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Abstract

We propose a new geometric regularization principle for
reconstructing vector fields based on prior knowledge about
their divergence. As one important example of this general
idea, we focus on vector fields modelling blood flow pattern
that should be divergent in arteries and convergent in veins.
We show that this previously ignored regularization con-
straint can significantly improve the quality of vessel tree
reconstruction particularly around bifurcations where non-
zero divergence is concentrated. Our divergence prior is
critical for resolving (binary) sign ambiguity in flow orien-
tations produced by standard vessel filters, e.g. Frangi. Our
vessel tree centerline reconstruction combines divergence
constraints with robust curvature regularization. Our unsu-
pervised method can reconstruct complete vessel trees with
near-capillary details on synthetic and real 3D volumes.

1. Background on vessel detection

There is a large body of prior work on estimation of ves-
sels in computer vision and biomedical imaging communi-
ties [19]. Typically, pixel-level detection of tubular struc-
tures is based on multiscale eigen analysis of raw intensity
Hessians developed by Frangi et al. [ 1] and other research
groups [10]. At any given point (pixel/voxel) such vessel
enhancement filters output a tubularness measure and esti-
mates of the vessel’s scale and orientation, which describes
the flow direction upto to a sign. While such local analy-
sis of Hessians is very useful, simple thresholding of points
with large-enough vesselness measure is often unreliable as
a method for computing the vessel tree structure. While
thresholding works well for detecting relatively large ves-
sels, detection of smaller vessels is complicated by noise,
partial voluming, and outliers (e.g. ring artifacts). More im-
portantly, standard tubular filters exhibit signal loss at vessel
bifurcations as those do not look like tubes.

Earlier regularization methods [30, 31] address many
tree reconstruction challenges due to noise and outliers as-
suming accurately localized “anchor” points are available
and data is relatively small. In contrast, we focus on large
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3D data with 80% of near-capillary vessels of voxel-size or
less; thus, finding accurate centerline anchors is problem-
atic due to signal loss at thinner parts and bifurcations. We
propose a new regularization prior based on knowledge of
the flow pattern divergence. It is critical for disambiguating
flow directions and gives important cues on the vessel tree
structure. Next subsections outline related regularization
methods for vessel reconstruction and motivate our work.
It may be also interesting to apply deep learning to ves-
sel tree detection, but neural network training is problematic
since vessel tree ground truth is practically impossible in
real 3D data. Practical weakly-supervised training may re-
quire regularized loss functions [29] appropriate for vessel
tree detection. While our regularization methodology may
help to design such losses, we leave this for future work.

1.1. Vessel representation: centerline or segment

Two common approaches to representing vessels in re-
construction methods are volumetric binary mask and cen-
terline. Volumetric mask is typical for techniques directly
computing vessel segmentation, i.e. binary labeling of pix-
els/voxels. In contrast, centerline is a 1D abstraction of
the vessel. But, if combined with information about vessel
radii, it is easy to obtain a volumetric mask or segmenta-
tion from the vessel’s centerline, e.g. using MAT [27]. Vice
versa, centerline could be estimated from the vessel’s binary
mask using skeletonization algorithms.

In the context of regularization methods for vessel re-
construction, centerline representation offers significant ad-
vantages since powerful higher-order regularizers are easier
to apply to 1D structures. For example, centerline’s cur-
vature can be regularized [ 18], while conceptually compa-
rable regularization for vessel segmentation requires opti-
mization of Gaussian or minimum curvature of the vessel’s
surface with no known practical algorithms. In general, cur-
vature remains a challenging regularization criteria for sur-
faces [25, 28, 14, 24, 21]. Alternatively, some vessel seg-
mentation methods use simpler first-order regularizers pro-
ducing minimal surfaces. While tractable, such regularizers
impose a wrong prior for surfaces of thin structures due to
their bias to compact blob shapes (a.k.a. shrinking bias).
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1.2. Towards whole tree centerline

Many vessel reconstruction methods directly compute
centerlines of different types that can be informaly defined
as simplified (e.g. regularized) 1D representation of the
blood flow pathlines. For example, the A/B shortest path
methods require a user to specify two end points of a vessel
and apply Dijkstra to find an optimal pathline on a graph
with edge weights based on vesselness measure.

Interactive A/B methods are not practical for large vessel
tree reconstraction problems. While it is OK to ask a user
to identify the tree root, manual identification of all the end
points (leaves) is infeasible. There are tracing techniques
[3] designed to trace vessel tree from a given root based on
vesselness measures and some local continuation heuristics.
Our evaluations on synthetic data with groud truth show that
local tracing methods do not work well for large trees with
many thin vessels even if we use the ground truth to provide
all tree leaves as extra seeds in addition to the root.

