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Abstract

Previous scene text detection methods have progressed

substantially over the past years. However, limited by the

receptive field of CNNs and the simple representations like

rectangle bounding box or quadrangle adopted to describe

text, previous methods may fall short when dealing with

more challenging text instances, such as extremely long text

and arbitrarily shaped text. To address these two problems,

we present a novel text detector namely LOMO, which lo-

calizes the text progressively for multiple times (or in other

word, LOok More than Once). LOMO consists of a direct

regressor (DR), an iterative refinement module (IRM) and

a shape expression module (SEM). At first, text proposals

in the form of quadrangle are generated by DR branch.

Next, IRM progressively perceives the entire long text by

iterative refinement based on the extracted feature blocks

of preliminary proposals. Finally, a SEM is introduced to

reconstruct more precise representation of irregular text by

considering the geometry properties of text instance, includ-

ing text region, text center line and border offsets. The

state-of-the-art results on several public benchmarks in-

cluding ICDAR2017-RCTW, SCUT-CTW1500, Total-Text,

ICDAR2015 and ICDAR17-MLT confirm the striking ro-

bustness and effectiveness of LOMO.

1. Introduction

Scene text detection has drawn much attention in both

academic communities and industries due to its ubiquitous

real-world applications such as scene understanding, prod-

uct search, and autonomous driving. Localizing text regions

is the premise of any text reading system, and its quality will

greatly affect the performance of text recognition. Recently
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Figure 1. Two challenges of text detection: (a) The limitation of

receptive field size of CNN; (b) Comparison of different represen-

tations for text instances.

general object detection algorithms have achieved good per-

formance along with the renaissance of CNNs. However,

the specific properties of scene text, for instance, significant

variations in color, scale, orientation, aspect ratio and shape,

make it obviously different from general objects. Most of

existing text detection methods [14, 15, 24, 42, 8] achieve

good performance in a controlled environment where text

instances have regular shapes and aspect ratios, e.g., the

cases in ICDAR 2015 [12]. Nevertheless, due to the lim-

ited receptive field size of CNNs and the text representation

forms, these methods fail to detect more complex scene text,

especially the extremely long text and arbitrarily shaped

text in datasets such as ICDAR2017-RCTW [31], SCUT-

CTW1500 [39], Total-Text [2] and ICDAR2017-MLT [26].

When detecting extremely long text, previous text detec-

tion methods like EAST [42] and Deep Regression [8] fail

to provide a complete bounding box proposal as the blue

box shown in Fig. 1 (a), since that the size of whole text in-

stance is far beyond the receptive field size of text detectors.

CNNs fail to encode sufficient information to capture the

long distant dependency. In Fig. 1 (a), the regions in grids

mainly represent the receptive field of the central point with

corresponding color. The blue quadrangle in Fig. 1 (a) rep-

resents the predicted box of mainstream one-shot text detec-

tors [42, 8]. The mainstream methods force the detectors to

localize text of different length with only once perception,
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which is contrary to human visual system in which LOok

More than Once (LOMO) is usually required. As described

in [11], for a long text instance, humans can only see a part

at the first sight, and then LOok More than Once (LOMO)

until they see the full line of text.

In addition, most of existing methods adopted relatively

simple representations (e.g., axis-aligned rectangles, rotated

rectangles or quadrangles) for text instance, which may fall

short when handling curved or wavy text as shown in Fig.

1 (b). Simple representations would cover much non-text

area, which is unfavorable for subsequent text recognition

in a whole OCR engine. A more flexible representation as

shown in the right picture of Fig. 1 (b) for irregular text can

significantly improve the quality of text detection.

