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Abstract

Due to the significant information loss in low-resolution

(LR) images, it has become extremely challenging to further

advance the state-of-the-art of single image super-resolu-

tion (SISR). Reference-based super-resolution (RefSR), on

the other hand, has proven to be promising in recovering

high-resolution (HR) details when a reference (Ref) image

with similar content as that of the LR input is given. How-

ever, the quality of RefSR can degrade severely when Ref

is less similar. This paper aims to unleash the potential of

RefSR by leveraging more texture details from Ref images

with stronger robustness even when irrelevant Ref images

are provided. Inspired by the recent work on image styl-

ization, we formulate the RefSR problem as neural texture

transfer. We design an end-to-end deep model which en-

riches HR details by adaptively transferring the texture from

Ref images according to their textural similarity. Instead of

matching content in the raw pixel space as done by previous

methods, our key contribution is a multi-level matching con-

ducted in the neural space. This matching scheme facilitates

multi-scale neural transfer that allows the model to bene-

fit more from those semantically related Ref patches, and

gracefully degrade to SISR performance on the least rele-

vant Ref inputs. We build a benchmark dataset for the gen-

eral research of RefSR, which contains Ref images paired

with LR inputs with varying levels of similarity. Both quan-

titative and qualitative evaluations demonstrate the superi-

ority of our method over state-of-the-art1.

1. Introduction

The traditional single image super-resolution (SISR)

problem is defined as recovering a high-resolution (HR) im-

age from its low-resolution (LR) observation [38]. As in

other fields of computer vision studies, the introduction of

convolutional neural networks (CNNs) [5, 37, 22, 25, 35,

13] has greatly advanced the state-of-the-art of SISR. How-

ever, due to the ill-posed nature of SISR problems, most

1Code: https://github.com/ZZUTK/SRNTT

existing methods still suffer from blurry results at large up-

scaling factors, e.g., 4×, especially when it comes to the

recovery of fine texture present in the original HR image

but lost in its LR counterpart. In recent years, perceptual-

related constraints, e.g., perception loss [20] and adversarial

loss [11], have been introduced to the SISR problem for-

mulation, leading to major breakthroughs on visual quality

under large upscaling factors [24, 30]. However, they tend

to hallucinate fake textures and even produce artifacts.

This paper diverts from the traditional SISR and explores

the reference-based super-resolution (RefSR). RefSR uti-

lizes rich textures from the HR references (Ref) to com-

pensate for the lost details in the LR images, relaxing the

ill-posed issue and producing more detailed and realistic

textures with the help of reference images. Note that the

Ref images can be obtained from various sources like photo

albums, video frames, web image search, etc. There are ex-

isting RefSR approaches [8, 3, 7, 33, 39, 34, 27, 41] that

adopt internal examples (self-example) or external high-

frequency information to enhance textures. However, these

approaches assume the reference images possess similar

content as that of the LR image and/or with good alignment.

Otherwise, their performance would significantly degrade

and even become worse than SISR methods. In contrast,

the Ref images play a different role in our setting: it does

not require well alignment or similar content to the LR im-

age. Instead, we only intend to transfer the semantically

relevant texture from Ref images to the output SR image.

Ideally, a robust RefSR algorithm should outperform SISR

when good Ref images are given, and achieve comparable

performance as SISR when Ref images are not provided or

do not possess relevant texture at all. Note that content sim-

ilarity would infer texture similarity but not vice versa.

Inspired by the recent work on image stylization [10,

20, 4], we propose a new RefSR algorithm, named Super-

Resolution by Neural Texture Transfer (SRNTT), which

adaptively transfers textures from the Ref images to the SR

image. More specifically, SRNTT conducts local texture

matching in the feature space and transfers matched tex-

tures to the final output through a deep model. The texture

transfer model learns the complicated dependency between
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Figure 1: SRNTT (ours) is compared to SRGAN [24] (a state-of-the-art SISR method) and CrossNet [41] (a state-of-the-art

RefSR method). (a) Two Ref images. The upper one (U) has similar content to the LR input as shown in (b) bottom-right

corner, and the lower one (L) has distinct or unrelated content to the LR input. (c) Result of SRGAN. (d)(e) Results of

CrossNet using two Ref images respectively. (f)(g) Results of SRNTT using two Ref images respectively.

