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Abstract

Gait, the walking pattern of individuals, is one of the

most important biometrics modalities. Most of the exist-

ing gait recognition methods take silhouettes or articulated

body models as the gait features. These methods suffer from

degraded recognition performance when handling confound-

ing variables, such as clothing, carrying and view angle. To

remedy this issue, we propose a novel AutoEncoder frame-

work to explicitly disentangle pose and appearance features

from RGB imagery and the LSTM-based integration of pose

features over time produces the gait feature. In addition, we

collect a Frontal-View Gait (FVG) dataset to focus on gait

recognition from frontal-view walking, which is a challeng-

ing problem since it contains minimal gait cues compared to

other views. FVG also includes other important variations,

e.g., walking speed, carrying, and clothing. With exten-

sive experiments on CASIA-B, USF and FVG datasets, our

method demonstrates superior performance to the-state-of-

the-arts quantitatively, the ability of feature disentanglement

qualitatively, and promising computational efficiency.

1. Introduction

Biometrics measures people’s unique physical and behav-

ioral characteristics to recognize the identity of an individual.

Gait [35], the walking pattern of an individual, is one of the

biometrics modalities, e.g., face, fingerprint, and iris. Gait

recognition has the advantage that it can operate at a distance

without user cooperation. Also, it is difficult to camouflage.

Due to these advantages, gait recognition is applicable to

many applications such as person identification, criminal

investigation, and healthcare.

As other recognition problems in vision, the core of gait

recognition lies in extracting gait-related features from the

video frames of a walking person, where the prior approaches

are categorized into two types: appearance-based and model-

based methods. The appearance-based methods such as Gait

Figure 1: We propose to a novel CNN-based model, termed Gait-

Net, to automatically learn the disentangled gait feature from a

walking video, as opposed to handcrafted GEI, or skeleton-based

features. While many conventional gait databases study side-view

imagery, we collect a new gait database where both gallery and

probe are captured in frontal-views.

Energy Image (GEI) [20] take the averaged silhouette image

as the gait feature. While having a low computational cost

and can handle low-resolution imagery, it can be sensitive

to variations such as clothes change, carrying, view angles

and walking speed [37, 5, 46, 6, 24, 1]. The model-based

method first performs pose estimation and takes articulated

body skeleton as the gait feature. It shows more robustness

to those variations but at a price of a higher computational

cost and dependency on pose estimation accuracy [17, 2].

It is understandable that the challenge in designing a

gait feature is the necessity of being invariant to the ap-

pearance variation due to clothing, viewing angle, carrying,

etc. Therefore, our desire is to disentangle the gait feature

from the visual appearance of the walking person. For both

appearance-based or model-based methods, such disentan-
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Table 1: Comparison of existing gait databases and our collected FVG database.

Dataset #Subjects #Videos Environment Resolution Format Variations

CASIA-B 124 13, 640 Indoor 320×240 RGB View, Clothing, Carrying

USF 122 1, 870 Outdoor 720×480 RGB View, Ground Surface, Shoes, Carrying, Time

OU-ISIR-LP 4, 007 − Indoor 640×480 Silhouette View

OU-ISIR-LP-Bag 62, 528 − Indoor 1, 280×980 Silhouette Carrying

FVG (our) 226 2, 856 Outdoor 1, 920×1, 080 RGB View, Walking Speed, Carrying, Clothing, Background, Time

glement is achieved by manually handcrafting the GEI or

body skeleton, since neither has color information. However,

we argue that these manual disentanglements may lose cer-

tain or create redundant gait information. E.g., GEI learns

the average contours over time, but not the dynamic of how

body parts move. For body skeleton, under carrying con-

dition, certain body joints such as hands may have fixed

positions, and hence are redundant information to gait.

To remedy the issues in handcrafted features, as shown

in Fig. 1, this paper aims to automatically disentangle the

pose/gait features from appearance features, and use the

former for gait recognition. This disentanglement is realized

by designing an autoencoder-based CNN, GaitNet, with

novel loss functions. For each video frame, the encoder

estimates two latent representations, pose feature (i.e., frame-

based gait feature) and appearance feature, by employing two

loss functions: 1) cross reconstruction loss enforces that the

appearance feature of one frame, fused with the pose feature

of another frame, can be decoded to the latter frame; 2) gait

similarity loss forces a sequence of pose features extracted

from a video sequence, of the same subject to be similar even

under different conditions. Finally, the pose features of a

sequence are fed into a multi-layer LSTM with our designed

incremental identity loss to generate the sequence-based gait

feature, where two of which can use the cosine distance as

the video-to-video similarity metric.