Our goal is unsupervised reconstruction of the whole
vessel tree centerline. This problem can be solved in two
steps: (1) compute a “tubular graph” of plausible vessel
links between some centerline anchor points and (2) esti-
mate its optimal sub-tree under given regularity constraints.
It is common to do step one via simple heuristics and
to focus on the optimization problems in the second step
[30, 31]. In contrast, we focus on accurate estimation of
the centerline points (anchors) and their connectivity graph.
We use basic MST for step two, in part due to large size of
our problem where ILP [30] or genetic methods [31] do not
easily apply. To estimate centerline points, we optimize a
global objective function for a field of centerline tangents.
Such objectives can combine vesselness measures, geomet-
ric errors, and different regularization constraints address-
ing centerline completion. Related prior work using center-
line curvature regularization is reviewed below.

1.3. Curvature regularization for centerline

Curvature, a second-order smoothness term, is a natu-
ral regularizer for thin structures. In general, curvature has
been studied for image segmentation [25, 28, 26, 5, 14, 24,

, 18], for stereo or multi-view-reconstruction [ 17, 23, 33],
connectivity measures in analysis of diffusion MRI [20], for
tubular structures extraction [ 18], for inpainting [2, 6] and
edge completion [12, 32, 1].

Olsson et al. [22] propose curvature approximation for
surface fitting regularization. Their framework employs
tangential approximation of surfaces. The authors assume
that the data points are noisy readings of the surface. The
method estimates local surface patches, which are parame-
terized by tangent planes. The (shortest) interval from the
data point to its tangent plane gives the surface normal and
defines the point of tangency.

Assume there is a smooth curve, see Fig. 1. Points p

Figure 1. Curvature
model of [22]. Given two
points p and ¢ on the red

curve and two tangents [,  p-.
and [, at these points, the 115-1,11
integrals of curvature are
approximated by (1-3).

gL

and g on the curve and tangents [, and [, at these points are
given. Then the integrals of curvature x(-) is estimated by

1 Ip — 1]
k(s)|ds —_— (1)
/p I5() lp— qll
/q|n(s)\2ds ~ Pl )
p lp—ql®

where ||p — [,]| is the distance between point p and the tan-
gent line at point g represented by vector [,. Olsson et al.
[22] explore several similar approximations and argue that
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gives practically better curvature regularization'.

Marin et al. [ 1 8] generalized this surface fitting problems
to detection problems where majority of the data points, e.g.
image pixels, do not belong to a thin structure. In order to
do that they introduced binary variables in their energy in-
dicating if a data point belongs to the thin structure. One of
their applications is vessel detection. The proposed vessel-
tree extraction system includes vessel enhancment filtering,
non-maximum suppresion for data reduction, tangent ap-
proximation of vessels’ centerline and minimum spanning
tree for topology extraction. Assuming that detection vari-
ables are computed, the tangent approximation of vessels’
centerline is found by minimizing energy

E) =Y IF=LIP+7 Y rpgllply) @
p

(p.9)EN

where summations are over detected vessel points, p is the
original data point’s location, [, is the tangent vector at
point p, the denoised point location p is constraint to be
the closest point on tangent line at p, and N C Q? is the
neighborhood system. The curvature term in the energy
makes the tangents “collapse” onto a one-dimensional cen-
terline, see Fig.3(a,c). But the same figures also show arti-
facts around bifurcations where undesired triangular struc-
tures form, indicating unoriented tangent model limitations.
Our experiments employs the same components as in
[18]. Our work focuses on analysis of failure cases and im-
provement of the regularization stage for tangent approxi-
mation. In particular we will show the drawbacks of curva-
ture models (1-3) in the context of vessel tree extraction and
propose a solution leading to significant improvements.

lEquz;ltion (3) is a symmetric form of regularizer recommended in [22].

10217



A AR A

(a) divergent vessels (arteries)

(b) inconsistent divergence

(c) convergent vessels (veins)

Figure 2. [Vessel-tree divergence] Vessels are the blood flow pathlines and could be assigned orientations (7). To estimate orientations,
we penalize negative (or positive) “vessel divergence”, which we define as the divergence of oriented unit tangents of vessels/pathlines.
Such unit tangent flow divergence is positive (red) or negative (blue) at bifurcations, see (a-c). Note that standard curvature [22, 18] and
oriented curvature models (6) either can not distinguish (b) from (a) and (c) or may even prefer (b) depending on specific combinations of
bifurcation angles. For example, compare vessel direction disambiguation based on curvature and the divergence prior in Fig.7 (a) & (b).