LR and Ref textures, and leverages similar textures while

suppressing dissimilar textures. The example in Fig. 1 illus-

trates the advantage of the proposed SRNTT compared with

two state-of-the-art works, i.e., SRGAN [24] (for SISR) and

CrossNet [41] (for RefSR). SRNTT shows significant boost

in synthesizing finer texture as compared to the other meth-

ods if using a Ref image with similar content (i.e., Fig. 1(a)

upper). Even using a Ref image with unrelated content (i.e.,

Fig. 1(a) lower), SRNTT is still comparable to SRGAN

(similar visual quality but less artifacts), demonstrating the

adaptiveness/robustness of SRNTT to different Ref images

of various levels of content similarity. By contrast, Cross-

Net would introduce undesired textures from the unrelated

Ref image and shows severe performance degradation

In order to facilitate fair comparison and help advance

research on the RefSR problem in general, we propose a

new dataset, named CUFED5, which provides training and

testing sets accompanied with references of different simi-

larity levels in terms of content, texture, color, illumination,

view point, etc. The main contributions of this paper are:

• We explore a more general RefSR problem, breaking

the performance barrier in SISR (i.e., lack of texture

detail) and relaxing constraints in existing RefSR (i.e.,

alignment assumption).

• We propose an end-to-end deep model, SRNTT, for

the RefSR problem to recover the LR image condi-

tioned on any given references by multi-scale neural

texture transfer. We demonstrate the visual improve-

ment, effectiveness, and adaptiveness of the proposed

SRNTT by extensive empirical studies.

• We build a benchmark dataset, CUFED5, to facili-

tate the further research and performance evaluation of

RefSR methods in handling references with different

levels of similarity to the LR input image.

In the rest of this paper, we review the related works in

Section 2. The network architecture and training criteria are

discussed in Section 3. In Section 4, the proposed dataset

CUFED5 is described in detail. The results of both quanti-

tative and qualitative evaluations are presented in Section 5.

Finally, Section 6 concludes this paper.

2. Related Works

2.1. Deep Learning based SISR

In recent years, deep learning based SISR has shown su-

perior performance in terms of either PSNR or visual qual-

ity compared to non-deep-learning based methods [5, 37,

24]. The reader could refer to [29, 38] for more compre-

hensive review. Here we will only focus on deep learning

based methods.

A milestone work that introduced CNN into SR was pro-

posed by Dong et al. [5], where a three-layer fully convo-

lutional network was trained to minimize the mean squared

error (MSE) between the SR image and the original HR im-

age. It demonstrated the effectiveness of deep learning in

SR and achieved the state-of-the-art performance. Wang et

al. [37] combined the strengths of sparse coding and deep

network and made considerable improvement over previ-

ous models. To speed up the SR process, Dong et al. [6]

and Shi et al. [31] extracted features directly from the LR

image, that also achieved better performance compared to

processing the upscaled LR image through bicubic inter-

polation. In recent years, the state-of-the-art performance

(in PSNR) were all achieved by deep learning based mod-

els [22, 21, 25].

The above mentioned methods, in general, aim at mini-

mizing MSE between the SR and HR images, which might

not always be consistent with the human evaluation (i.e.,

perceptual quality) [24, 30]. Therefore, perceptual-related

constraints were incorporated to achieve better visual qual-

ity. Johnson et al. [20] demonstrated the effectiveness of

adding perception loss using VGG [32]. Ledig et al. [24]

introduced adversarial loss from the generative adversarial

nets (GANs) [11] to minimize the perceptually relevant dis-

tance between the SR and HR images. Sajjadi et al. [30]

further incorporated the texture matching loss based on the

idea of style transfer [9, 10] to enhance the texture in the
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SR image. The proposed SRNTT is more closely related to

[24, 30], where perceptual-related constraints (i.e., percep-

tual loss and adversarial loss) are incorporated to recover

more visually plausible SR images.

