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Abstract

We propose a new geometric regularization principle for

reconstructing vector fields based on prior knowledge about

their divergence. As one important example of this general

idea, we focus on vector fields modelling blood flow pattern

that should be divergent in arteries and convergent in veins.

We show that this previously ignored regularization con-

straint can significantly improve the quality of vessel tree

reconstruction particularly around bifurcations where non-

zero divergence is concentrated. Our divergence prior is

critical for resolving (binary) sign ambiguity in flow orien-

tations produced by standard vessel filters, e.g. Frangi. Our

vessel tree centerline reconstruction combines divergence

constraints with robust curvature regularization. Our unsu-

pervised method can reconstruct complete vessel trees with

near-capillary details on synthetic and real 3D volumes.

1. Background on vessel detection

There is a large body of prior work on estimation of ves-

sels in computer vision and biomedical imaging communi-

ties [19]. Typically, pixel-level detection of tubular struc-

tures is based on multiscale eigen analysis of raw intensity

Hessians developed by Frangi et al. [11] and other research

groups [10]. At any given point (pixel/voxel) such vessel

enhancement filters output a tubularness measure and esti-

mates of the vessel’s scale and orientation, which describes

the flow direction upto to a sign. While such local analy-

sis of Hessians is very useful, simple thresholding of points

with large-enough vesselness measure is often unreliable as

a method for computing the vessel tree structure. While

thresholding works well for detecting relatively large ves-

sels, detection of smaller vessels is complicated by noise,

partial voluming, and outliers (e.g. ring artifacts). More im-

portantly, standard tubular filters exhibit signal loss at vessel

bifurcations as those do not look like tubes.

Earlier regularization methods [30, 31] address many

tree reconstruction challenges due to noise and outliers as-

suming accurately localized “anchor” points are available

and data is relatively small. In contrast, we focus on large

3D data with 80% of near-capillary vessels of voxel-size or

less; thus, finding accurate centerline anchors is problem-

atic due to signal loss at thinner parts and bifurcations. We

propose a new regularization prior based on knowledge of

the flow pattern divergence. It is critical for disambiguating

flow directions and gives important cues on the vessel tree

structure. Next subsections outline related regularization

methods for vessel reconstruction and motivate our work.

It may be also interesting to apply deep learning to ves-

sel tree detection, but neural network training is problematic

since vessel tree ground truth is practically impossible in

real 3D data. Practical weakly-supervised training may re-

quire regularized loss functions [29] appropriate for vessel

tree detection. While our regularization methodology may

help to design such losses, we leave this for future work.

1.1. Vessel representation: centerline or segment

Two common approaches to representing vessels in re-

construction methods are volumetric binary mask and cen-

terline. Volumetric mask is typical for techniques directly

computing vessel segmentation, i.e. binary labeling of pix-

els/voxels. In contrast, centerline is a 1D abstraction of

the vessel. But, if combined with information about vessel

radii, it is easy to obtain a volumetric mask or segmenta-

tion from the vessel’s centerline, e.g. using MAT [27]. Vice

versa, centerline could be estimated from the vessel’s binary

mask using skeletonization algorithms.

In the context of regularization methods for vessel re-

construction, centerline representation offers significant ad-

vantages since powerful higher-order regularizers are easier

to apply to 1D structures. For example, centerline’s cur-

vature can be regularized [18], while conceptually compa-

rable regularization for vessel segmentation requires opti-

mization of Gaussian or minimum curvature of the vessel’s

surface with no known practical algorithms. In general, cur-

vature remains a challenging regularization criteria for sur-

faces [25, 28, 14, 24, 21]. Alternatively, some vessel seg-

mentation methods use simpler first-order regularizers pro-

ducing minimal surfaces. While tractable, such regularizers

impose a wrong prior for surfaces of thin structures due to

their bias to compact blob shapes (a.k.a. shrinking bias).
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1.2. Towards whole tree centerline

Many vessel reconstruction methods directly compute

centerlines of different types that can be informaly defined

as simplified (e.g. regularized) 1D representation of the

blood flow pathlines. For example, the A/B shortest path

methods require a user to specify two end points of a vessel

and apply Dijkstra to find an optimal pathline on a graph

with edge weights based on vesselness measure.