Furthermore, most prior work [20, 46, 33, 12, 2, 7, 13]

often choose the walking video of the side view, which

has the richest gait information, as the gallery sequence.

However, practically other view angles, such as the frontal

view, can be very common when pedestrians toward or away

from the surveillance camera. Also, the prior work [40,

10, 11, 34] that focuses on frontal view are often based on

RGB-D videos, which have richer depth information than

RGB videos. Therefore, to encourage gait recognition from

the frontal-view RGB videos that generally has the minimal

amount of gait information, we collect a high-definition

(HD,1080p) frontal-view gait database with a wide range of

variations. It has three frontal-view angles where the subject

walks from left 45◦, 0◦, and right 45◦ off the optical axes

of the camera. For each of three angles, different variants

are explicitly captured including walking speed, clothing,

carrying, clutter background, etc.

The contributions of this work are the following:

1) We propose an autoencoder-based network, GaitNet,

with novel loss functions to explicitly disentangle the pose

features from visual appearance and use multi-layer LSTM

to obtain aggregated gait feature.

2) We introduce a frontal-view gait database, named

FVG, including various variations of viewing angles, walk-

ing speeds, carrying, clothing changes, background and time

gaps. This is the first HD gait database, with a nearly doubled

number of subjects than prior RGB gait databases.

3) Our proposed method outperforms state of the art on

three benchmarks, CASIA-B, USF, and FVG datasets.

2. Related Work

Gait Representation. Most prior works are based on two

types of gait representations. In appearance-based meth-

ods, gait energy image (GEI) [20] or gait entropy image

(GEnI) [5] are defined by extracting silhouette masks. Specif-

ically, GEI uses an averaged silhouette image as the gait

representation for a video. These methods are popular in the

gait recognition community for their simplicity and effective-

ness. However, they often suffer from sizeable intra-subject

appearance changes due to covariates such as clothing, car-

rying, views, and walking speed. On the other hand, model-

based methods [17] fit articulated body models to images

and extract kinematic features such as 2D body joints. While

they are robust to some covariates such as clothing and speed,

they require a relatively higher image resolution for reliable

pose estimation and higher computational costs.

In contrast, our approach learns gait information from

raw RGB video frames which contain the richer information,

thus with higher potential of extracting discriminative gait

features. The most relevant work to ours is [12], which learns

gait features from RGB images via Conditional Random

Field. Compared to [12], our CNN-based approach has

the advantage of being able to leverage a large amount of

training data and learning more discriminative representation

from data with multiple covariates. This is demonstrated by

our extensive comparison with [12] in Sec. 5.2.1.

Gait Databases. There are many classic gait databases such

as SOTON Large dataset [39], USF [37], CASIA-B [23],

OU-ISIR [32], TUM GAID [23] and etc. We compare our

FVG database with the most widely used ones in Tab. 1.

CASIA-B is a large multi-view gait database with three vari-

ations: view angle, clothing, and carrying. Each subject is

captured from 11 views under three conditions: normal walk-

ing (NM), walking in coats (CL) and walking while carrying

bags (BG). For each view, 6, 2 and 2 videos are recorded

from normal, coats and bags conditions. USF database has
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Figure 2: Overall architecture of our proposed approach, with three novel loss functions.

122 subjects with five variations, totaling 32 conditions for

each subject. It contains two view angles (left and right), two

ground surface (grass and concrete), shoes change, carrying

condition and time. While OU-ISIR-LP and OU-ISIR-LP-

Bag are large datasets, we can not leverage them as only the

silhouette is publicly released.

Unlike those databases, our FVG database focuses on

the frontal view, with 3 different near frontal-view angles

towards the camera, and other variations including walking

speed, carrying, clothing, cluttered background and time.

Disentanglement Learning. Besides model-based ap-

proaches [43, 42, 31] representing data with semantic latent

vectors; data-driven disentangled representation learning

approaches are gaining popularity in computer vision com-

munity. DrNet [14] disentangles content and pose vectors

with a two-encoders architecture, which removes content

information in the pose vector by generative adversarial

training. The work of [3] segments foreground masks of

body parts by 2D pose joints via U-Net [36] and then trans-

forms body parts to desired motion with adversarial training.

Similarly, [15] utilizes U-net and Variational Auto Encoder

(VAE) to disentangle an image into appearance and shape.

DR-GAN [44, 45] achieves state-of-the-art performances on

pose-invariant face recognition by explicitly disentangling

pose variation with a multi-task GAN [19].