In order to settle the two problems above, we introduce

two modules namely iterative refinement module (IRM)

and shape expression module (SEM) based on an improved

one-shot text detector namely direct regressor (DR) which

adopts the direct regression manner [8]. With IRM and

SEM integrated, the proposed architecture of LOMO can

be trained in an end-to-end fashion. For long text instances,

the DR generates text proposals firstly, then IRM refines

the quadrangle proposals neatly close to ground truth by

regressing the coordinate offsets once or more times. As

shown in middle of Fig. 1 (a), the receptive fields of yel-

low and pink points cover both left and right corner points

of text instance respectively. Relying on position attention

mechanism, IRM can be aware of these locations and refine

the input proposal closer to the entire annotation, which is

shown in the right picture of Fig. 1 (a). The details of IRM

is thoroughly explained in Sec. 3.3. For irregular text, the

representation with four corner coordinates struggles with

giving precise estimations of the geometry properties and

may include large background area. Inspired by Mask R-

CNN [5] and TextSnake [21], SEM regresses the geometry

attributes of text instances, i.e., text region, text center line

and corresponding border offsets. Using these properties,

SEM can reconstruct a more precise polygon expression as

shown in the right picture of Fig. 1 (b). SEM described in

Sec. 3.4 can effectively fit text of arbitrary shapes, i.e., those

in horizontal, multi-oriented, curved and wavy forms.

The contributions of this work are summarized as fol-

lows: (1) We propose an iterative refinement module which

improves the performance of long scene text detection; (2)

An instance-level shape expression module is introduced

to solve the problem of detecting scene text of arbitrary

shapes; (3) LOMO with iterative refinement and shape ex-

pression modules can be trained in an end-to-end manner

and achieves state-of-the-art performance on several bench-

marks including text instances of different forms (oriented,

long, multi-lingual and curved).

2. Related Work

With the popularity of deep learning, most of the re-

cent scene text detectors are based on deep neural networks.

According to the basic element of text they handle in nat-

ural scene images, these detectors can be roughly classi-

fied into three categories: the component-based, detection-

based, and segmentation-based approaches.

Component-based methods [38, 34, 29, 30, 10, 33, 19]

first detect individual text parts or characters, and then

group them into words with a set of post-processing steps.

CTPN [34] adopted the framework of Faster R-CNN [29]

to generate dense and compact text components. In [30],

scene text is decomposed into two detectable elements

namely text segments and links, where a link can indicate

whether two adjacent segments belong to the same word

and should be connected together. WordSup [10] and We-

text [33] proposed two different weakly supervised learning

methods for the character detector, which greatly ease the

difficulty of training with insufficient character-level anno-

tations. Liu et al. [19] converted a text image into a stochas-

tic flow graph and then performed Markov Clustering on it

to predict instance-level bounding boxes. However, such

methods are not robust in scenarios with complex back-

ground due to the limitation of staged word/line generation.

Detection-based methods [14, 15, 24, 42, 8] usually

adopt some popular object detection frameworks and mod-

els under the supervision of the word or line level anno-

tations. TextBoxes [14] and RRD [15] adjusted the an-

chor ratios of SSD [17] to handle different aspect ratios of

text. RRPN [24] proposed rotation region proposal to cover

multi-oriented scene text. However, EAST [42] and Deep

Regression [8] directly detected the quadrangles of words

in a per-pixel manner without using anchors and proposals.

Due to their end-to-end design, these approaches can maxi-

mize word-level annotation and easily achieve high perfor-

mance on standard benchmarks. Because the huge variance

of text aspect ratios (especially for non-Latin text), as well

as the limited receptive filed of the CNN, these methods

cannot efficiently handle long text.

Segmentation-based methods [40, 35, 21, 13] mainly

draw inspiration from semantic segmentation methods and

regard all the pixels within text bounding boxes as positive

regions. The greatest benefit of these methods is the abil-

ity to extract arbitrary-shape text. Zhang et al. [40] first

used FCN [20] to extract text blocks and then hunted text

lines with the statistical information of MSERs [27]. To

better separate adjacent text instances, [35] classified each

pixel into three categories: non-text, text border and text.

TextSnake [21] and PSENet [13] further provided a novel

heat map, namely, text center line map to separate different

text instances. These methods are based on proposal-free

instance segmentation whose performances are strongly af-

fected by the robustness of segmentation results.
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Figure 2. The proposed architecture.

Our method integrates the advantages of detection-based

and segmentation-based methods. We propose LOMO

which mainly consists of an Iterative Refinement Module

(IRM) and a Shape Expression Module (SEM). IRM can be

inserted into any one-shot text detector to deal with the dif-

ficulty of long text detection. Inspired by Mask R-CNN [5],

we introduce SEM to handle the arbitrary-shape text. SEM

is a region-based method which is more efficient and robust

than the region-based methods mentioned above.