Interactive A/B methods are not practical for large vessel

tree reconstraction problems. While it is OK to ask a user

to identify the tree root, manual identification of all the end

points (leaves) is infeasible. There are tracing techniques

[3] designed to trace vessel tree from a given root based on

vesselness measures and some local continuation heuristics.

Our evaluations on synthetic data with groud truth show that

local tracing methods do not work well for large trees with

many thin vessels even if we use the ground truth to provide

all tree leaves as extra seeds in addition to the root.

Our goal is unsupervised reconstruction of the whole

vessel tree centerline. This problem can be solved in two

steps: (1) compute a “tubular graph” of plausible vessel

links between some centerline anchor points and (2) esti-

mate its optimal sub-tree under given regularity constraints.

It is common to do step one via simple heuristics and

to focus on the optimization problems in the second step

[30, 31]. In contrast, we focus on accurate estimation of

the centerline points (anchors) and their connectivity graph.

We use basic MST for step two, in part due to large size of

our problem where ILP [30] or genetic methods [31] do not

easily apply. To estimate centerline points, we optimize a

global objective function for a field of centerline tangents.

Such objectives can combine vesselness measures, geomet-

ric errors, and different regularization constraints address-

ing centerline completion. Related prior work using center-

line curvature regularization is reviewed below.

1.3. Curvature regularization for centerline

Curvature, a second-order smoothness term, is a natu-

ral regularizer for thin structures. In general, curvature has

been studied for image segmentation [25, 28, 26, 5, 14, 24,

21, 18], for stereo or multi-view-reconstruction [17, 23, 33],

connectivity measures in analysis of diffusion MRI [20], for

tubular structures extraction [18], for inpainting [2, 6] and

edge completion [12, 32, 1].

Olsson et al. [22] propose curvature approximation for

surface fitting regularization. Their framework employs

tangential approximation of surfaces. The authors assume

that the data points are noisy readings of the surface. The

method estimates local surface patches, which are parame-

terized by tangent planes. The (shortest) interval from the

data point to its tangent plane gives the surface normal and

defines the point of tangency.

Assume there is a smooth curve, see Fig. 1. Points p

Figure 1. Curvature

model of [22]. Given two

points p and q on the red

curve and two tangents lp
and lq at these points, the

integrals of curvature are

approximated by (1–3).
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and q on the curve and tangents lp and lq at these points are

given. Then the integrals of curvature κ(·) is estimated by
∫ q

p

|κ(s)|ds ≈ ‖p− lq‖
‖p− q‖ , (1)

∫ q

p

|κ(s)|2ds ≈ ‖p− lq‖2
‖p− q‖3 . (2)

where ‖p− lq‖ is the distance between point p and the tan-

gent line at point q represented by vector lq . Olsson et al.

[22] explore several similar approximations and argue that

κpq(lp, lq) :=
1

2

‖p− lq‖2 + ‖q − lq‖2
‖p− q‖2 (3)

gives practically better curvature regularization1.

Marin et al. [18] generalized this surface fitting problems

to detection problems where majority of the data points, e.g.

image pixels, do not belong to a thin structure. In order to

do that they introduced binary variables in their energy in-

dicating if a data point belongs to the thin structure. One of

their applications is vessel detection. The proposed vessel-

tree extraction system includes vessel enhancment filtering,

non-maximum suppresion for data reduction, tangent ap-

proximation of vessels’ centerline and minimum spanning

tree for topology extraction. Assuming that detection vari-

ables are computed, the tangent approximation of vessels’

centerline is found by minimizing energy

Eu(l) =
∑

p

‖p̃− lp‖2 + γ
∑

(p,q)∈N

κpq(lp, lq) (4)

where summations are over detected vessel points, p̃ is the

original data point’s location, lp is the tangent vector at

point p, the denoised point location p is constraint to be

the closest point on tangent line at p, and N ⊂ Ω2 is the

neighborhood system. The curvature term in the energy

makes the tangents “collapse” onto a one-dimensional cen-

terline, see Fig.3(a,c). But the same figures also show arti-

facts around bifurcations where undesired triangular struc-

tures form, indicating unoriented tangent model limitations.

