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Abstract

Existing human pose estimation approaches often only

consider how to improve the model generalisation perfor-

mance, but putting aside the significant efficiency problem.

This leads to the development of heavy models with poor

scalability and cost-effectiveness in practical use. In this

work, we investigate the under-studied but practically crit-

ical pose model efficiency problem. To this end, we present

a new Fast Pose Distillation (FPD) model learning strat-

egy. Specifically, the FPD trains a lightweight pose neural

network architecture capable of executing rapidly with low

computational cost. It is achieved by effectively transferring

the pose structure knowledge of a strong teacher network.

Extensive evaluations demonstrate the advantages of our

FPD method over a broad range of state-of-the-art pose es-

timation approaches in terms of model cost-effectiveness on

two standard benchmark datasets, MPII Human Pose and

Leeds Sports Pose.

1. Introduction

Human pose estimation has gained remarkable progress

from the rapid development of various deep CNN mod-

els [30, 8, 10]. This is because deep neural networks are

strong at approximating complex and non-linear mapping

functions from arbitrary person images to the joint locations

even at the presence of unconstrained human body appear-

ance, viewing conditions and background noises.

Nevertheless, the model performance advantages come

with the cost of training and deploying resource-intensive

networks with large depth and width. This causes inefficient

model inference, requiring per-image computing cost at

tens of FLoating point OPerations (FLOPs) therefore poor

scalability particularly on resource-limited devices such as

smart phones and robots. There is a recent attempt that bina-

rises the network parameters for model execution speedup

[7], which however suffers significantly weak model gener-

alisation capacity.

In this study, we consider the problem of improving

the pose estimation efficiency without model performance

degradation but preserving comparable accuracy results.

We observe that the basic CNN building blocks for state-of-

the-art human pose networks such as Hourglass [19] are not

cost-effective in establishing small networks due to a high

number of channels per layer and being more difficult to

train. To overcome these barriers, we design a lightweight

variant of Hourglass network and propose a more effective

training method of small pose networks in a knowledge dis-

tillation fashion [13]. We call the proposed method Fast

Pose Distillation (FPD). Compared with the top-performing

alternative pose approaches [32, 10], the proposed FPD ap-

proach enables much faster and more cost-effective model

inference with extremely smaller model size while simulta-

neously reaching the same level of human pose prediction

performance.

We summarise our contributions in follows:

(i) We investigate the under-studied human pose model

efficiency problem, opposite to the existing attempts

mostly focusing on improving the accuracy perfor-

mance alone at high costs of model inference at de-

ployment. This is a critical problem to be addressed

for scaling up the existing deep pose estimation meth-

ods to real applications.

(ii) We propose a Fast Pose Distillation (FPD) model

training method enabling to more effectively train ex-

tremely small human pose CNN networks. This is

based on an idea of knowledge distillation that have

been successfully exploited in inducing object image

categorisation deep models. In particular, we de-

rive a pose knowledge distillation learning objective to

transfer the latent knowledge from a pre-trained larger

teacher model to a tiny target pose model (to be de-

ployed in test time). This aims to pursue the best model

performance given very limited computational budgets

using only a small fraction (less than 20%) of cost re-

quired by similarly strong alternatives.

(iii) We design a lightweight Hourglass network capable of

constructing more cost-effective pose estimation CNN
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models while retaining sufficient learning capacity for

allowing satisfactory accuracy rates. This is achieved

by extensively examining the redundancy degree of ex-

isting state-of-the-art pose CNN architecture designs.

In the evaluations, we have conducted extensive empir-

ical comparisons to validate the efficacy and superiority of

the proposed FPD method over a wide variety of state-of-

the-art human pose estimation approaches in the balance of

model inference efficiency and prediction performance on

two commonly adopted benchmark datasets, MPII Human

Pose [1] and Leeds Sports Pose [15].