1.4. Our contributions and motivation

This work addresses an important limitation of vessel
tree reconstruction methods due to sign ambiguity in vessel
orientation produced by local vesselness filters, e.g. Frangi.
This orientation is described by the smallest eigenvector of
the local intensity Hessian, but its sign is ambiguous. Thus,
the actual flow directions are not known, even though they
are an important reconstruction cue particularly at bifurca-
tions. This binary direction ambiguity can be resolved only
by looking at the global configuration of vessel orientations
(tangents) allowing to determine a consistent flow pattern.

We propose a divergence prior for disambiguating the
global flow pattern on the vessel tree, see Fig.2. This prior
can be imposed as a regularization constraint for a vector
field of oriented unit tangents for vessel pathlines. We pe-
nalize negative (or positive) divergence for such unit tan-
gent flow to enforce a consistent flow pattern’. The sum-
mary of our contributions:

e Prior knowledge about divergence is generally useful
for vector field inference. We propose a way to eval-
uate divergence for sparsely sampled vector fields via
pairwise potentials. This makes divergence constraints
amenable to a wide range of optimization methods for
disrcrete or continuous hidden variables.

e As an important application, we show that known di-
vergence can disambiguate vessel directions output by
standard vessel filters, e.g. Frangi [11]. This requires
estimation of binary “sign” variables. The constraint
penalizing positive (or negative) divergence is non-
submodular, but it is well optimized by TRWS [15].

e To estimate vessel tree centerline, the divergence con-
straint can be combined with robust oriented curva-
ture regularization for pathline tangents. Additional

2This divergence constraint is specific to unit tangent flow. Note that
divergence for consistent blood flow velocities is zero even at bifurcations
assuming incompressible blood.

(© (d)

Figure 3. Triangle artifacts at bifurcation. Optimization of energy
(4) ignoring tangent orintations often leads to a strong local min-
ima as in (a) and (c). The line segments are the estimated tangents
of the centerline. New curvature term (6) takes into account tan-
gent orientations resolving the artifacts, see (b) and (d).

options include outlier/detection variables [ 18] and/or
tree structure completion techniques, e.g. using MST.

e We provide extensive quantitative validation on syn-
thetic vessel data, as well as qualitative results on real
high-resolution volumes.

The paper is organized as follows. Section 2 introduces ori-
ented vessel pathline tangents and discusses their curvature-
based regularization. It is clear that orientation of the flow
at the bifurcations is important, e.g. see Fig.3. Section 3 in-
troduces our divergence prior and methods for enforcing it
in the context of vessel tree centerline estimation. The last
sections presents our experimental results.

2. Bifurcations and curvature
2.1. Oriented curvature constraint

Previous works [22, 24, 18] ignored orientations of tan-
gent vectors {l,}pco. Equations (1)—(4) do not depend on
the orientations of /. In practice, the orientations of vec-
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(a) (b) (c)
Figure 4. Illustrative examples of three interacting tangents with
unoriented curvature (a) as in (4) and two alternative oriented
configurations (b) and (c) with oriented curvature as in (5). The
green line denotes pairwise interaction with low curvature esti-
mate. Note, unoriented curvature (1-3) always chooses the small-
est angle for calculation. The red line shows “inactive” interaction
where curvature estimate (6) reaches the high saturation threshold.

tors [, are arbitrarily defined. Ignoring the orientations in
energy (4) results in significant “triangle” artifacts around
bifurcation, see Fig. 3(a,c). Consider an illustrative exam-
ple in Fig. 4(a). Each of the three tangents interacts with
the other two. The prior knowledge about blood flow pat-
tern dictates that among those three tangents there should
be one incoming and one outcoming. Introduction of ori-
entations allows us to distinguish the incoming/outcoming
tangents and subsequently inactivate one of the interactions,
see Fig. 4(b), resulting in disappearance of these artifacts.

In order to introduce oriented curvature we introduce a
new vector field l_p, which we call oriented. Then, we in-
troduce energy F, (1) by replacing curvature term in energy
(4) with a new oriented curvature as follows

EO(D = Z D — ip||2 +7 Z qu(ip’ iq) o)
P

(p.9)EN
where
pa( 1), (TpaTg) > 7
lp,lg) = pa\'pstq)yr \'prlq ’ 6
Fopg(lp, Lq) {1’ otherwise, ©

and (l,,1,) is the dot product of [, and [, and 7 > 0 is a
positive threshold discussed in Fig. 5. -
The connection between oriented field [ and [ is

Ly =, -1, (7)
where binary variables x,, € {—1,1} flip or preserve the
arbitrarily defined orientations of /,.