2.2. Reference­based Super­Resolution

In contrast to SISR where only a single LR image is used

as input, RefSR methods introduce additional images to as-

sist the SR process. In general, the reference images need

to possess similar texture and/or content structure with the

LR image. The references could be selected from adjacent

frames in a video [26, 2], images from web retrieval [39], an

external database (dictionary) [42], or images from different

view points [41]. There is a batch of SR methods that refer

to self patches/neighborhood [8, 3, 7, 16], which are widely

known as self-example based SR. They do not utilize exter-

nal references, thus more close to SISR problems. These

works mostly build the mapping from LR to HR patches

and fuse the HR patches at the pixel level or by a shallow

model, which is insufficient to model the complicated de-

pendency between the LR image and extracted details from

the HR patches. A more generic scenario of utilizing the

references was proposed by Yue et al. [39], which instantly

retrieves similar images from web and conducts global reg-

istration and local matching. However, they made a strong

assumption — the references have to be well aligned to the

LR image. In addition, the shallow model for patch blend-

ing made its performance highly dependent on how well the

references could be aligned. Zheng et al. [41] proposed a

deep model based RefSR method and adopted optical flow

to align input and reference. However, optical flow is lim-

ited in matching long distance correspondences, thus inca-

pable of handling significantly misaligned references. The

proposed SRNTT adopts the ideas of local texture (patch)

matching which could handle long distance dependency.

Like existing RefSR methods, we also “fuse” Ref texture to

the final output, but we conduct it in the multi-scale feature

space through a deep model, which enables the learning of

complicated transfer process from references with scaling,

rotation, or even non-rigid deformations.

3. Approach

The proposed SRNTT aims to estimate the SR image

ISR from its LR counterpart ILR and the given reference

images IRef , synthesizing plausible textures conditioned

on IRef while preserving the consistency with ILR in con-

tent. An overview of the proposed SRNTT is shown in

Fig. 2. The main idea is to search for matching texture

from IRef in the feature space and then transfer matched

textures to ISR in a multi-scale fashion, since the features

are more robust to the variance of color and illumination.

The multi-scale texture transfer simultaneously considers

semantic (higher-level) and textual (lower-level) similarity

Figure 2: The proposed SRNTT framework with feature

swapping and texture transfer.

between ILR and IRef , leading to transferring related tex-

tures while suppressing irrelevant textures.

In addition to minimizing the pixel and/or perceptual dis-

tance between the output ISR and the original HR image

IHR as most existing SR methods do, we further regularize

on the texture consistency between ISR and the matched

textures from IRef , enforcing the effectiveness of texture

transfer. The final output ISR is synthesized in an end-

to-end manner. Texture searching and transfer will be dis-

cussed in Sections 3.1 and 3.2, respectively. Section 3.3 will

detail the objective function of SRNTT.

3.1. Feature Swapping

We first conduct feature swapping which searches over

the entire IRef for locally similar textures that can be used

to replace (or swap) the texture features of ILR for en-

hanced SR recovery. The feature searching is conducted

in HR spatial coordinate to enable direct texture transfer to

the final output ISR. Following the self-example matching

strategy [7], we first apply bicubic up-sampling on ILR to

get an upscaled LR image ILR↑ that has the same spatial

size as IHR. We also sequentially apply bicubic down-

sampling and up-sampling with the same factor on IRef

to obtain a blurry Ref image IRef↓↑ that matches the fre-

quency band of ILR↑. Instead of estimating a global trans-

formation or optical flow, we match the local patches in

ILR↑ and IRef↓↑ so that there is no constraint on the global

structure of the Ref image, which is a key advantage over

CrossNet [41]. As LR and Ref patches may also differ in

color and illumination, we match their similarity in the neu-

ral feature space φ(I) to emphasize the structural and textu-
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ral information. We use inner product to measure the simi-

larity between neural features:

si,j =

〈

Pi(φ(I
LR↑)),

Pj(φ(I
Ref↓↑))

‖Pj(φ(IRef↓↑))‖

〉

, (1)

where Pi(·) denotes sampling the i-th patch from neural

feature map, and si,j is the similarity between the i-th LR

patch and the j-th Ref patch. The Ref patch feature is nor-

malized for selecting the best match over all j. The similar-

ity computation can be efficiently implemented as a set of

convolution (or correlation) operations over all LR patches

with each kernel corresponding to a Ref patch:

Sj = φ(ILR↑) ∗
Pj(φ(I

Ref↓↑))

‖Pj(φ(IRef↓↑))‖
, (2)

where Sj is the similarity map for the j-th Ref patch, and

∗ denotes the correlation operation. We use Sj(x, y) to de-

note the similarity between the LR patch centered at loca-

tion (x, y) and the j-th Ref patch. Both LR and Ref patches

are densely sampled from their images. Based on the sim-

ilarity score, we can construct a swapped feature map M

to represent texture-enhanced LR image. Each patch in M

centered at (x, y) is defined as

Pω(x,y)(M) = Pj∗(φ(I
Ref )), j∗=argmax

j
Sj(x, y), (3)

where ω(·, ·) maps patch center to patch index. Note that

while IRef↓↑ is used for matching (Eq. 2), the raw Ref IRef

is used in swapping (Eq. 3) so that the HR information from

the original references is preserved. Due to the dense sam-

pling of LR patches, we take the average of the swapped

features Pj∗(φ(I
Ref )) in the regions where they overlap.

The resulting swapped feature map M is used as the basis

for the next texture transfer stage.

3.2. Neural Texture Transfer

Our texture transfer model is designed by merging mul-

tiple swapped texture feature maps into a base deep genera-

tive network at different feature layers corresponding to var-

ious scales, as illustrated in Fig. 2 (blue box). For each scale

or neural layer l, a swapped feature map Ml is constructed

using the method introduced above, with a texture feature

encoder φl matching the current scale. The effectiveness of

transferring texture across multiple layers is verified by the

ablation study in Section 5.3.

We use residual blocks and skip connections [14, 15, 24]

to build the base generative network. The network output

ψl at layer l is defined recursively as

ψl = [Res (ψl−1‖Ml−1) + ψl−1] ↑2×, (4)

where Res(·) denotes the residual blocks, ‖ denotes

channel-wise concatenation, and ↑2× denotes 2× upscaling

Figure 3: The network structure for texture transfer.

with sub-pixel convolution [31]. The final SR result image

is generated after L layers to reach target HR resolution:

ISR = Res (ψL−1‖ML−1) + ψL−1 (5)

Fig. 3 illustrates the network structure of texture transfer

at one scale, where the residual blocks extract related tex-

ture from Ml (i.e., IRef ) conditioned on ψl (i.e., ILR) and

merge it with target content.

Different from traditional SISR methods that only reduce

the difference between ISR and the ground truth IHR, our

proposed SRNTT method further takes into account the tex-

ture difference between ISR and IRef . That is, we require

the texture of ISR to be similar as the swapped feature map

Ml in the feature space of φl. Specifically, we define a tex-

ture loss Ltex as

Ltex=
∑

l

λl
∥

∥Gr
(

φl(I
SR) · S∗

l

)

−Gr (Ml · S
∗
l )
∥

∥

F
,

(6)

where Gr(·) computes the Gram matrix, and λl is a nor-

malization factor corresponding to the feature size of layer

l. S∗
l is a weighting map for all LR patches calculated as the

best matching score in Eq. 3. Intuitively, textures dissimi-

lar to ILR will have lower weight, and thus receiving lower

penalty in texture transfer. In this way, the texture transfer

from IRef to ISR is adaptively enforced based on the Ref

image quality, leading to more robust texture hallucination

as demonstrated in Section 5.3.

3.3. Training Objective

In order to 1) preserve the spatial structure of the LR

image, 2) improve the visual quality of the SR image, and

3) take advantage of the rich texture from Ref images, our

objective function combines reconstruction loss Lrec, per-

ceptual loss Lper, adversarial loss Ladv , and texture loss

Ltex. The reconstruction loss is adopted in most SR meth-

ods. The perceptual and adversarial losses improve visual

quality. The texture loss already discussed in Eq. 6 is spe-

cific to RefSR.

Reconstruction loss aims to achieve higher PSNR, usu-

ally measured in terms of mean square error (MSE). In this

paper, we adopt the ℓ1-norm,

Lrec =
∥

∥IHR − ISR
∥

∥

1
, (7)
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The ℓ1-norm would further sharpen ISR as compared to

MSE. In addition, it is consistent to the objective of WGAN-

GP, which will be discussed later in the adversarial loss.