2. Related Work

Human Pose Estimation The past five years have wit-

nessed a huge progress of human pose estimation in the

deep learning regime [30, 28, 6, 31, 19, 11, 32, 20, 22]. De-

spite the clear performance increases, these prior works fo-

cus only on improving the pose estimation accuracy by us-

ing complex and computationally expensive models whilst

largely ignoring the model inference cost issue. This sig-

nificantly restricts their scalability and deployability in real-

world applications particularly with very limited computing

budgets available.

In the literature, there are a few recent works designed

to improve model efficiency. For example, Bulat and Tz-

imiropoulos built parameter binarised CNN models to ac-

commodate resource-limited platforms [7]. But this method

leads to dramatic performance drop therefore not satisfied

for reliable utilisation. In most cases, high accuracy rates

are required. Rafi et al. exploited good general purpose

practices to improve model efficiency without presenting a

novel algorithm [24]. Further, this method does not pro-

vide quantitative evaluation on the trade-off between model

efficiency and effectiveness.

In contrast to these previous methods, we systematically

study the pose estimation efficiency problem under the con-

dition of preserving the model performance rate so that the

resulted model is more usable and reliable in real-world ap-

plication scenarios.

Knowledge Distillation The objective of knowledge

distillation is concerned with information transfer between

different neural networks with distinct capacities [5, 13, 3].

For instance, Hinton et al. successfully employed a well

trained large network to help train a small network [13].

The rationale is an exploitation of extra supervision from

a teacher model, represented in form of class probabilities

[13], feature representations [3, 25], or an inter-layer flow

[35]. This principle has also been recently applied to accel-

erate the model training process of large scale distributed

neural networks [2], to transfer knowledge between multi-

ple layers [17] or between multiple training states [18]. Be-

yond the conventional two stage training based offline dis-

tillation, one stage online knowledge distillation has been

attempted with added merits of more efficient optimisation

[37, 16] and more effective learning [16]. Besides, knowl-

edge distillation has been exploited to distil easy-to-train

large networks into harder-to-train small networks [25].

While these past works above transfer category-level dis-

criminative knowledge, our method transfers richer struc-

tured information of dense joint confidence maps. A more

similar work is the latest radio signals based pose model that

also adopts the idea of knowledge distillation [38]. How-

ever, this method targets at using wireless sensors to tackle

the occlusion problem, rather than the model efficiency is-

sue as we confider here.

3. Fast Human Pose Estimation

Human pose estimation aims to predict the spatial coor-

dinates of human joints in a given image. To train a model

in a supervised manner, we often have access to a training

dataset {Ii,Gi}N
i=1

of N person images each labelled with

K joints defined in the image space as:

Gi = {gi

1
, .., gi

K
} ∈ R

K×2, (1)

where H and W denotes the image height and width, re-

spectively. Generally, this is a regression problem at the

imagery pixel level.

Objective Loss Function For pose model training, we

often use the Mean-Squared Error (MSE) based loss func-

tion [29, 19]. To represent the ground-truth joint labels,

we generate a confidence map mk for each single joint k

(k ∈ {1, · · · ,K}) by centring a Gaussian kernel around the

labelled position zk=(xk, yk).
More specifically, a Gaussian confidence map mk for

the k-th joint label is written as:

mk(x, y) =
1

2πσ2
exp

(−[(x− xk)
2 + (y − yk)

2]

2σ2

)

(2)

where (x, y) specifies a pixel location and the hyper-

parameter σ denotes a pre-fixed spatial variance. The MSE

loss function is then obtained as:

Lmse =
1

K

K
∑

k=1

‖mk − m̂k‖
2

2
(3)

where m̂k refers to the predicted confidence map for the

k-th joint. The standard SGD algorithm can then be used

to optimise a deep CNN pose model by back-propagating

MSE errors on training data in a mini-batch incrementally.