3. Approach

In this section, we describe the framework of LOMO

in detail. First, we briefly introduce the pipeline of our

approach to give a tangible concept about look more than

once. Next, we elaborate all the core modules of LOMO

including a direct regressor (DR), iterative refinement mod-

ule (IRM) and shape expression module (SEM). Finally, the

details of training and inference are presented.

3.1. Overview

The network architecture of our approach is illustrated in

Fig. 2. The architecture can be divided into four parts. First,

we extract the shared feature maps for three branches in-

cluding DR, IRM and SEM by feeding the input image to a

backbone network. Our backbone network is ResNet50 [6]

with FPN [16], where the feature maps of stage-2, stage-

3, stage-4 and stage-5 in ResNet50 are effectively merged.

Therefore, the size of shared feature maps is 1/4 of the in-

put image, and the channel number is 128. Then, we adopt

a direct regression network that is similar to EAST [42] and

Deep Regression [8] as our direct regressor (DR) branch

to predict word or text-line quadrangle in a per-pixel man-

ner. Usually, the DR branch falls quite short of detecting

extremely long text as shown by blue quadrangles in Fig. 2

(2), due to the limitation of receptive field. Therefore, the

next branch namely IRM is introduced to settle this prob-

lem. IRM can iteratively refine the input proposals from the

outputs of DR or itself to make them closer to the ground-

truth bounding box. The IRM described in Sec. 3.3 can

perform the refinement operation once or several times, ac-

cording to the needs of different scenarios. With the help of

IRM, the preliminary text proposals are refined to cover text

instances more completely, as green quadrangles shown in

Fig. 2 (3). Finally, in order to obtain tight representation,

especially for irregular text, in which the proposal form of

quadrangle easily cover much background region, the SEM

reconstruct the shape expression of text instance by learn-

ing its geometry attributes including text region, text center

line and border offsets (distance between center line and up-

per/lower border lines). The details of SEM are presented

at Sec. 3.4, and the red polygons shown in Fig. 2 (4) are the

intuitive visual results.

3.2. Direct Regressor

Inspired by [42], a fully convolutional sub-network is

adopted as the text direct regressor. Based on the shared

feature maps, a dense prediction channel of text/non-text

is calculated to indicate the pixel-wise confidence of being

text. Similar to [42], pixels in shrunk version of the origi-

nal text regions are considered positive. For each positive

sample, 8 channels predict its offset values to 4 corner of

the quadrangle containing this pixel. The loss function of

DR branch consists of two terms: text/non-text classifica-

tion term and location regression term.

We regard the text/non-text classification term as a bi-

nary segmentation task on the 1/4 down-sampled score map.

Instead of using dice-coefficient loss [25] directly, we pro-

pose a scale-invariant version for improving the scale gener-

alization of DR in detecting text instances under the recep-

tive field size. The scale-invariant dice-coefficient function

is defined as:

Lcls = 1−
2 ∗ sum(y · ŷ · w)

sum(y · w) + sum(ŷ · w)
, (1)
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Figure 3. The visualization of IRM.

where y is a 0/1 label map, ŷ is the predicted score map,

and sum is a cumulative function on 2D space. Besides, w
in Eq. 1 is a 2D weight map. The values of positive posi-

tions are calculated by a normalized constant l dividing the

shorter sides of the quadrangles they belong to, while the

values of negative positions are set to 1.0. We set l to 64 in

our experiments.

Besides, we adopt the smooth L1 loss [29] to optimize

the location regression term Lloc. Combining these two

terms together, the overall loss function of DR can be writ-

ten as:

Ldr = λLcls + Lloc, (2)

where a hyper-parameter λ balances two loss terms, which

is set to 0.01 in our experiments.

3.3. Iterative Refinement Module

The desgin of IRM inherits from the region-based ob-

ject detector [29] with only the boundbing box regression

task. However, we use RoI transform layer [32] to extract

the feature block of the input text quadrangle instead of

RoI pooling [29] layer or RoI align [5] layer. Compared

to the latter two ones, the former one can extract the fea-

ture block of quadrangle proposal while keeping the aspect

ratio unchanged. Besides, as analyzed in Sec. 1 that the

location close to the corner points can perceive more accu-

rate boundary information within the same receptive field.