2.2. Curvature and orientation ambiguity

Introduction of orientated curvature resolves triangle ar-
tifacts, see Fig. 3(b,d). However, the orientations are not
known in advance. For example, the Frangi filter [1 1] de-
fines a tangent as a unit eigenvector of a special matrix. The
unit eigenvectors are defined up to orientation, which is cho-
sen arbitrarily. One may propose to treat energy (5) as a
function of tangent orientations x via relation (7) as follows

Eo(z) = EO({xp'lp}) (3

lp=const

Figure 5. Robustness of cur-
vature (6). The pairs of
tangent vectors that has an-
gle greater than acosT are
not considered belonging to
the same vessel. A con-
stant penalty is assigned to
such pairs. This “turns off”
smoothness enforcement at
bifurcations. acosT @

(a) Voronoi cells for
D, q € 2 and facet f,,

(b) ethin box fr,
around facet f,,

L

Figure 6. Divergence of a sparse vector field {l,|p € Q}. As-
suming that the corresponding “extrapolated” dense vector field is
constant inside Voronoi cells (a), it is easy to estimate (non-zero)
divergence Vi, (9) concentrated in a narrow region f5, around
each facet (b) using the divergence theorem.

However, energy (8) is under-constrained because it allows
multiple equally good solutions, see Fig. 4(b) and (c). The
example in (b) shows a divergent pattern while (c) shows
a convergent pattern suggesting artery/vein ambiguity. Un-
fortunately, energy (8) does not enforce consistent flow pat-
tern across the vessel tree resulting in a mix of divergent
and convergent bifurcations as in Fig. 2(b). Real data ex-
periments confirm this conclusion, see Fig. 7(a).

Thus, oriented curvature model (5) has a significant
problem. While it can resolve “triangle artifacts™ at bifur-
cations, see Fig.3, it breaks the wrong sides of the triangles
at many bifurcations: it estimates the flow pattern incor-
rectly and then give the incorrect estimation of centerline,
see Fig.8(a). Below we introduce our divergence prior di-
rectly enforcing consistent flow pattern over the vessel tree.

3. Divergence constraint
3.1. Estimating divergence

Figure 6 describes our (finite element) model for estimat-
ing divergence of a sparse vector field {l,|p € Q} defined
for a finite set of points 2 C R3. We extrapolate the vector
field over the whole domain R3 assuming constancy of the
vectors on the interior of the Voronoi cells for p € €2, see
Fig.6(a). Thus, vectors change only in the (narrow) region
around the cell facets where all non-zero divergence is con-
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(b) with divergence prior (11)
Figure 7. Disambiguating flow directions in Frangi output [11].
Both examples use fixed (unoriented) vessel tangents {l,} pro-
duced by the filter and compute (oriented) vectors l}, = xplp (7)
by optimizing binary sign variables {x, } using energies (8) in (a)
and (11) in (b). The circles indicate divergent (red) or convergent
(blue) bifurcations similarly to the diagrams in Fig.2. The extra di-
vergence constraint in (10) enforces flow pattern consistency (b).

centrated. To compute the integral of divergence in the area

between two neighboring points p, ¢ € €2, see Fig.6(b), we

estimate flux of the extrapolated vector field over e-thin box
g around facet fp,

[ @nyas = BBl ) o

pq

where 7 is the outward unit normal of the box and | fp,,| is
the facet’s area. Then, divergence theorem implies the fol-
lowing formula for the integral of divergence of the vector
field inside box fy,

7 Algypa) = (I pa)

leq \pq| ’ ‘qu| ©)

where we ignore only infinitesimally negligible o(¢) term.