Existing pose methods rely heavily on large deep neural

networks for maximising the model performance, whilst ne-

glecting the inference efficiency. We address this limitation

for higher scalability by establishing lightweight CNN ar-

chitectures and proposing an effective model learning strat-

egy detailed below.
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Figure 1. An overview of the proposed Fast Pose Distillation model learning strategy. To establish a highly cost-effective human pose

estimation model, We need to build a compact backbone such as (a) a lightweight Hourglass network. To more effectively train a small

target network, we adopt the principle of knowledge distillation in the pose estimation context. This requires to (b) pre-train a strong

teacher pose model, such as the state-of-the-art Hourglass network or other existing alternatives. The teacher model is used to provide

extra supervision guidance in the (c) pose knowledge distillation procedure via the proposed mimicry loss function. At test time, the small

target pose model enables a fast and cost-effective deployment. The computationally expensive teacher model is abandoned finally, since

its discriminative knowledge transferred already into the target model therefore used in deployment (rather than wasted).

Stage Building Block

1, 2, 3, 4 Hourglass with 128 channels per layer

Table 1. The structure of a small pose CNN model.

3.1. Compact Pose Network Architecture

Human pose CNN models typically consist of multi-

ple repeated building blocks with the identical structure

[8, 31, 19, 11, 32, 20, 22]. Among these, Hourglass is one

of the most common building block units [19]. However,

we observe that existing designs are not cost-effective, due

to deploying a large number of both channels and blocks

in the entire architecture therefore leading to a suboptimal

trade-off between the representation capability and the com-

putational cost. For example, [19] suggested a CNN archi-

tecture of 8 Hourglass stages each having 9 Residual blocks

with 256 channels within every layer.

We therefore want to minimise the expense of exist-

ing CNN architectures for enabling faster model inference.

With careful empirical examination, we surprisingly re-

vealed that a half number of stages (i.e. 4 Hourglass mod-

ules) suffice to achieve over 95% model generalisation ca-

pacity on the large scale MPII benchmark. Moreover, the

per-layer channels are also found highly redundant and re-

ducing a half number (128) only results in less than 1%

performance drop (Table 5). Based on these analysis, we

construct a very light CNN architecture for pose estimation

with only one sixth computational cost of the original de-

sign. See Table 1 and Figure 1 for the target CNN architec-

ture specifications.

Remarks Whilst it is attractive to deploy tiny pose net-

works that run cheaply and fast, it is empirically non-trivial

to train them although theoretically shallow networks have

the similar representation capacities to approximate the tar-

get functions as learned by deeper counterparts [3, 26]. A

similar problem has been occurred and investigated in ob-

ject image classification through the knowledge distillation

strategy, i.e. let the target small network mimic the predic-

tion of a larger teacher model [13]. However, it remains

unclear how well such a similar method will work in ad-

dressing structured human pose estimation in dense pixel

space. To answer this question, in the following we present

a pose structure knowledge distillation method.

3.2. Supervision Enhancement by Pose Distillation

Model Training Pipeline We adopt the generic model

training strategy of knowledge distillation:

1. We first train a large teacher pose model. In our ex-

periments, by default we select the original Hourglass

model [19] due to its clean design and easy model

training. Other stronger models can be considered

without any restrictions.

2. We then train a target student model with the assistance

of knowledge learned by the teacher model. Knowl-

edge distillation happens in this step. The structure of

the student model is presented in Table 1.

An overview of the whole training procedure is depicted

in Figure 1. The key to distilling knowledge is to design a

proper mimicry loss function that is able to effectively ex-

tract and transfer the teacher’s knowledge to the training of

the student model. The previous distillation function is de-

signed for single-label based softmax cross-entropy loss in

the context of object categorisation [3, 13] and unsuitable to

transfer the structured pose knowledge in 2D image space.
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To address this aforementioned problem, we design a

joint confidence map dedicated pose distillation loss func-

tion formulated as:

Lpd =
1

K

K
∑

k=1

‖ms

k
−mt

k
‖2
2

(4)

where ms

k
and mt

k
specify the confidence maps for the k-

th joint predicted by the pre-trained teacher model and the

in-training student target model, respectively. We choose

the MSE function as the distillation quantity to measure the

divergence between the student and teacher models in or-

der to maximise the comparability with the pose supervised

learning loss (Eqn (3)).