Thus, a corner attention mechanism is introduced to regress

the coordinate offsets of each corner.

The detailed structure is shown in Fig. 3. For one text

quadrangle, we feed it with the shared feature maps to RoI

transform layer, and then a 1×8×64×128 feature block is

obtained. Afterwards, three 3 × 3 convolutional layers are

followed to further extract rich context, namely fr. Next,

we use a 1 × 1 convolutional layer and a sigmoid layer to

automatically learn 4 corner attention maps named ma. The

values at each corner attention map denote the contribution

weights to support the offset regression of the correspond-

ing corner. With fr and ma, 4 corner regression features

can be extracted by group dot production and sum reduc-

tion operation:

f i
c = reduce sum(fr ·m

i
a, axis = [1, 2])|i = 1, ..., 4 (3)

where f i
c denotes the i-th corner regression feature whose

shape is 1 × 1 × 1 × 128, mi
a is the i-th learned corner at-

tention map. Finally, 4 headers (each header consists of two

1× 1 convolutional layers) are applied to predict the offsets

of 4 corners between the input quadrangle and the ground-

truth text box based on the corner regression features fc.

In training phase, we keep K preliminary detected quad-

rangles from DR and the corner regression loss can be rep-

resented by:

Lirm =
1

K ∗ 8

K
∑

k=1

8
∑

j=1

smoothL1

(

cjk −
ˆ
cjk

)

, (4)

where cjk means the j-th coordinate offset between the k-

th pair of detected quadrangle and ground-truth quadrangle,

and
ˆ
cjk is the corresponding predicted value. As shown in

Fig. 3, the strong response on four corner attention maps

represent the high support for the respective corner regres-

sion. By the way, IRM can perform refinement once or more

times during testing, if it can bring benefits successively.

3.4. Shape Expression Module

The text expression of quadrangle fails to precisely de-

scribe the text instances of irregular shapes, especially

curved or wavy shapes as shown in Fig. 1 (b). Inspired

by Mask R-CNN [5], we propose a proposal-based shape

expression module (SEM) to solve this problem. SEM is

a fully convolutional network followed with a RoI trans-

form layer. Three types of text geometry properties includ-

ing text region, text center line and border offsets (offsets

between text center line and upper/lower text border lines)

are regressed in SEM to reconstruct the precise shape ex-

pression of text instance. Text region is a binary mask, in

which foreground pixels (i.e., those within the polygon an-

notation) are marked as 1 and background pixels 0. Text

center line is also a binary mask based on the side-shrunk

version of text polygon annotation. Border offsets are 4
channel maps, which have valid values within the area of

positive response on the corresponding location of the text

line map. As the center line sample (red point) shows in

Fig. 4 (a), we draw a normal line that is perpendicular to

its tangent, and this normal line is intersected with the up-

per and lower border line to get two border points (i.e., pink

and orange ones). For each red point, the 4 border offsets

are obtained by calculating the distance from itself to its two

related border points.

The structure of SEM is illustrated in Fig. 4, two con-

volutional stages (each stage consists of one up-sampling

layer and two 3 × 3 convolution layers) are followed with

the feature block extracted by RoI transform layer, then we

use one 1× 1 convolutional layer with 6 output channels to

regress all the text property maps. The objective function of
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Figure 4. The visualization of SEM.

SEM is defined as follows:

Lsem =
1

K

K
∑

(λ1Ltr + λ2Ltcl + λ3Lborder) , (5)

where K denotes the number of text quadrangles kept from

IRM, Ltr and Ltcl are dice-coefficient loss for text region

and text center line respectively, Lborder are calculated by

smooth L1 loss [29]. The weights λ1, λ2 and λ3 are set to

0.01, 0.01 and 1.0 in our experiments.

