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Abstract

As the visual reflections of our daily lives, images are fre-

quently shared on the social network, which generates the

abundant ‘metadata’ that records user interactions with im-

ages. Due to the diverse contents and complex styles, some

images can be challenging to recognise when neglecting the

context. Images with the similar metadata, such as ‘rele-

vant topics and textual descriptions’, ‘common friends of

users’ and ‘nearby locations’, form a neighbourhood for

each image, which can be used to assist the annotation. In

this paper, we propose a Metadata Neighbourhood Graph

Co-Attention Network (MangoNet) to model the correla-

tions between each target image and its neighbours. To ac-

curately capture the visual clues from the neighbourhood,

a co-attention mechanism is introduced to embed the target

image and its neighbours as graph nodes, while the graph

edges capture the node pair correlations. By reasoning on

the neighbourhood graph, we obtain the graph represen-

tation to help annotate the target image. Experimental re-

sults on three benchmark datasets indicate that our pro-

posed model achieves the best performance compared to the

state-of-the-art methods.

1. Introduction

With the rise of the social network, people like to capture

vivid moments and share them on the internet. These im-

ages are generated and spread at an explosive pace, which

yields the urgent need for an efficient annotation method

to assist users to understand and retrieve images. Signifi-

cant progresses have been made on the image annotation by

uncovering relationships between image pixel contents and

labels, such as the classification [3, 4], clustering [8, 32],

and graph inference [16, 27]. Most recently, deep neural
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Figure 1. For the target images with the red boxes, they are hard

to recognise on their own. However, in the context of the neigh-

bours with the similar metadata, such as ‘vehicle, vintage, Beetle’

and ‘church, instrument, art’, it is more clear that the target images

are a car and a pipe organ. Based on this motivation, we propose a

neighbourhood graph as ‘neighbourhood watch’ to assist the im-

age annotation.

networks [9, 24] have demonstrated advanced abilities of

the image feature learning, which inspire various network-

based models [29, 31]. These models treat the individual

image as an independent object and focus on solving the an-

notation without the context information. However, due to

the diverse contents and complex styles, some images are

still difficult to annotate on their own.

Social networks like the Flickr, Instagram and Facebook

record the user interactions with images as the vast amount

of the metadata, which is presented in various forms. The

most common metadata includes the collections, i.e. im-

age groups created by users; textual descriptions, i.e. tags

and captions; as well as user profiles, i.e. user-names, loca-

tions and friends. As a means to communicate with other

users, these metadata can be as informative as visual pix-

els [12, 22] to understand images. See Fig. 1 as an exam-

ple, images are hard to be recognised and annotated without

seeing its metadata related images. There are several lines

of works [1, 25] conducted by utilising the metadata to as-

sist the annotation, where different types of metadata are
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Figure 2. The framework of the proposed model. The neighbourhood z of the target image i is decided by measuring their metadata

similarities. Then we establish the neighbourhood graph using image representations as nodes and correlations as edges. To accurately

harvest visual clues from its neighbours, we introduce a co-attention mechanism to guide the Graph Convolutional Network (GCN) and

obtain the graph representation, which is then concatenated with the target global feature to generate the label confidence.

studied to be embedded into the annotation framework. In

[12], authors propose to non-parametrically use the meta-

data to generate image neighbours and train an annota-

tion model based on the visual features from the target im-

age and its neighbours. However, the features from image

neighbours are independently embedded from each other,

and only global features are considered.

In this paper, we address the image annotation problem

by routinely checking its neighbours in a graph, which is

constructed by the equipped meta information of the im-

age. The whole framework is shown in Fig. 2. Since the

metadata explicitly or implicitly indicates the connections

between images, for example, semantically similar textual

descriptions like tags and captions usually associated with

images that have similar visual appearances [8], friends who

share same interests have the high probabilities of following

images with similar topics [26], and landmark photos are al-

ways taken at the fixed locations [17]. We locate the image

neighbours by measuring the similarities among their meta-

data. Then we establish a graph network to model the cor-

relations between the target image and its neighbours. The

whole neighbourhood is represented as a graph, where each

node is the corresponding image feature. The graph edges

indicate the correlations between node pairs. Considering

the diverse visual appearances of neighbours, different at-

tention should be paid according to its content. Therefore,

we introduce a co-attention mechanism to obtain the node

representation. That is, we obtain the co-attention maps by

successively switching the attention between the target im-

age and its neighbours. Given the graph structure, we can

perform reasoning on the graph and infer the representa-

tion by applying the graph convolutional operations. The

graph representation is finally concatenated with the target

global feature to predict the label confidence, which is in-

tuitive since we want to capture the connections among im-

age neighbours to assist the annotation of the target image.