Different from [14, 3, 15], our method has only one en-

coder to disentangle the appearance and gait information,

through the design of novel loss functions without the need

for adversarial training. Unlike DR-GAN [45], our method

does not require adversarial training, which makes training

more accessible. Further, pose labels are used in DR-GAN

training so as to disentangle identity feature from the pose.

However, to disentangle gait and appearance feature from

the RGB information, there is no gait nor appearance label to

be utilized for our method, since the type of walking pattern

or clothes cannot be defined as discrete classes.

3. Proposed Approach

Let us start with a simple example. Assuming there are

three videos, where videos 1 and 2 capture subject A wear-

ing t-shirt and long down coat respectively, and in video

3 subject B wears the same long down coat as in video 2.

The objective is to design an algorithm, from which the gait

features of video 1 and 2 are the same, while those of video 2
and 3 are different. Clearly, this is a challenging objective, as

the long down coat can easily dominate the feature extraction,

which would make videos 2 and 3 to be more similar than

videos 1 and 2 in the latent space of gait features. Indeed the

core challenge, as well as the objective, of gait recognition

is to extract gait features that are discriminative among sub-

jects, but invariant to different confounding factors, such as

viewing angles, walking speeds and appearance.

Our approach to achieve this objective is via feature dis-

entanglement - separating the gait feature from appearance

information for a given walking video. As shown in Fig. 2,

the input to our model is a video frame, with background

removed using any off-the-shelf pedestrian detection and seg-

mentation method [21, 9, 8]. An encoder-decoder network,

with carefully designed loss functions, is used to disentangle

the appearance and pose features for each video frame. Then,

a multi-layer LSTM explores the temporal dynamics of pose

features and aggregates them to a sequence-based gait fea-

ture for the identification purpose. In this section, we first

present the feature disentanglement, followed by temporal

aggregation, and finally implementation details.

3.1. Appearance and Pose Feature Disentanglement

For the majority of gait recognition datasets, there is a

limited appearance variation within each subject. Hence,

appearance could be a discriminate cue for identification

during training as many subjects can be easily distinguished
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by their clothes. Unfortunately, any networks or feature

extractors relying on appearance will not generalize well on

the test set or in practice, due to potentially diverse clothing

or appearance between two videos of the same subject.

This limitation on training sets also prevents us from

learning good feature extractors if solely relying on identifi-

cation objective. Hence we propose to learn to disentangle

the gait feature from the visual appearance in an unsuper-

vised manner. Since a video is composed of frames, dis-

entanglement should be conducted on the frame level first.

Because there is no dynamic information within a video

frame, we aim to disentangle the pose feature from the vi-

sual appearance for a frame. The dynamics of pose features

over a sequence will contribute to the gait feature. In other

words, we view the pose feature as the manifestation of

video-based gait feature at a specific frame.

To this end, we propose to use an encoder-decoder net-

work architecture with carefully designed loss functions to

disentangle the pose feature from appearance feature. The

encoder, E , encodes a feature representation of each frame,

I, and explicitly splits it into two parts, namely appearance

fa and pose fg features:

fa, fg = E(I). (1)

These two features are expected to fully describe the original

input image. As they can be decoded back to the original

input through a decoder D:

Ĩ = D(fa, fg). (2)

We now define the various loss functions defined for learning

the encoder, E , and decoder D.

Cross Reconstruction Loss. The reconstructed Ĩ should

be close to the original input I. However, enforcing self-

reconstruction loss as in typical auto-encoder can’t ensure

the appearance fa learning appearance information across

the video and fg representing pose information in each frame.

Hence we propose the cross reconstruction loss, using an

appearance feature f
t1
a of one frame and pose feature f

t2
g of

another one to reconstruct the latter frame:

Lxrecon =
∥∥D(f t1a , f t2g )− It2

∥∥2
2
, (3)

where It is the video frame at the time step t.

The cross reconstruction loss, on one hand, can play a

role as the self-reconstruction loss to make sure the two

features are sufficiently representative to reconstruct video

frames. On the other hand, as we can pair a pose feature of

a current frame to the appearance feature of any frame in

the same video to reconstruct the same target, it enforces the

appearance features to be similar across all frames.

Gait Similarity Loss. The cross reconstruction loss pre-

vents the appearance feature fa to be over-represented, con-

taining pose variation that changes between frames. How-

ever, appearance information may still be leaked into pose

feature fg. In an extreme case, fa is a constant vector while

fg encodes all the information of a video frame. To make fg

“cleaner”, we leverage multiple videos of the same subject.