Text Polygon Generation: We propose a flexible text

polygon generation strategy to reconstruct text instance ex-

pression of arbitrary shapes, as shown in Fig. 4. The strat-

egy consists of three steps: text center line sampling, border

points generation and polygon scoring. Firstly, in the pro-

cess of center line sampling, we sample n points at equidis-

tance intervals from left to right on the predicted text center

line map. According to the label definition in the SCUT-

CTW1500 [39], we set n to 7 in the curved text detection

experiments 4.5 and to 2 when dealing with text detection in

such benchmarks [12, 26, 31] labeled with quadrangle an-

notations considering the dataset complexity. Afterwards,

we can determine the corresponding border points based on

the sampled center line points, considering the information

provided by 4 border offset maps in the same location. As

illustrated in Fig. 4 (Border Points Generation), 7 upper bor-

der points (pink) and 7 lower border points (orange) are ob-

tained. By linking all the border points clockwise, we can

obtain a complete text polygon representation. Finally, we

compute the mean value of the text region response within

the polygon as new confidence score.

3.5. Training and Inference

We train the proposed network in an end-to-end manner

using the following loss function:

L = γ1Ldr + γ2Lirm + γ3Lsem, (6)

where Ldr, Lirm and Lsem represent the loss of DR, IRM

and SEM, respectively. The weights γ1, γ2, and γ3 trade

off among three modules and are all set to 1.0 in our exper-

iments.

Training is divided into two stages: warming-up and

fine-tuning. At warming-up step, we train DR branch us-

ing synthetic dataset [4] only for 10 epochs. In this way,

DR can generate high-recall proposals to cover most of text

instance in real data. At fine-tuning step, we fine-tune all

three branches on real datasets including ICDAR2015 [12],

ICDAR2017-RCTW [31], SCUT-CTW1500 [39], Total-

Text [2] and ICDAR2017-MLT [26] about another 10
epochs. Both IRM and SEM branches use the same propos-

als which generated by DR branch. Non-Maximum Sup-

pression (NMS) is used to keep top K proposals. Since the

DR performs poorly at first, which will affect the conver-

gence of IRM and SEM branches, we replace 50% of the

top K proposals with the randomly disturbed GT text quad-

rangles in practice. Note that IRM performs refinement only

once during training.

In inference phase, DR firstly generates score map and

geometry maps of quadrangle, and NMS is followed to gen-

erate preliminary proposals. Next, both the proposals and

the shared feature maps are feed into IRM for multiple re-

finements. The refined quadrangles and shared feature maps

are feed into SEM to generate the precise text polygons and

confidence scores. Finally, a threshold s is used to remove

low-confidence polygons. We set s to 0.1 in our experi-

ments.

4. Experiments

To compare LOMO with existing state-of-the-art meth-

ods, we perform thorough experiments on five public scene

text detection datasets, i.e., ICDAR 2015, ICDAR2017-

MLT, ICDAR2017-RCTW, SCUT-CTW1500 and Total-

Text. The evaluation protocols are based on [12, 26, 31,

39, 2] respectively.

4.1. Datasets

The datasets used for the experiments in this paper are

briefly introduced below:
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ICDAR 2015. The ICDAR 2015 dataset [12] is col-

lected for the ICDAR 2015 Robust Reading Competition,

with 1000 natural images for training and 500 for testing.

The images are acquired using Google Glass and the text

accidentally appears in the scene. The ground truth is anno-

tated with word-level quadrangle.

ICDAR2017-MLT. The ICDAR2017-MLT [26] is a

large scale multi-lingual text dataset, which includes 7200
training images, 1800 validation images and 9000 test im-

ages. The dataset consists of scene text images which come

from 9 languages. The text regions in ICDAR2017-MLT

are also annotated by 4 vertices of the quadrangle.

ICDAR2017-RCTW. The ICDAR2017-RCTW [31]

comprises 8034 training images and 4229 test images with

scene texts printed in either Chinese or English. The im-

ages are captured from different sources including street

views, posters, screen-shot, etc. Multi-oriented words and

text lines are annotated using quadrangles.

SCUT-CTW1500. The SCUT-CTW1500 [39] is a chal-

lenging dataset for curved text detection. It consists of 1000
training images and 500 test images. Different from tradi-

tional dataset (e.g., ICDAR 2015, ICDAR2017-MLT), the

text instances in SCUT-CTW1500 are labelled by polygons

with 14 vertices.

Total-Text. The Total-Text [2] is another curved text

benchmarks, which consist of 1255 training images and 300
testing images. Different from SCUT-CTW1500, the anno-

tations are labelled in word-level.