Overall Loss Function We formulate the overall FPD

loss function for pose structure knowledge distillation dur-

ing training as:

Lfpd = αLpd + (1− α)Lmse (5)

where α is the balancing weight between the two loss terms,

estimated by cross-validation. As such, the target network

learns both to predict the labelled ground-truth annotations

of training samples by Lmse and to match the prediction

structure of the stronger teacher model by Lpd.

Further Remarks Why does the proposed pose distil-

lation loss function probably help to train a more gener-

alisable target model, as compared to training only on the

labelled data? A number of reason may explain this in the

context of pose estimation.

1. The body joint labels are likely to be erroneous due to

the high difficulty of locating the true positions in the

manual annotation process. In such cases, the teacher

model may be able to mitigate some errors through sta-

tistical learning and reasoning therefore reducing the

misleading effect of wrongly labelled training samples

(Figure 3 Row (A)).

2. Given difficult training cases say with confus-

ing/cluttered background and random occlusion situ-

ations, the teacher prediction may provide softened

learning tasks by explained away these hard samples

with model inference (Figure 3 Row (B)).

3. The teacher model may provide more complete joint

labels than the original annotation therefore not only

providing additional more accurate supervision but

also mitigating the misleading of missing joint labels

(Figure 3 Row (C)).

4. Learning to match the ground-truth confidence map

can be harder in comparison to aligning the teacher’s

prediction. This is because the teacher model has

spread some reasoning uncertainty for each training

sample either hard or easy to process.

5. On the other hand, the teacher’s confidence map en-

codes the abstract knowledge learned from the entire

training dataset in advance, which may be beneficial

to be considered in learning every individual training

sample during knowledge distillation.

In summary, the proposed model is capable of handling

wrong pose joint annotations, e.g. when the pre-trained

teacher predicts more accurate joints than manual wrong

and missing labels. Due to a joint use of the ground-truth

labels and the teacher model’s prediction, our model is tol-

erant to either error but not co-occurring ones. This allevi-

ates the harm of label errors in the training data, in contrast

to existing methods that often blindly trust all given labels.

3.3. Model Training and Deployment

The proposed FPD model training method consists of

two stages: (i) We train a teacher pose model by the con-

ventional MSE loss (Eqn (3)), and (ii) train a target student

model by the proposed loss (Eqn (5)), with the knowledge

distillation from the teacher model to the target model be-

ing conducted in each mini-batch and throughout the entire

training process. At test time, we only use the small tar-

get model for efficient and cost-effective deployment whilst

throwing away the heavy teacher network. The target model

already extracts the teacher’s knowledge.

4. Experiments

4.1. Experiment Setup

Datasets We utilised two human pose benchmark

datasets, MPII [1] and Leeds Sports Pose (LSP) [15]. The

MPII dataset is collected from YouTube videos with a wide

range of human activities and events. It has 25K scene im-

ages and 40K annotated persons (29K for training and 11K

for test). Each person has 16 labelled body joints. We

adopted the standard train/valid/test data split [28]. Fol-

lowing [29], we randomly sampled 3K samples from the

training set for model validation.

The LSP benchmark contains natural person images

from many different sports scenes. Its extended version pro-

vides 11K training samples and 1K test samples. Each per-

son in LSP has 14 labelled joints.

Performance Metrics We used the standard Percentage

of Correct Keypoints (PCK) measurement that quantifies

the fraction of correct predictions within an error thresh-

old τ [34]. Specifically, the quantity τ is normalised against

the size of either torso (τ = 0.2 for LSP, i.e. PCK@0.2)

or head (τ =0.5 for MPII, i.e. PCKh@0.5). We measured

each individual joint respectively and took their average as

an overall metric. Using different τ values, we yielded a

PCK curve. Therefore, the Area Under Curve (AUC) can

be obtained as a holistic measurement across different de-
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Method Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC # Param Deployment Cost

Rafi et al., BMVC’16[24] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3 57.3 56M 28G