Extra videos can introduce the change in appearance. Given

two videos of the same subject with length n1, n2 in two

different conditions c1, c2. Ideally, c1, c2 should contain

difference in the person’s appearance, i.e., cloth changes.

While appearance changes, the gait information should be

consistent between two videos. Since it’s almost impos-

sible to enforce similarity on fg between video frames as

it requires precise frame-level alignment; we enforce the

similarity between two videos’ averaged pose features:

Lgait-sim =

∥∥∥∥∥
1

n1

n1∑

t=1

f
(t,c1)
g −

1

n2

n2∑

t=1

f
(t,c2)
g

∥∥∥∥∥

2

2

. (4)

3.2. Gait Feature Learning via Aggregation

Even when we can disentangle appearance and pose in-

formation for each video frame, the current feature fg only

contains the walking pose of the person in a specific instance,

which can share similarity with another specific instance of

a very different person. Here, we are looking for discrim-

inative characteristics in a person walking pattern. There-

fore, modeling its temporal change is critical. This is where

temporal modeling architectures like the recurrent neural

network or long short-term memory (LSTM) work best.

Specifically, in this work, we utilize a multi-layer LSTM

structure to explore spatial (e.g., the shape of a person) and

mainly, temporal (e.g., how the trajectory of subjects’ body

parts changes over time) information on pose features. As

shown in Fig. 2, pose features extracted from one video

sequence are feed into a 3-layer LSTM. The output of the

LSTM is connected to a classifier C, in this case, a linear

classifier is used, to classify the subject’s identity.

Let ht be the output of the LSTM at time step t, which is

accumulative after feeding t pose features fg into it:

h
t = LSTM(f1g , f

2
g , ..., f

t
g). (5)

Now we define the loss function for LSTM. A trivial

option for identification is to add the classification loss on

top of the LSTM output of the final time step:

Lid-single = − log(Ck(h
n)), (6)

which is the negative log likelihood that the classifier C

correctly identifies the final output hn as its identity label k.

Identification with Averaged Feature. By the nature of

LSTM, the output ht is greatly affected by its last input f tg.

Hence the LSTM output, ht, can be varied across time steps.

With a desire to obtain a gait feature that can be robust to the

stopping instance of a walking cycle, we propose to use the
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averaged LSTM output as our gait feature for identification:

f
t
gait =

1

t

t∑

s=1

h
s. (7)

The identification loss can be rewritten as:

Lid-avg = − log(Ck(f
n
gait))

= − log

(
Ck

(
1

n

n∑

s=1

h
s

))
. (8)

Incremental Identity Loss. LSTM is expected to learn that

the longer the video sequence, the more walking information

it processes then the more confident it identifies the subject.

Instead of minimizing the loss on the final time step, we

propose to use all the intermediate outputs of every time step

weighted by wt:

Lid-inc-avg =
1

n

n∑

t=1

−wt log

(
Ck

(
1

t

t∑

s=1

h
s

))
. (9)

To this end, the overall training loss function is:

L = Lid-inc-avg + λrLxrecon + λsLgait-sim. (10)

The entire system, encoder-decoder, and LSTM are

jointly trained. Updating E to optimize Lid-inc-avg also helps

to further generate pose feature that has identity information

and on which LSTM is able to explore temporal dynamics.

At the test time, the output f tgait of LSTM is the gait feature of

the video and used as the identity feature representation for

matching. The cosine similarity score is used as the metric.

3.3. Implementation Details

Segmentation and Detection. Our network receives video

frames with the person of interest segmented. The fore-

ground mask is obtained from the state-of-the-art detection,

Mask R-CNN [21]. Instead of using a zero-one mask by

hard thresholding, we keep the soft mask returned by the

network, where each pixel indicates the probability of being

a person. This is partially due to the difficulty in choosing a

threshold. Also, it prevents the loss in information due to the

mask estimation error. We use a bounding box with a fixed

ratio of width: height = 1 : 2 with the absolute height and

center location given by the Mask R-CNN network. Input is

obtained by pixel-wise multiplication between the mask and

RGB values which is then resized to 32× 64.

Network hyperparameter. Our encoder-decoder network

is a typical CNN. Encoder consisting of 4 stride-2 convo-

lution layers following by Batch Normalization and Leaky

ReLU activation. The decoder structure is an inverse of

the encoder, built from transposed convolution, Batch Nor-

malization and Leaky ReLU layers. The final layer has a

Figure 3: Examples of FVG Dataset. (a) Samples of the near

frontal middle, left and right walking view angles in session 1 (SE1)

of the first subject (S1). SE3-S1 is the same subject in session 3.