4.2. Implementation Details

The training process is divided into two steps as de-

scribed in Sec. 3.5. In the warming-up step, we apply adam

optimizer to train our model with learning rate 10−4, and

the learning rate decay factor is 0.94. In the fine-tuning step,

the learning rate is re-initiated to 10−4. For all datasets, we

randomly crop the text regions and resize them to 512×512.

The cropped image regions will be rotated randomly in 4

directions including 0◦, 90◦, 180◦ and 270◦. All the ex-

periments are performed on a standard workstation with the

following configuration, CPU: Intel(R) Xeon(R) CPU E5-

2620 v2 @ 2.10GHz x16; GPU: Tesla K40m; RAM: 160

GB. During the training time, we set the batch size to 8 on

4 GPUs in parallel and the number K of detected proposals

generated by DR branch is set to 24 per gpu. In inference

phase, the batch size is set to 1 on 1 GPU. The full time cost

of predicting an image whorse longer size is resized to 512

with keeping original aspect ratio is 224 millisecond.

4.3. Ablation Study

We conduct several ablation experiments to analyze

LOMO. The results are shown in Tab. 1, Tab. 2, Fig. 6 and

Tab. 3. The details are discussed as follows.

Discussions about IRM: An evaluation of IRM on

Table 1. Ablations for refinement times (RT) of IRM.

Method RT Recall Precision Hmean FPS

DR 0 49.09 73.80 58.96 4.5

DR+IRM 1 51.25 79.42 62.30 3.8

DR+IRM 2 51.42 80.07 62.62 3.4

DR+IRM 3 51.48 80.29 62.73 3.0

Table 2. Ablations for Corner Attention Map (CAM). The study is

based on DR+IRM with RT set to 2.
Protocol IoU@0.5 IoU@0.7

Method R P H R P H

w.o. CAM 51.09 79.85 62.31 42.34 66.17 51.64

with CAM 51.42 80.07 62.62 43.64 67.95 53.14

ICDAR2017-RCTW [31] is shown in Tab. 1. We use

Resnet50-FPN as backbone, and fix the longer side of text

images to 1024 while keeping the aspect ratio. As can be

seen in Tab. 1, IRM achieves successive gains of 3.34%,

3.66% and 3.77% in Hmean with RT set to 1, 2 and 3
respectively, compared to DR branch without IRM. This

shows the great effectiveness of IRM for refining long text

detection. It is possible to obtain better performance with

even more refinement times in this way. To preserve fast in-

ference time, we set RT to 2 in the remaining experiments.

Corner Attention Map: LOMO utilizes corner atten-

tion map in IRM. For fair comparison, we generate a model

based on DR+IRM without corner attention map and eval-

uate its performance on ICDAR2017-RCTW [31]. The re-

sults are shown in Tab. 2. We can see that DR+IRM with-

out corner attention map leads to a loss of 0.3% and 1.5%
in Hmean in the protocol of IoU@0.5 and IoU@0.7 respec-

tively. This suggests that the corner features enhanced by

corner attention map help to detect long text instances.

Benefits from SEM: We evaluate the benefits of SEM

on SCUT-CTW1500 [39] in Tab. 3. Methods (a) and (b)

are based on DR branch without IRM. We resize the longer

side of text images to 512 and keep the aspect ratio un-

changed. As demonstrated in Tab. 3, SEM significantly

improves the Hmean by 7.17%. We also conduct experi-

ments of SEM based on DR with IRM in methods (c)and

(d). Tab. 3 shows that SEM improves the Hmean by a large

margin (6.34%). The long-standing challenge of curved text

detection is largely resolved by SEM.

Number of Sample Points in Center Line: LOMO per-

forms text polygon generation step to output final detection

results, which are decided by the number of sample points n
in center lines. We evaluate the performance of LOMO with

several different n on SCUT-CTW1500 [39]. As illustrated

in Fig. 6, the Hmean of LOMO increases significantly from

62% to 78% and then converges when n is chosen from 2 to

16. We set n to 7 in our remaining experiments.
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(g) (h) (i) (j)(f)

Figure 5. The visualization of detection results. (a) (b) are sampled from ICDAR2017-RCTW, (c) (d) are from SCUT-CTW1500, (e) (f) are

from Total-Text, (g) (h) are from ICDAR2015, and (i) (j) are from ICDAR2017-MLT. The yellow polygons are ground truth annotations.