Belagiannis&Zisserman, FG’17[4] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1 58.8 17M 95G

Insafutdinov et al., ECCV’16[14] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 60.8 66M 286G

Wei et al., CVPR’16[31] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4 31M 351G

Bulat&Tzimiropoulos, ECCV’16[6] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7 59.6 76M 67G

Newell et al., ECCV’16[19] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 62.9 26M 55G

Ning et al., TMM’17[21] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2 63.6 74M 124G

Chu et al., CVPR’17[11] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5 63.8 58M 128G

Peng et al., CVPR’18[22] 98.1 96.6 92.5 88.4 90.7 87.7 83.5 91.5 - 26M 55G

Yang et al., ICCV’17[32] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0 64.2 28M 46G

Nie et al., CVPR’18[20] 98.6 96.9 93.0 89.1 91.7 89.0 86.2 92.4 65.9 26M 63G

Sekii, ECCV18[27] - - - - - - - 88.1 - 16M 6G

FPD 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1 63.5 3M 9G

Table 2. PCKh@0.5 and AUC (%) rates on the MPII test dataset. M/G: 106/109.

Method Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC # Param Deployment Cost

Tompson et al., NIPS’14[29] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3 - -

Fan et al., CVPR’15[12] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0 43.2 - -

Carreira et al., CVPR’16[8] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1 41.5 - -

Chen&Yuille, NIPS’14[9] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4 40.1 - -

Yang et al., CVPR’16[33] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6 39.3 - -

Rafi et al., BMVC’16[24] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8 56.9 56M 28G

Yu et al., ECCV’16[36] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3 55.2 - -

Peng et al., CVPR’18[22] 98.6 95.3 92.8 90.0 94.8 95.3 94.5 94.5 - 26M 55G

FPD 97.3 92.3 86.8 84.2 91.9 92.2 90.9 90.8 64.3 3M 9G

Table 3. PCK@0.2 and AUC (%) rates on the LSP test dataset. M/G: 106/109.

cision thresholds. To measure the model efficiency both in

training and test, we used the FLOPs.

Training Details We implemented all the following ex-

periments in Torch. We cropped all the training and test

images according to the provided positions and scales, and

resized them to 256×256 in pixels. As typical, random

scaling (0.75-1.25), rotating (±30 degrees) and horizontal

flipping were performed to augment the training data. We

adopted the RMSProp optimisation algorithm. We set the

learning rate to 2.5×10−4, the mini-batch size to 4, and

the epoch number to 130 and 70 for MPII and LSP bench-

marks, respectively. For the network architecture, we used

the original Hourglass as the teacher model and the cus-

tomised Hourglass with less depth and width (Table 1) as

the target model.

4.2. Comparisons to State­Of­The­Art Methods

We evaluated the proposed FPD method by extensively

comparing against recent human pose estimation deep

methods on MPII and LSP.

Results on MPII Table 2 compares the PCKh@0.5 ac-

curacy results of state-of-the-art methods and the proposed

FPD on the test dataset of MPII. It is clearly observed that

the proposed FPD model is significantly efficient and com-

pact therefore achieving a much cheaper deployment cost.

Importantly, this advantage is obtained without clearly com-

promising the model generalisation capability, e.g. achiev-

ing as high as 91.1%.

Specifically, compared with the best performer [20], the

FPD model only requires 14.3% (9/63) computational cost

but gaining 96.4% (63.5/65.9) performance in mean PCKh

accuracy. This leads to a 6.7%× (96.4/14.3) cost-effective

advantage. When compared to the most efficient alterna-

tive competitor [24], our model is 2.9× (26/9) more effi-

cient whilst simultaneously achieving a mean PCKh gain

of 4.8% (91.1-86.3). These evidences clearly suggest the

cost-effectiveness advantages of our method over other al-

ternative approaches.

In pose estimation, an improvement of 0.8% indicates a

significant gain particularly on the challenging MPII with

varying poses against cluttered background. This boost
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Figure 2. Example of human pose estimation on LSP and MPII.