We name our proposed model as Metadata neighbourhood

graph co-attention network (MangoNet).

In summary, the main contributions of our method are as

follows:

1) We propose to annotate images by exploring their

neighbourhoods, which are allocated by the metadata sim-

ilarity. A neighbourhood graph network is established to

model the correlations between each image and its neigh-

bours. The learned graph representation is used to assist the

annotation of the target image.

2) To accurately capture the relevant regions in each im-

age neighbour that are beneficial for understanding the tar-

get image, we introduce a graph co-attention mechanism to

obtain the node representations in the graph.

3) We evaluate our proposed method on three benchmark

datasets. Our model achieves state-of-the-art performances

on all of them.

2. Related Works

Image annotation as a traditional vision task has been

extensively studied for decades. Given a training set of im-

ages with manually annotated labels, early works are con-

ducted by leveraging the pixel contents using hand-crafted

features [20]. The classification-based methods [3, 4] repre-

sent each label as an independent class and train classifiers

separately, while the voting-based methods [8, 32] aim at

transferring labels from the training set, which is sensitive

to the metric used to allocate the neighbours. In addition

to modelling the semantic correlations between label pairs,

the probabilistic graphical models are employed in [16, 27].

With the development of deep learning methods in recent

years, several neural network-based models [6, 29, 31] are
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proposed to extract the advanced image features and cap-

turing high-order label dependencies. Despite the training

samples are collected from the social network, these works

focus on tackling the image annotation without the context

information.

Image Annotation with Metadata The most commonly

used metadata for the image annotation is a set of user pro-

vided tags, where a multi-modal representation is learned

for the image feature and associated tags. In [1, 7], the

CCA and KCCA (Kernel Canonical Correlation Analysis)

approaches are adopted to build a latent semantic space,

while generative models are obtained in [25] to uncover the

multi-modal association. In addition to user tags, there are

investigations conducted on other types of metadata. GPS,

EXIF and time-stamps are used in [13, 17] to annotate the

landmark images, while in [26], friendships are contributed

to the label recommendation. In [22], multi-type of textual

features and network linkage information are used to con-

struct a CRF-based inference model for the image annota-

tion. Johnson et al. propose to allocate image neighbours by

non-parametrically exploring the metadata in [12], and in-

corporate features from the target image and its neighbours

to annotate. We adopt a similar setting in our model, how-

ever, different from [12], a graph-based solution is proposed

to model the image neighbourhood.

Attention Mechanism Instead of using the holistic fea-

ture to represent an image, given the multi-label property

of the image, the attention mechanisms are applied for the

image annotation. In [10, 33], the attention mechanism is

adopted to capture the correlations between the image con-

tent and associated labels. Different from these works, we

not only apply the attention for the target image regions but

also use a co-attention mechanism to guide the attentions

between the target image and its neighbours.

Graph Neural Network The graph is an optimal repre-

sentation of the structured information. In a graph, nodes

are connected by edges, which indicate the pair-wise rela-

tionships between corresponding nodes. In the Graph Neu-

ral Network (GNN) model [23], the neighbourhood infor-

mation is propagated through the graph and the hidden

state of each node is updated by the multi-layer percep-

trons (MLP), while in [18], a recurrent gating mechanism is

adopted to update the graph hidden states and extended to

output sequences, noted as the Gated Graph Sequence net-

work (GGNN). In [14], a scalable approach Graph Convo-

lutional Network (GCN) is proposed to learn on the graph-

structured data via convolutional operations. In [30], the

video classification is studied by modelling the frames as

the spatial-time graph and applying the GCN to infer the

video category, the region information and time sequences

are used to establish the graph edges. In [28], the self-

attention mechanism is introduced into the GCN to compute

the node representation. Each node is embedded by attend-

ing over its neighbours. Different from previous works, we

ground the image neighbourhood by leveraging their meta-

data and apply the GCN to infer on the proposed neighbour-

hood graph for the image annotation problem, and a novel

co-attention mechanism is introduced to model the correla-

tions between the target image and its neighbours.

3. The MangoNet

The key characteristic of our proposed Metadata Neigh-

bourhood Graph Co-Attention Network (MangoNet) is to

represent the image neighbourhood as a graph to assist the

image annotation. The neighbourhood graph is established

via the metadata. A co-attention mechanism is introduced

to guide the visual attention between the target image and

its neighbours to obtain node representations. The whole

framework is shown in Fig. 2.

In the following sections, we first describe how to locate

image neighbours by measuring their metadata similarities;

then we introduce the architecture of the neighbourhood

graph and the node representation updating process by uni-

fying the instance-level and co-attention mechanisms. The

training and implementation details are given at last.