The localization quadrangles in blue and in green represent the detection results of DR and IRM respectively. The contours in red are the

detection results of SEM.
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Figure 6. Ablations for the number of sample points in center line.

Table 3. Ablation study for SEM

Method IRM SEM Recall Precision Hmean FPS

(a) 63.10 80.07 70.58 11.9

(b) X 69.20 88.72 77.75 6.4

(c) X 64.24 82.13 72.09 6.3

(d) X X 69.62 89.79 78.43 4.4

4.4. Evaluation on Long Text Benchmark

We evaluate the performance of LOMO for detecting

long text cases on ICDAR2017-RCTW. During training, we

use all of the training images of this dataset in fine-tuning

step. For single-scale testing, if the longer side of an in-

put image is larger than 1024, we resize the longer side of

the image to 1024 and keep the aspect ratio. For multi-

scale testing, the longer side scales of resized images in-

clude 512, 768, 1024, 1536 and 2048. The quantitative

results are listed in Tab. 4. LOMO achieves 62.3% in

Hmean, surpassing the best single scale method RRD by

6.6%. Thanks to multi-scale testing, LOMO MS further im-

proves the Hmean to 68.4%, which is state-of-the-art on this

benchmark. Some detection results of LOMO are shown in

Fig. 5 (a) and (b). LOMO achieves promising results in de-

tecting extremely long text. In Fig. 5 (a) and (b), we com-

pare the detection results of DR and IRM. DR shows limited

ability to detect long text, while the localization quadrangles

Table 4. Quantitative results of different methods on ICDAR2017-

RCTW. MS denotes multi-scale testing.

Method Recall Precision Hmean

Official baseline [31] 40.4 76.0 52.8

EAST [42] 47.8 59.7 53.1

RRD [15] 45.3 72.4 55.7

RRD MS [15] 59.1 77.5 67.0

Border MS [36] 58.8 78.2 67.1

LOMO 50.8 80.4 62.3

LOMO MS 60.2 79.1 68.4

of IRM can perceive more complete text regions.

4.5. Evaluation on Curved Text Benchmark

We evaluate the performance of LOMO on SCUT-

CTW1500 and Total-Text, which contains many arbitrar-

ily shaped text instances, to validate the ability of detect-

ing arbitrary-shape text. During training, we stop the fine-

tuning step at about 10 epochs, using training images only.

For testing, the number of sample points in center line is set

to 7, so we can generate text polygons with 14 vertices. All

the quantitative results are shown in Tab. 5. With the help

of SEM, LOMO achieves the state-of-the-art results both

on SCUT-CTW1500 and Total-Text, and outperform the

existing methods (e.g., CTD+TLOC [39], TextSnake [21])

by a considerable margin. In addition, multi-scale testing

can further improves Hmean by 2.4% and 1.7% on SCUT-

CTW1500 and Total-Text respectively. The visualization

of curved text detection are shown in Fig. 5 (c) (d) (e)

(f). LOMO shows great robustness in detecting arbitrarily

curved text instances. It should be noted that the polygons

generated by SEM can cover the curved text instances more

precisely, compared with the quadrangles of DR and IRM.

4.6. Evaluation on Oriented Text Benchmark

We compare LOMO with the state-of-the-art results on

ICDAR 2015 dataset, a standard oriented text dataset. We
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Table 5. Quantitative results of different methods on SCUT-

CTW1500 and Total-Text. “R”, “P” and “H” represent recall, pre-

cision and Hmean respectively. Note that EAST is not fine-tuned

in these two datasets and the results of it are just for reference.

Datasets SCUT-CTW1500 Total-Text

Method R P H R P H

DeconvNet [2] - - - 40.0 33.0 36.0

CTPN [34] 53.8 60.4 56.9 - - -

EAST [42] 49.1 78.7 60.4 36.2 50.0 42.0

Mask TextSpotter [22] - - - 55.0 69.0 61.3

CTD [39] 65.2 74.3 69.5 - - -

CTD+TLOC [39] 69.8 74.3 73.4 - - -

SLPR [43] 70.1 80.1 74.8 - - -

TextSnake [21] 85.3 67.9 75.6 74.5 82.7 78.4

LOMO 69.6 89.2 78.4 75.7 88.6 81.6

LOMO MS 76.5 85.7 80.8 79.3 87.6 83.3

Table 6. Quantitative results of different methods on ICDAR 2015.