Perceptual loss has been investigated in recent SR

works [1, 20, 24, 30] for better visual quality. We adopt

the relu5 1 layer of VGG19 [32],

Lper =
1

V

C
∑

i=1

∥

∥φi(I
HR)− φi(I

SR)
∥

∥

F
, (8)

where V and C indicate the volume and channel number of

the feature maps, respectively, and φi denotes the ith chan-

nel of the feature maps extracted from the hidden layer of

VGG19 model. ‖ · ‖F denotes the Frobenius norm.

Adversarial loss could significantly enhance the sharp-

ness/visual quality of synthesized images [19, 40]. Here,

we adopt WGAN-GP [12], which improves upon WGAN

by penalizing the gradient, achieving more stable results.

Because the Wasserstein distance in WGAN is based on ℓ1-

norm, we use ℓ1-norm as the reconstruction loss (Eq. 7).

Intuitively, consistent objectives would facilitate the opti-

mization process. The adversarial loss is expressed as

Ladv =− Ex̃∼Pg
[D(x̃)], (9)

min
G

max
D∈D

Ex∼Pr
[D(x)]− Ex̃∼Pg

[D(x̃)], (10)

where D is the set of 1-Lipschitz functions, and Pr and Pg

are the model distribution and real distribution, respectively.

3.4. Implementation Details

We adopt a pre-trained VGG19 [32] model for feature

swapping, which is well-known for its power of texture

representation [9, 10]. Feature layers relu1 1, relu2 1,

and relu3 1 are used as texture encoder φl’s in multiple

scales. To speed up the matching process, we only match

on the relu3 1 layer and project the correspondence to lay-

ers relu2 1 and relu1 1, and use the same correspondence

across all layers. The weights for Lrec, Lper, Ladv , and

Ltex are 1, 1e-4, 1e-6, and 1e-4, respectively. Adam opti-

mizer is used with the learning rate of 1e-4. The network is

pre-trained for 2 epochs, where only Lrec is applied. Then,

all losses are involved to train another 20 epochs.

Our method can be easily extended to handle multiple

Ref images. In all our RefSR experiments, we augment

each IRef with its scaled and rotated versions to get more

accurate texture matching results.

4. Dataset

For RefSR problems, the similarity between the LR and

Ref images affects SR results significantly. In general,

references with various levels of similarity to LR images

should be provided for the purpose of both training and

Figure 4: Examples from the CUFED5 testing set. From left

to right are HR image and the corresponding Ref images of

similarity levels L1, L2, L3 and L4, respectively.

evaluating a RefSR algorithm. To the best of our knowl-

edge, there has not been such a dataset available for public

usage. We thus construct such a dataset with Ref images at

various similarity levels based on the CUFED [36] dataset

that contains 1,883 albums capturing diverse events in daily

life. The size of each album varies between 30 and 100 im-

ages. Within each album, we collect image pairs in differ-

ent similarity levels based on SIFT [28] feature matching,

which characterizes local texture pattern that is in line with

the objective of local texture matching.

We define four similarity levels from high to low, i.e., L1,

L2, L3, and L4, according to the number of best matches of

SIFT features. From each paired images, we randomly crop

160×160 patches from one image as the original HR im-

ages, and the corresponding references are cropped from the

other image. In this way, we collect 13,761 paired patches

as the training set. For the testing dataset, each HR image

is paired with all four levels of references in order to ex-

tensively evaluate the adaptiveness of a reference-based SR

method. We use the similar way to collect image pairs as

in building the training dataset. In total, the testing set con-

tains 126 groups of samples. Each group consists of one

HR image and four references at levels L1, L2, L3, and L4,

respectively. Two examples from the testing set are shown

in Fig. 4. We refer to the collected training and testing sets

as CUFED5, which would largely facilitate the research on

RefSR and provide a benchmark for fair comparison.

To evaluate the generalization capacity of the trained

model on CUFED5, we test it on Sun80 [33] and Ur-

ban100 [16]. The Sun80 dataset has 80 natural images, each

of which is accompanied by a series of web-searching refer-

ences, while the Urban100 dataset contains building images

without references.