(b) Samples of slow and fast walking speed for another subject in

session 1. Frames in top red boxes are slow and in the bottom red

box are fast walking. Carrying bag sample is shown below. (c)

samples of changing clothes and with cluttered background from

one subject in session 2.

Sigmoid activation to bring the value into [0, 1] range as the

input. The classification part is a stacked 3-layer LSTM [18],

which has 256 hidden units in each of cells.

Adam optimizer [27] is used with the learning rate of

0.0001, and the momentum of 0.9. For each batch, we use

video frames from 32 different clips. Since video lengths

are varied, a random crop of 20-frame sequence is applied;

all shorter videos are discarded. For Eqn. 9, we set wt =
t2 while other options such as wt = 1 also yield similar

performance. The λr and λs (Eqn. 10) are set to 0.1 and

0.005 in all experiments.

4. Front-View Gait Database

Collection. To facilitate the research of gait recognition

from frontal-view angles, we collect the Front-View Gait

(FVG) database in a course of two years 2017 and 2018.

During the capturing, we place the camera (Logitech C920

Pro Webcam or GoPro Hero 5) on a tripod at the height

of 1.5 meter. We ask each of 226 subjects to walk toward

the camera 12 times starting from around 16 meters, which

results in 12 videos per subject. The videos are captured

at 1, 080 × 1, 920 resolution with the average length of 10
seconds. The height of human in the video ranges from 101
to 909 pixels. These 12 walks have the combination of three

angles toward the camera (−45◦, 0◦, 45◦ off the optical axes

of the camera), and four variations.

FVG is collected in three sessions. In session 1, in 2017,

videos from 147 subjects are collected with four variations

(normal walking, slow walking, fast walking, and carrying

status). In session 2, in 2018, videos from additional 79
subjects are collected. Variations are normal, slow or fast

walking speed, clothes or shoes change, and twilight or clus-
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Figure 4: Synthesized frames on CASIA-B by decoding the vari-

ous combination of fa and fg . Left and right parts are two examples.

For each example, fa is extracted from images in the first column

and fg is extracted from images in the first row. 0 vector has the

same dimension as fg or fa, accordingly.

tered background. Finally in session 3, we collect repeated

12 subjects in year 2018 for extreme challenging test with

the same setup as section 1. The purpose is to test how

time gaps affect gait, along with changes in cloth/shoes or

walking speed. Fig. 3 shows exemplar images from FVG.

Protocols. Different from prior gait databases, subjects in

FVG are walking toward the camera, which creates a great

challenge on exploiting gait information as the difference

in consecutive frames can be much smaller than side-view

walking. We focus our evaluation on variations that are

challenging, e.g., different appearance, carrying a bag, or are

not presented in other databases, e.g., cluttered background,

along with view angles.

To benchmark research on FVG, we define 5 evaluation

protocols, among which there are two commonalities: 1)
the first 136 and rest 90 subjects are used for training and

testing respectively; 2) the video 2, the normal frontal-view

walking, is used as the gallery. The 5 protocols differ in their

specific probe data, which cover the variations of Walking

Speed (WS), Carrying Bag (CB), Changing Clothes (CL),

Cluttered Background (CBG), and all variations (All). At

the top part of Fig. 6, we list the detailed probe set for all 5
protocols. E.g., for the WS protocol, the probes are video

4− 9 in session 1 and video 4− 6 in session 2.

5. Experiments

Databases. We evaluate the proposed approach on three

gait databases, CASIA-B [47], USF [37] and FVG. As men-

tioned in Sec. 2, CASIA-B, and USF are the most widely

used gait databases, making the comparison with prior work

easier. We compare our method with [46, 12, 29, 30] on

these two databases, by following the respective experimen-

tal protocols of the baselines. These are either the most

Figure 5: Synthesized frames on CASIA-B by decoding fa and

fg from different variations (NM vs. CL). Left and right parts

are two examples. For each example, fa is extracted from the

most left column image (CL) and fg is extracted from the top

row images (NM). Top row synthesized images are generated with

model trained without Lgait-sym loss, bottom row is with the loss. To

show the differences, details in generated images are magnified.

Table 2: Ablation study on our disentanglement loss and classifi-

cation loss. By removing or replacing with other loss functions,

Rank-1 recognition rate on cross NM and CL condition degrades.