Our experiments employs the same components as in

[18]. Our work focuses on analysis of failure cases and im-

provement of the regularization stage for tangent approxi-

mation. In particular we will show the drawbacks of curva-

ture models (1-3) in the context of vessel tree extraction and

propose a solution leading to significant improvements.

1Equation (3) is a symmetric form of regularizer recommended in [22].

10217



(a) divergent vessels (arteries) (b) inconsistent divergence (c) convergent vessels (veins)

Figure 2. [Vessel-tree divergence] Vessels are the blood flow pathlines and could be assigned orientations (7). To estimate orientations,

we penalize negative (or positive) “vessel divergence”, which we define as the divergence of oriented unit tangents of vessels/pathlines.

Such unit tangent flow divergence is positive (red) or negative (blue) at bifurcations, see (a-c). Note that standard curvature [22, 18] and

oriented curvature models (6) either can not distinguish (b) from (a) and (c) or may even prefer (b) depending on specific combinations of

bifurcation angles. For example, compare vessel direction disambiguation based on curvature and the divergence prior in Fig.7 (a) & (b).

1.4. Our contributions and motivation

This work addresses an important limitation of vessel

tree reconstruction methods due to sign ambiguity in vessel

orientation produced by local vesselness filters, e.g. Frangi.

This orientation is described by the smallest eigenvector of

the local intensity Hessian, but its sign is ambiguous. Thus,

the actual flow directions are not known, even though they

are an important reconstruction cue particularly at bifurca-

tions. This binary direction ambiguity can be resolved only

by looking at the global configuration of vessel orientations

(tangents) allowing to determine a consistent flow pattern.

We propose a divergence prior for disambiguating the

global flow pattern on the vessel tree, see Fig.2. This prior

can be imposed as a regularization constraint for a vector

field of oriented unit tangents for vessel pathlines. We pe-

nalize negative (or positive) divergence for such unit tan-

gent flow to enforce a consistent flow pattern2. The sum-

mary of our contributions:

• Prior knowledge about divergence is generally useful

for vector field inference. We propose a way to eval-

uate divergence for sparsely sampled vector fields via

pairwise potentials. This makes divergence constraints

amenable to a wide range of optimization methods for

disrcrete or continuous hidden variables.

• As an important application, we show that known di-

vergence can disambiguate vessel directions output by

standard vessel filters, e.g. Frangi [11]. This requires

estimation of binary “sign” variables. The constraint

penalizing positive (or negative) divergence is non-

submodular, but it is well optimized by TRWS [15].

• To estimate vessel tree centerline, the divergence con-

straint can be combined with robust oriented curva-

ture regularization for pathline tangents. Additional

2This divergence constraint is specific to unit tangent flow. Note that

divergence for consistent blood flow velocities is zero even at bifurcations

assuming incompressible blood.

(a) (b)

(c) (d)

Figure 3. Triangle artifacts at bifurcation. Optimization of energy

(4) ignoring tangent orintations often leads to a strong local min-

ima as in (a) and (c). The line segments are the estimated tangents

of the centerline. New curvature term (6) takes into account tan-

gent orientations resolving the artifacts, see (b) and (d).

options include outlier/detection variables [18] and/or

tree structure completion techniques, e.g. using MST.

• We provide extensive quantitative validation on syn-

thetic vessel data, as well as qualitative results on real

high-resolution volumes.