Method Recall Precision Hmean

SegLink [30] 76.5 74.7 75.6

MCN [19] 80.0 72.0 76.0

SSTD [7] 73.9 80.2 76.9

WordSup [10] 77.0 79.3 78.2

EAST [42] 78.3 83.3 80.7

He et al. [8] 80.0 82.0 81.0

TextSnake [21] 80.4 84.9 82.6

PixelLink [3] 82.0 85.5 83.7

RRD [15] 80.0 88.0 83.8

Lyu et al. [23] 79.7 89.5 84.3

IncepText [37] 84.3 89.4 86.8

Mask TextSpotter [22] 81.0 91.6 86.0

End-to-End TextSpotter [1] 86.0 87.0 87.0

TextNet [32] 85.4 89.4 87.4

FOTS MS [18] 87.9 91.9 89.8

LOMO 83.5 91.3 87.2

LOMO MS 87.6 87.8 87.7

set the scale of the longer side to 1536 for single-scale test-

ing. And the longer sides in multi-scale testing are set to

1024, 1536 and 2048. All the results are listed in the Tab. 6,

LOMO outperforms the previous text detection methods

which are trained without the help of recognition task, while

is on par with end-to-end methods [22, 1, 32, 18]. For

single-scale testing, LOMO achieves 87.2% Hmean, sur-

passing all competitors which only use detection training

data. Moreover, multi-scale testing increases about 0.5%
Hmean. Some detection results are shown in Fig. 5 (g)

(h). As can be seen, only when detecting long text can

IRM achieve significant improvement. It is worthy noting

that the detection performance would be further improved if

LOMO was equipped with recognition branch in the future.

4.7. Evaluation on Multi­Lingual Text Benchmark

In order to verify the generalization ability of LOMO on

multilingual scene text detection, we evaluate LOMO on

Table 7. Quantitative results of different methods on ICDAR2017-

MLT.
Method Recall Precision Hmean

E2E-MLT [28] 53.8 64.6 58.7

He et al. [9] 57.9 76.7 66.0

Lyu et al. [23] 56.6 83.8 66.8

FOTS [18] 57.5 81.0 67.3

Border [36] 62.1 77.7 69.0

AF-RPN [41] 66.0 75.0 70.0

FOTS MS [18] 62.3 81.9 70.8

Lyu et al. MS [23] 70.6 74.3 72.4

LOMO 60.6 78.8 68.5

LOMO MS 67.2 80.2 73.1

ICDAR2017-MLT. The detector is finetuned for 10 epochs

based on the SynthText pre-trained model. In inference

phase, we set the longer side to 1536 for single-scale test-

ing, and the longer side scales for multi-scale testing in-

clude 512, 768, 1536 and 2048. As shown in Table 7,

LOMO has the performance leading in single-scale testing

compared with most of existing methods [9, 23, 36, 41], ex-

pect for Border [36] and AFN-RPN [41] that do not indicate

which testing scales are used. Moreover, LOMO achieves

state-of-the-art performance (73.1%) in the multi-scale test-

ing mode. In particular, the proposed method outperforms

existing end-to-end approaches (i.e., E2E-MLT [28] and

FOTS [18]) at least 2.3%. The visualization of multilingual

text detection are shown in Fig. 5 (i) (j), the localization

quadrangles of IRM could significantly improve detection

compared with DR.

5. Conclusion and Future Work

In this paper, we propose a novel text detection method

(LOMO) to solve the problems of detecting extremely long

text and curved text. LOMO consists of three modules in-

cluding DR, IRM and SEM. DR localizes the preliminary

proposals of text. IRM refines the proposals iteratively to

solve the issue of detecting long text. SEM proposes a flex-

ible shape expression method for describing the geometry

property of scene text with arbitrary shapes. The overall

architecture of LOMO can be trained in an end-to-end fash-

ion. The robustness and effectiveness of our approach have

been proven on several public benchmarks including long,

curved or wavy, oriented and multilingual text cases. In the

future, we are interested in developing an end-to-end text

reading system for text of arbitrary shapes.
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