Disentanglement Loss Classification Loss Rank 1

- Lid-inc-avg 56.0
Lxrecon Lid-inc-avg 60.2

Lxrecon + Lgait-sim Lid-inc-avg 85.6
Lxrecon + Lgait-sim Lid-avg 62.6
Lxrecon + Lgait-sim Lid-single 26.0
Lxrecon + Lgait-sim Lid-ae [41] 71.2

recent and state-of-art work or classic gait recognition meth-

ods. The OU-ISIR database [32] is not evaluated, and related

methods [33] are not compared since our work consumes

RGB video input, but OU-ISIR only releases silhouettes.

5.1. Ablation Study

Feature Visualization. To aid on understanding our fea-

tures, we randomly pair fa, fg features from different images

and visualize the resultant paired feature by feeding it into

our learned decoder D. As shown in Fig. 4, each result is

generated by paring the appearance fa in the first column,

and the pose fg in the first row. The synthesized images

show that indeed fa contributes all the appearance informa-

tion, e.g., cloth, color, texture, contour, as they are consistent

across each row. Meanwhile, fg contributes all the pose

information, e.g., position of hand and feet, which share

similarity across columns. We also visualize features fa, fg
individually by forcing the other feature to be a zero vector 0.

Without fg, the reconstructed image still shares appearance

similarity with fa input but does not show a clear walking

pose. Meanwhile, when removing fa, the reconstructed im-

age still mimics the pose of fg’s input.

Disentanglement with Gait Similarity Loss. With the

cross reconstruction loss, the appearance feature fa can be
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Table 3: Recognition accuracy cross views under NM on CASIA-B dataset. One single GaitNet module is trained for all the view angles.

Methods 0◦ 18◦ 36◦ 54◦ 72◦ 108◦ 126◦ 144◦ 162◦ 180◦ Average

CPM [12] 13 14 17 27 62 65 22 20 15 10 24.1
GEI-SVR [29] 16 22 35 63 95 95 65 38 20 13 42.0
CMCC [28] 18 24 41 66 96 95 68 41 21 13 43.9
ViDP [26] 8 12 45 80 100 100 81 50 15 8 45.4
STIP+NN [30] − − − − 84.0 86.4 − − − − −

LB [46] 18 36 67.5 93 99.5 99.5 92 66 36 18 56.9
L-CRF [12] 38 75 68 93 98 99 93 67 76 39 67.8
GaitNet (our) 68 74 88 91 99 98 84 75 76 65 81.8

Table 4: Comparison on CASIA-B with cross view and conditions.

Three models are trained for NM-NM, NM-BG, NM-CL. Average

accuracies are calculated excluding probe view angles.

Gallery NM #1-4 0◦-180◦ 36◦-144◦

Probe NM #5-6 0◦ 54◦ 90◦ 126◦ Mean 54◦ 90◦ 126◦ Mean

CCA [4] − − − − − 66.0 66.0 67.0 66.3
ViDP [26] − 64.2 60.4 65.0 − 87.0 87.7 89.3 88.0
LB [46] 82.6 94.3 87.4 94.0 89.6 98.0 98.0 99.2 98.4
GaitNet (our) 91.2 95.6 92.6 96.0 93.9 99.1 99.0 99.2 99.1

Probe BG #1-2 0◦ 54◦ 90◦ 126◦ Mean 54◦ 90◦ 126◦ Mean

LB-subGEI [46] 64.2 76.9 63.1 76.9 70.3 89.2 84.3 91.0 88.2
GaitNet (our) 83.0 86.6 74.8 85.8 82.6 90.0 85.6 92.7 89.4

Probe CL #1-2 0◦ 54◦ 90◦ 126◦ Mean 54◦ 90◦ 126◦ Mean

LB-subGEI [46] 37.7 61.1 54.6 59.1 53.1 77.3 74.5 74.5 75.4
GaitNet (our) 42.1 70.7 70.6 69.4 63.2 80.0 81.2 79.4 80.2

enforced to represent static information that shares across

the video. However, as discussed, the feature fg can be

spoiled or even encode the whole video frame. Here we

show the need for the gait similarity loss Lgait-sym on the

feature disentanglement. Fig. 5 shows the cross visualization

of two different models learned with and without Lgait-sym.

Without Lgait-sym the decoded image shares some appearance

characteristic, e.g., cloth style, contour, with fg . Meanwhile

with Lgait-sym, appearance better matches with fa.