5. Experimental Results

In this section, both quantitative and qualitative compar-

isons are conducted to demonstrate the advantages of the

proposed SRNTT in terms of visual quality and texture en-

richment. Following standard protocol, we obtain all LR

images by bicubic downscaling (4×) from the HR images.
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Table 1: PSNR/SSIM comparison of different SR methods

on three datasets. Methods are grouped by SISR (top) and

RefSR (bottom) with their respective best numbers in bold.

Algorithm CUFED5 Sun80 [33] Urban100 [17]

Bicubic 24.18 / 0.684 27.24 / 0.739 23.14 / 0.674

SRCNN [5] 25.33 / 0.745 28.26 / 0.781 24.41 / 0.738

SelfEx [16] 23.22 / 0.680 27.03 / 0.756 24.67 / 0.749

SCN [37] 25.45 / 0.743 27.93 / 0.786 24.52 / 0.741

DRCN [22] 25.26 / 0.734 27.84 / 0.785 25.14 / 0.760

LapSRN [23] 24.92 / 0.730 27.70 / 0.783 24.26 / 0.735

MDSR [25] 25.93 / 0.777 28.52 / 0.792 25.51 / 0.783

ENet [30] 24.24 / 0.695 26.24 / 0.702 23.63 / 0.711

SRGAN [24] 24.40 / 0.702 26.76 / 0.725 24.07 / 0.729

SRNTT-ℓ2 (SISR) 25.91 / 0.776 28.46 / 0.790 25.50 / 0.783

Landmark [39] 24.91 / 0.718 27.68 / 0.776 —

CrossNet [41] 25.48 / 0.764 28.52 / 0.793 25.11 / 0.764

SRNTT-ℓ2 26.24 / 0.784 28.54 / 0.793 25.50 / 0.783

SRNTT 25.61 / 0.764 27.59 / 0.756 25.09 / 0.774

5.1. Quantitative Evaluation

We compare the proposed SRNTT with the state-of-the-

art SISR and RefSR algorithms2 as shown in Table 1. The

SISR methods in comparison are SRCNN [5], SelfEx [16],

SCN [37], DRCN [22], LapSRN [23], MDSR [25],

ENet [30], and SRGAN [24], among which MDSR [25]

has achieved the state-of-the-art performance in PSNR in

recent two years, while ENet [30] and SRGAN [24] are

considered the state-of-the-art in visual quality. Two RefSR

methods are also included in the comparison, i.e., Land-

mark [39] and the recently proposed CrossNet [41], which

outperforms previous RefSR methods.

For fair comparison, all learning-based methods are

trained on the proposed CUFED5 dataset, and tested on

CUFED5, Sun80 [33], and Urban100 [16], respectively. For

fair comparison on PSNR/SSIM with those methods mainly

minimizing MSE, e.g., SCN and MDSR, we train a simpli-

fied version of SRNTT by only minimizing the MSE, i.e.,

SRNTT-ℓ2. Note that Table 1 shows the results of SRNTT-

ℓ2 in both SISR (upper block) and RefSR (lower block) set-

tings. Specifically, the SRNTT-ℓ2 under SISR setting uses

the LR input as reference. In CUFED5 and Sun80 datasets,

each input corresponds to multiple references, all of which

are used in Landmark, SRNTT-ℓ2 and SRNTT, while Cross-

Net uses the reference that yields the highest PSNR because

CrossNet accepts only one reference.

In Table 1, SRNTT-ℓ2 achieves the highest score on

CUFED5 and Sun80 which have references, while perform-

ing comparably to MDSR (the highest score) on Urban100

2 Implementation of SR algorithms in comparison:
SRCNN: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

SelfEx: https://sites.google.com/site/jbhuang0604/publications/struct_sr

SCN: http://www.ifp.illinois.edu/˜dingliu2/iccv15/

DRCN: http://cv.snu.ac.kr/research/DRCN/

LapSRN: http://vllab.ucmerced.edu/wlai24/LapSRN/

MDSR: https://github.com/LimBee/NTIRE2017

ENet: https://webdav.tue.mpg.de/pixel/enhancenet/

SRGAN: https://github.com/tensorlayer/srgan

CrossNet: https://github.com/htzheng/ECCV2018_CrossNet_RefSR

which does not have references. Even with SISR setting

on all datasets, SRNTT-ℓ2 (SISR) performs similarly to the

state-of-the-art. The proposed SRNTT, which uses adver-

sarial loss that would increase visual quality but reduce

PSNR, outperforms ENet and SRGAN in PSNR (even com-

parable to those methods that only minimize MSE), while

at the same time achieving higher visual quality (finer tex-

ture and less artifacts) as shown by the examples in Fig. 5.