Figure 3. Pose estimation examples on MPII by the proposed FPD model. Column (1): The input images. Column (2): Ground-truth joint

confidence maps. Column (3): Joint confidence maps predicted by the teacher model. Column (4): The difference between ground-truth

and teacher’s confidence map. Each row represents a type of pose knowledge transfer. Row (A): Error labelling of the right leg ankle in the

“ground-truth” annotations, which is corrected by the teacher model. Row (B): A softened teacher confidence map with larger uncertainty

than the ground-truth due to the highly complex human posture. Row (C): Missing joint labels are discovered by the teacher model.
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FPD Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC

✗ 97.4 96.0 90.2 85.8 88.2 84.3 80.6 89.4 61.4

✓ 97.5 96.3 91.4 87.3 89.4 85.6 82.0 90.4 62.4

Table 4. Generalisation evaluation of the proposed FPD approach. Metric: Mean PCKh@0.5 and AUC.

# Stage # Channel Mean AUC # Param Deployment Cost

8 256 91.9 63.7 26M 55G

4 256 91.4 63.9 13M 30G

2 256 90.5 63.0 7M 17G

1 256 86.4 58.3 3M 10G

4 256 91.4 63.9 13M 30G

4 128 90.1 62.4 3M 9G

4 64 87.9 59.5 0.95M 4.5G

4 32 83.4 54.9 0.34M 3.1G

Table 5. Cost-effectiveness analysis of the Hourglass model. Metric: PCKh@0.5 and AUC. M/G: 106/109.

Pose Distillation Mean AUC

✗ 90.1 62.4

✓ 90.9 63.3

Table 6. Effect of the proposed pose knowledge distillation. Met-

ric: Mean PCKh@0.5 and AUC (%).

is bigger than other state-of-the-art gains, e.g. +0.3% in

91.2% [21] vs 90.9% [19]; further +0.3% in 91.5% [23].

More specifically, given all 163,814 test joints, each 0.1%

gain means correcting 163 joints.

Results on LSP Table 3 compares the PCK@0.2 rates

of our FPD model and existing methods with top reported

performances on the LSP test data. Compared to MPII, this

benchmark has been less evaluated by deep learning mod-

els, partly due to a smaller size of training data. Overall, we

observed the similar comparisons. For example, our FPD

runs more efficiently than the most competitive alternative

[24] and consumes much less training energy, in addition to

achieving the best pose prediction accuracy rate among all

compared methods.

Qualitative Examination To provide visual test, Figure

2 shows qualitative pose estimation evaluations on LSP and

MPII. It is observed that such a small FPD model can still

achieve reliable and robust pose estimation in arbitrary in-

the-wild images with various background clutters, different

human poses and viewing conditions.

4.3. Ablation Study

We carried out detailed component analysis and discus-

sion on the validation set of MPII.

FPD generalisation evaluation Besides using the state-

of-the-art Hourglass as the backbone network, we also

tested the more recent model [32] when integrated into

the proposed FPD framework. In particular, we adopted

the original network as the teacher model and constructed

a lightweight variant as the student (target) model. The

lightweight model was constructed similarly as in Table 1

because it is based on the Hourglass design too: reducing

the number of stages to 4 and the number of channels in

each module to 128. The results in Table 4 show that our

FPD approach achieves 1.0% mean PCKh@0.5 gain, simi-

lar to the Hourglass case. This suggests the good generali-

sation capability of the proposed approach in yielding cost-

effective pose estimation deep models.

Cost-effectiveness analysis of Hourglass We exten-

sively examined the architecture design of the state-of-the-

art Hourglass neural network model [19] in terms of cost-

effectiveness. To this end, we tested two dimensions in

design: depth (the layer number) and width (the channel

number). Interestingly, we revealed in Table 5 that re-

moving half stages (layers) and half channels only leads

to quite limited performance degradation. This indicates

that the original Hourglass design is highly redundant with

poor cost-effectiveness. However, this is largely ignored in

previous works due to their typical focus on pursuing the

model accuracy performance alone whilst overlooking the

important model efficiency problem. This series of CNN

architecture examinations helps us to properly formulate a

lightweight pose CNN architecture with only 16% (9/55)

computational cost but obtaining 98% (90.1/91.9) model

performance as compared to the state-of-the-art design, lay-

ing a good foundation towards building compact yet strong

human pose deep models.