Joints Location as Pose Feature. In literature, there is a

large amount of effort in human pose estimation [17]. Ag-

gregating joint locations over time could be a good candidate

for gait features. Here we compare our framework with a

baseline, named PE-LSTM, using pose estimation results as

the input to the same LSTM as ours. Using state-of-the-art

pose estimator [16], we extract 14 joints’ locations and feed

to the LSTM. This network achieves the recognition accu-

racy of 65.4% TDR at 1% FAR on the ALL protocol of FVG

dataset, where our method outperforms it with 81.2%. This

result demonstrates that our pose feature fg does explore

more discriminate feature than the joints’ locations alone.

Loss Function’s Impact on Performance. As the sys-

tem consists of multiple loss functions, here we analyze the

effect of each loss function on the final recognition perfor-

mance. Tab. 2 reports the recognition accuracy of different

variants of our framework on CASIA-B dataset under NM

and CL. We first explore the effects of different disentangle-

ment losses. Using Lid-inc-avg as the classification loss, we

train different variants of our framework: a baseline with-

out any disentanglement losses, a model with Lxrecon, and

our full model with both Lxrecon and Lgait-sim. The baseline

achieves the accuracy of 56.0%. Adding the Lxrecon slightly

improves the performance to 60.2%. By combining with

Lgait-sim, our model significantly improves the performance

to 85.6%. Between Lxrecon and Lgait-sim, the gait similarity

loss plays a more critical role as Lxrecon is mainly designed to

constrain the appearance feature fa, which does not directly

involve identification.

Using the combination, Lxrecon and Lgait-sim, we bench-

mark different options for classification loss as presented

in Sec. 3.1, as well as the autoencoder loss by Srivastava et

al. [41]. The model using the conventional identity loss on

the final LSTM output Lid-single achieves the rank-1 accuracy

of 26.0%. Using the average output of LSTM as identity

feature, Lid-average, shows to improve the performance to

62.6%. The autoencoder loss [41] achieves a good perfor-

mance, 71.2%. However, it is still far from our proposed

incremental identity loss Lid-inc-avg’s performance.

5.2. Evaluation on Benchmark Datasets

5.2.1 CASIA-B

Since various experimental protocols have been defined on

CASIA-B, for a fair comparison, we strictly follow the re-

spective protocols in the baseline methods. Following [46],

Protocol 1 uses the first 74 subjects for training and rest 50
for testing, regarding variations of NM (normal), BG (carry-

ing bag) and CL (wearing a coat) with crossing view angles

of 0◦, 54◦, 90◦, and 126◦. Three models are trained for

comparison in Tab. 4. For the detailed protocol, please refer

to [46]. Here we mainly compare our performance to Wu

et al. [46], along with other methods [26]. Under multiple

view angles and cross three variations, our method (GaitNet)

achieves the best performance on all comparisons.

Recently, Chen et al. [12] propose new protocols to unify

the training and testing where only one single model is being

trained for each protocol. Protocol 2 focuses on walking

direction variations, where all videos used are in NM. The

training set includes videos of first 24 subjects in all view

angles. The rest 100 subjects are for testing. The gallery is

made of four videos at 90◦ view for each subject. Videos

from remaining view angles are the probe. The rank 1 recog-

nition accuracy are reported in Tab. 3. Our GaitNet achieves

the best average accuracy of 81.8% across ten view angles,

with significant improvement on extreme views. E.g., at
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Table 5: Comparison with [12] and [46] under different walking

conditions on CASIA-B by accuracies. One single GaitNet model

is trained with all gallery and probe views and the two conditions.

Probe Gallery
GaitNet (our) L-CRF [12] LB [46] RLTDA [25]

BG CL BG CL BG CL BG CL

54 36 91.6 87.0 93.8 59.8 92.7 49.7 80.8 69.4
54 72 90.0 90.0 91.2 72.5 90.4 62.0 71.5 57.8
90 72 95.6 94.2 94.4 88.5 93.3 78.3 75.3 63.2
90 108 87.4 86.5 89.2 85.7 88.9 75.6 76.5 72.1
126 108 90.1 89.8 92.5 68.8 93.3 58.1 66.5 64.6
126 144 93.8 91.2 88.1 62.5 86.0 51.4 72.3 64.2

Mean 91.4 89.8 91.5 73.0 90.8 62.5 73.8 65.2

Table 6: Definition of FVG protocols and performance comparison.

Under each of the 5 protocols, the first/second columns indicate the

indexes of videos used in gallery/probe.