The paper is organized as follows. Section 2 introduces ori-

ented vessel pathline tangents and discusses their curvature-

based regularization. It is clear that orientation of the flow

at the bifurcations is important, e.g. see Fig.3. Section 3 in-

troduces our divergence prior and methods for enforcing it

in the context of vessel tree centerline estimation. The last

sections presents our experimental results.

2. Bifurcations and curvature

2.1. Oriented curvature constraint

Previous works [22, 24, 18] ignored orientations of tan-

gent vectors {lp}p∈Ω. Equations (1)–(4) do not depend on

the orientations of l. In practice, the orientations of vec-
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Figure 4. Illustrative examples of three interacting tangents with

unoriented curvature (a) as in (4) and two alternative oriented

configurations (b) and (c) with oriented curvature as in (5). The

green line denotes pairwise interaction with low curvature esti-

mate. Note, unoriented curvature (1–3) always chooses the small-

est angle for calculation. The red line shows “inactive” interaction

where curvature estimate (6) reaches the high saturation threshold.

tors lp are arbitrarily defined. Ignoring the orientations in

energy (4) results in significant “triangle” artifacts around

bifurcation, see Fig. 3(a,c). Consider an illustrative exam-

ple in Fig. 4(a). Each of the three tangents interacts with

the other two. The prior knowledge about blood flow pat-

tern dictates that among those three tangents there should

be one incoming and one outcoming. Introduction of ori-

entations allows us to distinguish the incoming/outcoming

tangents and subsequently inactivate one of the interactions,

see Fig. 4(b), resulting in disappearance of these artifacts.

In order to introduce oriented curvature we introduce a

new vector field l̄p, which we call oriented. Then, we in-

troduce energy Eo(l̄) by replacing curvature term in energy

(4) with a new oriented curvature as follows

Eo(l̄) =
∑

p

‖p̃− l̄p‖2 + γ
∑

(p,q)∈N

κ̄pq(l̄p, l̄q) (5)

where

κ̄pq(l̄p, l̄q) :=

{

κpq(l̄p, l̄q), 〈l̄p, l̄q〉 ≥ τ,

1, otherwise,
(6)

and 〈l̄p, l̄q〉 is the dot product of l̄p and l̄q and τ ≥ 0 is a

positive threshold discussed in Fig. 5.

The connection between oriented field l̄ and l is

l̄p = xp · lp (7)

where binary variables xp ∈ {−1, 1} flip or preserve the

arbitrarily defined orientations of lp.

2.2. Curvature and orientation ambiguity

Introduction of orientated curvature resolves triangle ar-

tifacts, see Fig. 3(b,d). However, the orientations are not

known in advance. For example, the Frangi filter [11] de-

fines a tangent as a unit eigenvector of a special matrix. The

unit eigenvectors are defined up to orientation, which is cho-

sen arbitrarily. One may propose to treat energy (5) as a

function of tangent orientations x via relation (7) as follows

Eo(x) := Eo({xp · lp})
∣

∣

∣

lp=const
(8)

Figure 5. Robustness of cur-

vature (6). The pairs of

tangent vectors that has an-

gle greater than acos τ are

not considered belonging to

the same vessel. A con-

stant penalty is assigned to

such pairs. This “turns off”

smoothness enforcement at

bifurcations.
  

10

α

κ

κ

acosτ

_

(a) Voronoi cells for

p, q ∈ Ω and facet fpq

(b) ǫ-thin box f ǫ
pq

around facet fpq

Figure 6. Divergence of a sparse vector field {l̄p|p ∈ Ω}. As-

suming that the corresponding “extrapolated” dense vector field is

constant inside Voronoi cells (a), it is easy to estimate (non-zero)

divergence ∇l̄pq (9) concentrated in a narrow region f ǫ

pq around

each facet (b) using the divergence theorem.