Effect of pose knowledge distillation We tested the

effect of using our pose knowledge distillation on the

lightweight Hourglass network. In contrast to all other
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Loss Function Head Sho. Elbo. Wri. Hip Knee Ank. Mean AUC

MSE 97.7 96.4 91.8 87.6 89.7 86.6 83.9 90.9 63.3

Cross-Entropy 97.6 96.2 91.5 87.6 89.0 86.5 83.6 90.7 63.0

Table 7. Pose knowledge distillation by different types of loss function. Metric: Mean PCKh@0.5 and AUC.

α 0 0.05 0.1 0.5 0.95 0.99

Mean 90.1 90.8 90.8 90.9 90.7 90.7

AUC 62.4 63.2 63.2 63.3 63.0 63.0

Table 8. Performance analysis of the learning importance parame-

ter of pose distillation. Metric: Mean PCKh@0.5 and AUC (%).

methods, the model [23] additionally benefits from an aux-

iliary dataset MPII in model training. Table 6 shows that

teacher knowledge transfer brings in 0.8% (90.9-90.1) mean

PCKh accuracy boost. This suggests that the generic prin-

ciple of knowledge distillation is also effective in the struc-

tured pose estimation context, beyond object categorisation.

To further validate how on earth this happens, we visu-

alise three pose structure transfer examples in Figure 3. It

is shown that the proposed mimicry loss against the teacher

prediction is likely to pose extra information in cases of er-

ror labelling, hard training images, and missing annotation.

Pose distillation loss function We finally evaluated the

effect of loss function choice for pose knowledge distilla-

tion. To that end, we further tested a Cross-Entropy mea-

surement based loss. Specifically, we first normalise the en-

tire confidence map so that the sum of all pixel confidence

scores is equal to 1, i.e. L1 normalisation. We then measure

the divergence between the predicted and ground-truth con-

fidence maps using the Cross-Entropy criterion. The results

in Table 7 show that the MSE is a better choice in compar-

ison to Cross-Entropy. The plausible reason is that MSE

is also the formulation of the conventional supervision loss

(Eqn (3)) therefore more compatible.

Parameter analysis of loss balance We evaluated the

balance importance between the conventional MSE loss and

the proposed pose knowledge distillation loss, as controlled

by α in Eqn (5). Table 8 shows that equal importance (when

α= 0.5) is the optimal setting. This suggests that the two

loss terms are similarly significant with the same numerical

scale. On the other hand, we found that this parameter set-

ting is not sensitive with a wide range of satisfactory values.

This indicates that the teacher signal is not far away from

the ground-truth labels (see Figure 3 Column (4)), possibly

providing an alternative supervision as a replacement of the

original joint confidence map labels.

5. Conclusion

In this work, we present a novel Fast Pose Distillation

(FPD) learning strategy. In contrast to most existing hu-

man pose estimation methods, the FPD aims to address

the under-studied and practically significant model cost-

effectiveness quality in order to scale the human pose esti-

mation models to large deployments in reality. This is made

possible by developing a lightweight human pose CNN ar-

chitecture and designing an effective pose structure knowl-

edge distillation method from a large teacher model to a

lightweight student model. Compared with existing model

compression techniques such as network parameter binari-

sation, the proposed method achieves highly efficient hu-

man pose models without accuracy performance compro-

mise. We have carried out extensive comparative evalu-

ations on two human pose benchmarking datasets. The

results suggests the superiority of our FPD approach in

comparison to a wide spectrum of state-of-the-art alterna-

tive methods. Moreover, we have also conducted a se-

quence of ablation study on model components to provide

detailed analysis and insight about the gains in model cost-

effectiveness.
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