Index of Gallery & Probe videos

Session 1 2 4-9 2 10-12 − − − − 2 1,3-12
Session 2 2 4-6 − − 2 7-9 2 10-12 2 1,3-12
Session 3 − − − − − − − − − 1-12

Variation WS CB CL CBG All

TDR@FAR 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

PE-LSTM 79.3 87.3 59.1 78.6 55.4 67.5 61.6 72.2 65.4 74.1
GEI [20] 9.4 19.5 6.1 12.5 5.7 13.2 6.3 16.7 5.8 16.1
GEINet [38] 15.5 35.2 11.8 24.7 6.5 16.7 17.3 35.2 13.0 29.2
DCNN [1] 11.0 23.6 5.7 12.7 7.0 15.9 8.1 20.9 7.9 19.0
LB [46] 53.4 73.1 23.1 50.3 23.2 38.5 56.1 74.3 40.7 61.6
GaitNet (our) 91.8 96.6 74.2 85.1 56.8 72.0 92.3 97.0 81.2 87.8

view angles of 0◦, and 180◦, the improvement margins are

30% and 26% respectively. This shows that GaitNet learns a

better view-invariant gait feature than other methods.

Protocol 3 focuses on appearance variations. Training sets

have videos under BG and CL. There are 34 subjects in total

with 54◦ to 144◦ view angles. Different test sets are made

with the different combination of view angles of the gallery

and probe as well as the appearance condition (BG or CL).

The results are presented in Tab. 5. We have comparable

performance with the state-of-art method L-CRF [12] on BG

subset while significantly improving the performance on CL

subset. Note that due to the challenge of CL protocol, there

is a significant performance gap between BG and CL for all

methods except ours, which is yet another evidence that our

gait feature has strong invariance to all major gait variations.

Across all evaluation protocols, GaitNet consistently out-

performs state of the art. This shows the superior of GaitNet

on learning a robust representation under different varia-

tions. It is contributed to our ability to disentangle pose/gait

information from other static variations.

5.2.2 USF

The original protocol of USF [37] does not define a training

set, which is not applicable to our method, as well as [46],

that require data to train the models. Hence following the

experiment setting in [46], we randomly partition the dataset

into the non-overlapping training and test sets, each with half

of the subjects. We test on Probe A, defined in [46], where

the probe is different from the gallery by the viewpoint. We

achieve the identification accuracy of 99.5 ± 0.2%, which

Table 7: Runtime (ms per frame) comparison on FVG dataset.

Methods Pre-processing Inference Total

PE-LSTM 22.4 0.1 22.5
GEINet [38] 0.5 1.5 2.0
DCNN [1] 0.5 1.7 2.2
LB [46] 0.5 1.3 1.8
GaitNet (our) 0.5 1.0 1.5

is better than the reported 96.7± 0.5% of LB network [46],

and 94.7± 2.2% of multi-task GAN [22].

5.2.3 FVG

Given that FVG is a newly collected database and no re-

ported performance from prior work, we make the efforts

to implement 4 classic or state-of-the-art methods on gait

recognition [20, 38, 1, 46]. For each of 4 methods and our

GaitNet, one model is trained with the 136-subject training

set and tested on all 5 protocols.

As shown in Tab. 6, our method shows state-of-the-art

performance compared with other methods, including the

recent CNN-based methods. Among 5 protocols, CL is the

most challenging variation as in CASIA-B. Comparing with

all different methods GEI based methods suffer from frontal

view due to the lack of walking information.

5.3. Runtime Speed

System efficiency is an essential metric for many vision

systems including gait recognition. We calculate the effi-

ciency while each of the 5 methods processing one video of

USF dataset on the same desktop with GeForce GTX 1080

Ti GPU. As shown in Tab. 7, our method is significantly

faster than the pose estimation method because of 1) effi-

ciency of Mask R-CNN; 2) an accurate, yet slow, version of

AlphaPose [16] is required for gait recognition.

6. Conclusions

This paper presents an autoencoder-based method termed

GaitNet that can disentangle appearance and gait feature rep-

resentation from raw RGB frames, and utilize a multi-layer

LSTM structure to further explore temporal information to

generate a gait representation for each video sequence. We

compare our method extensively with the state of the arts

on CASIA-B, USF, and our collected FVG datasets. The

superior results show the generalization and promising of

the proposed feature disentanglement approach. We hope

that in the future, this disentanglement approach is a viable

option for other vision problems where motion dynamics

needs to be extracted while being invariant to confounding

factors, e.g., expression recognition with invariance to facial

appearance, activity recognition with invariance to clothing.
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