 254–265. Springer, 2014. 6

[23] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas,

and Matej Kristan. Discriminative correlation filter with

channel and spatial reliability. In CVPR, volume 6, page 8,

2017. 7

[24] Alan Lukežič, Luka Čehovin Zajc, and Matej Kristan. De-

formable parts correlation filters for robust visual tracking.

IEEE transactions on cybernetics, 48(6):1849–1861, 2018.

6

[25] Hyeonseob Nam, Mooyeol Baek, and Bohyung Han. Model-

ing and propagating cnns in a tree structure for visual track-

ing. arXiv preprint arXiv:1608.07242, 2016. 6

[26] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4293–4302, 2016. 7

[27] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,

and Vincent Vanhoucke. Youtube-boundingboxes: A large

high-precision human-annotated data set for object detec-

tion in video. In Computer Vision and Pattern Recogni-

4599

tion (CVPR), 2017 IEEE Conference on, pages 7464–7473.

IEEE, 2017. 6

[28] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 6

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1, 2, 8

[30] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Si-

mone Calderara, Afshin Dehghan, and Mubarak Shah. Vi-

sual tracking: An experimental survey. IEEE Transactions

on Pattern Analysis & Machine Intelligence, (1):1, 2013. 1

[31] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao

Bao, Wangmeng Zuo, Chunhua Shen, Rynson Lau, and

Ming-Hsuan Yang. Vital: Visual tracking via adversarial

learning. arXiv preprint arXiv:1804.04273, 2018. 7

[32] Chong Sun, Huchuan Lu, and Ming-Hsuan Yang. Learning

spatial-aware regressions for visual tracking. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages

8962–8970, 2018. 7

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

1, 2, 5, 8

[34] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1420–1429, 2016. 1, 7, 8

[35] Jack Valmadre, Luca Bertinetto, João Henriques, Andrea

Vedaldi, and Philip HS Torr. End-to-end representation

learning for correlation filter based tracking. In Computer

Vision and Pattern Recognition (CVPR), 2017 IEEE Confer-

ence on, pages 5000–5008. IEEE, 2017. 7, 8

[36] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan

Lu. Visual tracking with fully convolutional networks. In

Proceedings of the IEEE international conference on com-

puter vision, pages 3119–3127, 2015. 6

[37] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2411–2418, 2013. 7

[38] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(9):1834–1848, 2015. 7

[39] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In Computer Vision and Pattern Recogni-

tion (CVPR), 2017 IEEE Conference on, pages 5987–5995.

IEEE, 2017. 5, 8

[40] Yunhua Zhang, Lijun Wang, Jinqing Qi, Dong Wang,

Mengyang Feng, and Huchuan Lu. Structured siamese net-

work for real-time visual tracking. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), pages 351–

366, 2018. 1, 2, 7, 8

[41] Gao Zhu, Fatih Porikli, and Hongdong Li. Beyond local

search: Tracking objects everywhere with instance-specific

proposals. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 943–951, 2016.

6

[42] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In European Conference on Computer Vi-

sion, pages 103–119. Springer, 2018. 2, 8

[43] Wangmeng Zuo, Xiaohe Wu, Liang Lin, Lei Zhang, and

Ming-Hsuan Yang. Learning support correlation filters for

visual tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2018. 1

4600