A more comprehensive evaluation on visual quality will be

conducted in Section 5.2. As demonstrated by the exam-

ples, SRNTT outperforms CrossNet in recovering fine tex-

ture from references. The main reason is that the references

present large disparity/misalignment from the LR image,

which CrossNet is incapable of handling.

Without loss of generality, examples from Sun80 and Ur-

ban100 are displayed in Fig. 5. With the help of references,

SRNTT outperforms other SR methods on Sun80. On Ur-

ban100, however, there is no HR references. We use LR in-

put as the reference and achieve finer texture that could be

transferred from the LR image. In general, SRNTT would

outperform existing SR methods with the assistance of ref-

erences, and we could still achieve state-of-the-art SISR

performance when there is no HR information from refer-

ences. Section 5.3 will further demonstrate the adaptiveness

of SRNTT by analyzing the performance on references of

different similarity levels.

5.2. Qualitative Evaluation by User Study

To evaluate the visual quality of the SR images, we con-

duct user study, where SRNTT is compared to SCN [37],

DRCN [22], MDSR [25], ENet [30], SRGAN [24], Land-

mark [39], and CrossNet [41]. We present the users with

pair-wise comparisons, i.e., SRNTT vs. other, and ask the

users to select the one with higher resolution. For each

reference level, 2,400 votes are collected on the testing

results from the CUFED5 dataset. Fig. 6 shows the vot-

ing results, where the percentages favoring SRNTT denotes

the percentage of users that prefer SRNTT as compared to

the algorithms denoted along the horizontal axis. Overall,

SRNTT significantly outperforms the other algorithms with

over 90% users voting for SRNTT.

5.3. Ablation Studies

5.3.1 Effect of reference similarity

Similarity between LR and Ref images is a key factor

to the success of RefSR methods. This section investi-

gates the performance of CrossNet [41] and the proposed

SRNTT at different reference levels. Table 2 lists the re-

sults at six levels of references, where “HR (warp)” de-

notes the reference obtained by random translation (quarter

to half width/height), rotation (10∼30 degree), and scaling

(1.2×∼2.0× upscaling) from the original HR image. L1,
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Truth MDSR [25] ENet [30] SRNTT-ℓ2 (ours)

Reference CrossNet [41] SRGAN [24] SRNTT (ours)

Figure 5: Visual comparison among different SR methods on CUFED5 (top three examples), Sun80 [33] (the forth and fifth

examples), and Urban100 [16] (the bottom example whose reference image is the LR input).

L2, L3, and L4 are the four levels of references from the

proposed CUFED5 dataset. “LR” means using the LR in-

put image as the references (there is no external references).

As compared to CrossNet, the SRNTT-ℓ2 shows superior

results at each reference level. At the “HR” level, SRNTT-

ℓ2 achieves significant improvement, which demonstrates

the advantage of patch-wise matching over the alignment

using optical flow. Comparing SRNTT and SRNTT-ℓ2,

SRNTT shows even higher PSNR at “HR” level but lower

at other levels. This phenomenon emphasizes the effective-

ness of texture loss in recovering fine textures when given

highly similar references.

To further investigate the gap between the CrossNet

and SRNTT, we conduct an experiment by replacing fea-

ture swapping with optical flow (FlowNet2 [18]) in the

SRNTT framework. As shown in Table 2, “SRNTT-flow”

shows large degradation even at “HR” level as compared to

SRNTT, reflecting the limitation of optical flow in handling

large disparity/misalignment. As the reference similarity

level decreases, PSNR/SSIM of SRNTT reduces gracefully

as well. At “LR” level, SRNTT still achieves comparable

performance as the state-of-the-art SISR algorithms (Ta-

ble 1). We observe that the PSNR of SRNTT-flow is higher

than that of SRNTT at the “LR” level because the Ref is
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Table 2: PSNR/SSIM at different reference levels on CUFED5 dataset. PM indicates if patch-based matching is used; GAN

indicates if GAN and other perceptual losses are used.