However, energy (8) is under-constrained because it allows

multiple equally good solutions, see Fig. 4(b) and (c). The

example in (b) shows a divergent pattern while (c) shows

a convergent pattern suggesting artery/vein ambiguity. Un-

fortunately, energy (8) does not enforce consistent flow pat-

tern across the vessel tree resulting in a mix of divergent

and convergent bifurcations as in Fig. 2(b). Real data ex-

periments confirm this conclusion, see Fig. 7(a).

Thus, oriented curvature model (5) has a significant

problem. While it can resolve “triangle artifacts” at bifur-

cations, see Fig.3, it breaks the wrong sides of the triangles

at many bifurcations: it estimates the flow pattern incor-

rectly and then give the incorrect estimation of centerline,

see Fig.8(a). Below we introduce our divergence prior di-

rectly enforcing consistent flow pattern over the vessel tree.

3. Divergence constraint

3.1. Estimating divergence

Figure 6 describes our (finite element) model for estimat-

ing divergence of a sparse vector field {l̄p|p ∈ Ω} defined

for a finite set of points Ω ⊂ R3. We extrapolate the vector

field over the whole domain R3 assuming constancy of the

vectors on the interior of the Voronoi cells for p ∈ Ω, see

Fig.6(a). Thus, vectors change only in the (narrow) region

around the cell facets where all non-zero divergence is con-
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(a) oriented curvature only (8)

(b) with divergence prior (11)
Figure 7. Disambiguating flow directions in Frangi output [11].

Both examples use fixed (unoriented) vessel tangents {lp} pro-

duced by the filter and compute (oriented) vectors l̄p = xplp (7)

by optimizing binary sign variables {xp} using energies (8) in (a)

and (11) in (b). The circles indicate divergent (red) or convergent

(blue) bifurcations similarly to the diagrams in Fig.2. The extra di-

vergence constraint in (10) enforces flow pattern consistency (b).

centrated. To compute the integral of divergence in the area

between two neighboring points p, q ∈ Ω, see Fig.6(b), we

estimate flux of the extrapolated vector field over ǫ-thin box

f ǫ
pq around facet fpq

∫

fǫ

pq

〈l̄, ns〉 ds =
〈l̄q, pq〉 − 〈l̄p, pq〉

|pq| · |fpq| + o(ǫ)

where ns is the outward unit normal of the box and |fpq| is

the facet’s area. Then, divergence theorem implies the fol-

lowing formula for the integral of divergence of the vector

field inside box f ǫ
pq

∇l̄pq =
〈l̄q, pq〉 − 〈l̄p, pq〉

|pq| · |fpq| (9)

where we ignore only infinitesimally negligible o(ǫ) term.

3.2. Oriented centerline estimation

Constraints for divergence ∇l̄pq in the regions between

neighbors p, q ∈ D in Delaugney triangulation of Ω can

be combined with Eo(l̄) in (5) to obtain the following joint

energy for estimating oriented centerline tangents l̄p

E(l̄) = Eo(l̄) + λ
∑

(p,q)∈D

(∇l̄pq)
− (10)

where the negative part operator (·)− encourages divergent

flow pattern as in Fig.2(a). Alternatively, one can use (·)+

(a) tangent vectors at convergence for energy (5)

(b) tangent vectors at convergence for energy (10)
Figure 8. Centerline estimation for the data in Fig.7. Instead of

showing tangent orientations estimated at the first iteration as in

Fig.7, we now show the final result at convergence for minimizing

energy (5) in (a) and energy (10) in (b). The blue circle shows

bifurcation reconstruction artifacts due to the wrong estimation of

vessel orientations in Fig.7(a).

to encourage a convergent flow pattern as in Fig.2(c). This

joint energy for oriented centerline estimation E(l̄) com-

bines Frangi measurements, centerline curvature regularity,

and consistency of the flow pattern, see Fig.7(b). Note that

specific value of facet size in (9) had a negligible effect in

our centerline estimation tests as it only changes a relative

weight of the divergence penalty at any given location. For

simplicity, one may use |fpq| ≈ const for all p, q ∈ D.