3.2. Oriented centerline estimation

Constraints for divergence Vl_pq in the regions between
neighbors p,q € D in Delaugney triangulation of €2 can

be combined with £, (1) in (5) to obtain the following joint
energy for estimating oriented centerline tangents [,,

E(l) = E() + X > (Vi)™ (10

(p,9)€ED

where the negative part operator (-)~ encourages divergent
flow pattern as in Fig.2(a). Alternatively, one can use (-)*

(b) tangent vectors at convergence for energy (10)
Figure 8. Centerline estimation for the data in Fig.7. Instead of
showing tangent orientations estimated at the first iteration as in
Fig.7, we now show the final result at convergence for minimizing
energy (5) in (a) and energy (10) in (b). The blue circle shows
bifurcation reconstruction artifacts due to the wrong estimation of
vessel orientations in Fig.7(a).

to encourage a convergent flow pattern as in Fig.2(c). This
joint energy for oriented centerline estimation E(I) com-
bines Frangi measurements, centerline curvature regularity,
and consistency of the flow pattern, see Fig.7(b). Note that
specific value of facet size in (9) had a negligible effect in
our centerline estimation tests as it only changes a relative
weight of the divergence penalty at any given location. For
simplicity, one may use | f,q| = const for all p, ¢ € D.
Optimization of oriented centerline energy E(I) in
(10) over oriented tangents {l,} can be done via block-

coordinate descent. As follows from definition (7)

E(Z) = E({zp-lp})
We iterate TRWS [15] for optimizing non-submodular en-
ergy for binary “sign” disambiguation variables {z, }

E@) = E({a,-1,})

and trust region [34, 18] for optimizing robust energy for
aligning tangents into 1D centerline

E(l) = E({zp-lp})

Figure 9 shows a representative example illustrating conver-
gence of energy (10) in a few iterations.

Note that the divergence constraint in joint energy (10)
resolves the problem of under-constrained objective (5) dis-
cussed at the end of Section 2. Since the flow pattern con-
sistency is enforced, optimization of (10) should lead to a
consistent resolution of the triangle artifacts at bifurcations.
see Fig.8(b). Our experimental results support this claim.

(1)

lp=const

12)

xp=const
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Figure 9. Representative
example of the decrease
in energy (10) for block-
coordinate descent iterat-
ing optimization of (11)
and (12). For initializa-
tion, we use raw undi-
rected tangents {l,} gen-
erated by Frangi filter
[11]. Then, we iter-
atively reestimate binary
sign variables {z,} and
unoriented tangents {I,}.
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Figure 10. An example of one volume synthetic data. The white
lines inside vessels denote ground truth of centerline.
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Figure 11. Detection of centerline points: comparison of our meth-
ods (OriAbsCurv and OriQuaCurv), unoriented quadratic curva-
ture (QuaCurv) [18], non-maximum suppression (NMS), Seg-
mentTubes (Aylward et al. [3]) and medial axis extraction (Bouix
et al. [4]). The four letters on yellow dots denote different seed
point lists: (a) using root and all leaf points; (b) using 50% of all
bifurcations and leaf points; (c) using middle points of all branch
segments; (d) using all bifurcations and leaf points.

ROC curve at bifurcation point(std = 15, Tmatch = ¢§voxel$ize)
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Figure 12. Detection of bifurcation points (only).

4. Evaluation
4.1. Synthetic vessel volume

We used our modification® of a method generating syn-
thetic 3D vessel tree data [13] that includes CT-like volume
and ground truth vessel centerline tree, e.g. Fig. 10. We
generate 15 artificial volumes 100 x 100 x 100 containing
synthetic vascular trees with voxel intensities in the range 0
to 512. The size of each voxel is 0.046 mm. We use additive
Gaussian noise [16] with std 15.

Evaluation setup. Our evaluation system follows [18].
We first apply the Frangi filter [1 1] with hyperparameters
a =05 8 =05 v = 30, opmin = 0.023 mm and
Omae = 0.1152 mm. The filter computes a fubularness

measure and estimates tangent [, at each
voxel p. Then we threshold the tubular- Filtering
ness measure to remove background pix- 3
els. Then we use non-maximum suppres- N ;
sion* (NMS) resulting in voxel set 2. We O T
. Supression
use a 26-connected neighborhood system 1
N. Next, we optimize our new join en-
ergy (10) to disambiguate tangent orienta- |  Threshold
tion and estimate centerline location, see 1
Sec. 3.2. The hyperparameters are v = 3.80
_ Regularization,
(see energy (5)), A = 18.06 (see energy )
° . Section
(10)), 7 = cos70° (see equation (6)), and T
the maximum number of iterations is 1500 P ¥fnimum
for both TRWS and Levenberg-Marquardt. Spanning
Finally, we extract oriented vessel tree cen- Tree

terline as the minimum spanning tree of the complete graph.
Energy (10) assumes a quadratic curvature term (3).
However, if we replace it with (1) we get an absolute curva-

3https://gitlab.com/echesakov/VascuSynth

4The use of NMS is mainly for data reduction. Our method is able to

work on thresholded data directly, see Fig. 3(d).
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