PM GAN HR (warp) L1 L2 L3 L4 LR

CrossNet [41] 25.49 / .764 25.48 / .764 25.48 / .764 25.47 / .763 25.46 / .763 25.46 / .763

SRNTT-ℓ2 X 29.29 / .889 26.15 / .781 26.04 / .776 25.98 / .775 25.95 / .774 25.91 / .776

SRNTT-flow X 25.82 / .801 24.64 / .743 24.22 / .723 24.15 / .719 24.05 / .714 25.50 / .756

SRNTT X X 33.87 / .959 25.42 / .758 25.32 / .752 25.24 / .751 25.23 / .750 25.10 / .750

Figure 6: The user study result. SRNTT is compared to

each algorithm along the horizontal axis, and the blue bars

indicate the percentage of users favoring SRNTT results.

identical to the LR input. In this case, optical flow would

easily align Ref to LR, while patch matching may have

missed some matches.

5.3.2 Layers for feature swapping

As discussed in Section 3, feature swapping and transfer at

multiple scales would increase the performance of SRNTT.

Table 3 demonstrates the effectiveness of utilizing multiple

scales as compared to using single scale. The relu1/2/3 de-

notes three layers/scales, i.e., relu1 1, relu2 1, and relu3 1

from VGG19, used in SRNTT for feature swapping. We

observe that the performance in PSNR decreases as reduc-

ing the number of scales. The relu3 gets the lowest PSNR

because relu3 1 is a higher-level layer that carries less high-

frequency information, contributing less to texture transfer

as compared to relu1 1 and relu2 1. For each reference

level, the PSNR follows the similar trend as the number

of scales increases. However, it is interesting that relu3

shows decreasing and then increasing trend as the reference

similarity decreases. This demonstrates the stronger adap-

tiveness of relu3 in preserving spacial structure, i.e., low-

similarity textures from the references are suppressed, and

it tends to focus more on spacial reconstruction instead of

textural recovery. Therefore, the multi-scale texture transfer

using deep model gains extreme momentum on adaptively

learning the complicated transfer process between the con-

tent and external texture.

5.3.3 Effect of texture loss

The weighted texture loss used in the proposed SRNTT is

a key difference from most SR methods. Unlike those

Table 3: PSNR of using different VGG layers for feature

swapping on different reference levels.

Layer relu1 relu2 relu3 relu1/2 relu1/2/3

HR 28.39 28.66 24.83 30.39 33.87

L1 24.76 24.91 24.48 25.05 25.42

L2 24.68 24.86 24.22 25.00 25.32

L3 24.64 24.80 24.39 24.94 25.24

L4 24.63 24.79 24.45 24.92 25.23

style transfer works, where the content image is signifi-

cantly modified to carry the texture from the style image

(i.e., the reference), the proposed SRNTT avoids such “styl-

ization” by local matching, adaptive neural transfer, and

spatial/perceptual regularization. The local matching en-

sures spatially consistent texture, neural transfer gains adap-

tiveness on texture transfer, and spatial/perceptual regular-

ization forces the spacial consistency globally. The effect

of texture loss is shown in Fig. 7. The PSNR tested on

CUFED5 are 25.25 and 25.61 for SRNTT w/o and with the

texture loss, respectively. Without the texture loss, the finer

texture from the references cannot be effectively transferred

into the output.

Figure 7: SR results with texture loss disabled have de-

graded quality compared with the same examples in Fig. 5.

6. Conclusion

This paper exploited the more generic RefSR problem

where the references can be arbitrary images. We pro-

posed SRNTT, an end-to-end network structure that per-

forms multi-level adaptive texture transfer from the refer-

ences to recover more plausible texture in the SR image.

Both quantitative and qualitative experiments were con-

ducted to demonstrate the effectiveness and adaptiveness

of SRNTT. In addition, a new dataset CUFED5 was con-

structed to facilitate the evaluation of RefSR methods. It

also provides a benchmark for future RefSR research.
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