Optimization of oriented centerline energy E(l̄) in

(10) over oriented tangents {l̄p} can be done via block-

coordinate descent. As follows from definition (7)

E(l̄) ≡ E({xp · lp}).
We iterate TRWS [15] for optimizing non-submodular en-

ergy for binary “sign” disambiguation variables {xp}

E(x) := E({xp · lp})
∣

∣

∣

lp=const
(11)

and trust region [34, 18] for optimizing robust energy for

aligning tangents into 1D centerline

E(l) := E({xp · lp})
∣

∣

∣

xp=const
. (12)

Figure 9 shows a representative example illustrating conver-

gence of energy (10) in a few iterations.

Note that the divergence constraint in joint energy (10)

resolves the problem of under-constrained objective (5) dis-

cussed at the end of Section 2. Since the flow pattern con-

sistency is enforced, optimization of (10) should lead to a

consistent resolution of the triangle artifacts at bifurcations.

see Fig.8(b). Our experimental results support this claim.

10220



Figure 9. Representative

example of the decrease

in energy (10) for block-

coordinate descent iterat-

ing optimization of (11)

and (12). For initializa-

tion, we use raw undi-

rected tangents {lp} gen-

erated by Frangi filter

[11]. Then, we iter-

atively reestimate binary

sign variables {xp} and

unoriented tangents {lp}.
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Figure 10. An example of one volume synthetic data. The white

lines inside vessels denote ground truth of centerline.
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Figure 11. Detection of centerline points: comparison of our meth-

ods (OriAbsCurv and OriQuaCurv), unoriented quadratic curva-

ture (QuaCurv) [18], non-maximum suppression (NMS), Seg-

mentTubes (Aylward et al. [3]) and medial axis extraction (Bouix

et al. [4]). The four letters on yellow dots denote different seed

point lists: (a) using root and all leaf points; (b) using 50% of all

bifurcations and leaf points; (c) using middle points of all branch

segments; (d) using all bifurcations and leaf points.
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Figure 12. Detection of bifurcation points (only).

4. Evaluation

4.1. Synthetic vessel volume

We used our modification3 of a method generating syn-

thetic 3D vessel tree data [13] that includes CT-like volume

and ground truth vessel centerline tree, e.g. Fig. 10. We

generate 15 artificial volumes 100×100×100 containing

synthetic vascular trees with voxel intensities in the range 0
to 512. The size of each voxel is 0.046 mm. We use additive

Gaussian noise [16] with std 15.

Evaluation setup. Our evaluation system follows [18].

We first apply the Frangi filter [11] with hyperparameters

α = 0.5, β = 0.5, γ = 30, σmin = 0.023 mm and

σmax = 0.1152 mm. The filter computes a tubularness

Non-maximum

Supression

Filtering

Regularization,

Section 3

Minimum

Spanning 

Tree

Threshold

measure and estimates tangent lp at each

voxel p. Then we threshold the tubular-

ness measure to remove background pix-

els. Then we use non-maximum suppres-

sion4 (NMS) resulting in voxel set Ω. We

use a 26-connected neighborhood system

N . Next, we optimize our new join en-

ergy (10) to disambiguate tangent orienta-

tion and estimate centerline location, see

Sec. 3.2. The hyperparameters are γ = 3.80
(see energy (5)), λ = 18.06 (see energy

(10)), τ = cos 70◦ (see equation (6)), and

the maximum number of iterations is 1500

for both TRWS and Levenberg-Marquardt.

Finally, we extract oriented vessel tree cen-

terline as the minimum spanning tree of the complete graph.

Energy (10) assumes a quadratic curvature term (3).

However, if we replace it with (1) we get an absolute curva-

3https://gitlab.com/echesakov/VascuSynth
4The use of NMS is mainly for data reduction. Our method is able to

work on thresholded data directly, see Fig. 3(d).
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