3.1. Neighbourhood Graph Co­Attention

3.1.1 Graph Construction

The motivation behind the neighbourhood graph is that a

graph structure, where its edges indicate the correlations be-

tween image nodes, can competently represent the image

neighbourhood. By reasoning on the graph, we aggregate

node features as the graph representation to assist the target

image annotation. Metadata, as a means of bridges between

images, it connects images with each other. We first locate

image neighbours by measuring their metadata similarities.

Formally, let I be a set of images, V be the set of manual

labels |V | = C, and D = {(i, v)|i ∈ I, v ⊆ V } be the

image dataset, where each image is associated with a subset

of labels. Let T be the vocabulary of the metadata carried by

I . Given the vocabulary T , each image i is associated with

a subset of ti ⊆ T metadata. We use the Jaccard metric to

measure the similarity between the metadata pair, that is,

given two images i, j ∈ I with ti, tj ⊆ T , ϕ(i, j) = |ti ∩
tj |/|ti ∪ tj |, where ϕ(i, j) ∈ [0, 1]. Based on the metadata

similarity, the nearest neighbour approach can be applied to

locate the neighbours.

Since most of the metadata are generated based on the

user behaviours [12], metadata vocabularies can be very

large, and the metadata associated with each image can be

imprecise at the certain level [15]. To accurately and ef-

ficiently locate the neighbours, we conduct the hierarchy
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Figure 3. The instance-level attention module we used to capture

the regional semantic correspondences between image content and

associated labels.

search strategy or the semantic search strategy in the light

of circumstances. Specifically, for each image in the large-

scale dataset with large metadata vocabulary size like the

NUS-WIDE [5], we perform the neighbour search based on

the user tags within a sub-image set, which is consist of

the images from the collections with similar topics. For the

dataset with relatively clean semantic metadata such as the

MS-COCO [19] with human-labelled captions, we extract

metadata representations of each image as the weighted sum

of the semantic representations of visual attributes. We set

the search parameters as m neighbours for each image and

obtain the candidate neighbourhood z = {z1, ..., zm} for

each image i. The image i and its neighbours z are fully

connected with each other to form a neighbourhood graph.

3.1.2 Graph Co-Attention Mechanism

Node Attention Since we intend to obtain visual clues

from image neighbours to assist the annotation of the tar-

get image, for each neighbour, different attention should be

paid according to its content. We adopt a co-attention mech-

anism to generate attention maps for the target image and

its neighbours, i.e. ‘mind the neighbours’. The co-attention

mechanism can be viewed as to learn image visual correla-

tions to contribute to the node representation.

Considering we only have the image-level supervision

information i.e. annotated ground-truth, we propose to gen-

erate the instance-level attention maps regarding individual

image first, then combine them as the co-attention maps we

desired, which is consistent with our motivation that visual

clues from the neighbour are harvested from common se-

mantic classes with the target image, and the target image is

revisited with the clues from its neighbourhood. The frame-

work of the instance-level attention module and the pro-

posed co-attention module are shown in Fig. 3 and Fig. 4

respectively.

More specifically, multiple labels associated with an im-

age are always semantically related to different image re-

gions. By referring to [33], we adopt an instance-level at-

tention module to capture this multi-label property for each

image. That is, learning attention weights for each label

(instance) respectively from the image ground-truth, noted

as the InsAtten module. We employ the ResNet-101 [9]

Target image 𝒊

Neighbour 𝒛𝒋 InsAtten

Module
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Figure 4. The co-attention attention module. The co-attention

maps are the semantic overlap of instance-level attention maps be-

tween the target image i and its neighbourhood z.

as the backbone CNN model to extract the outputs of the

convolutional layer as visual features φ ∈ N × d, where

N = H ×W . Given the image i with feature φ(i) and as-

sociated label subset v, the attention weights for each label

are generated as follows:

x = q(φ(i), η), x ∈ RH×W×C (1)

β = softmax(x), (2)

where the attention is estimated by q(·) with the parameters

η as three convolutional layers with 512 kernels of 1 × 1,

512 kernels of 3 × 3 and C kernels of 1 × 1. And β is the

normalised attention weights with β ∈ RH×W×C , of which

the third dimension stands for the size of the whole label set

V . Each attention map βk ∈ RH×W×1, where k ∈ [1, C],
is used to weighted sum the image feature for kth label as:

ĩk =
∑

l

βk ⊙ φ(i), (3)

where l ∈ [1, N ] indexes the spatial position. The weighted

image feature ĩk represents the regions related to the kth
label. Then the weighted feature can be fed to the FC layer

to generate the confidence for each label. To efficiently learn

the attention weights, by referring to [33], we reformulate

the FC layer as applying the label-specific linear classifier

at every spatial location of the image feature φ(i) and then

aggregating the label confidences based on β. That is, we

forward φ(i) to a convolutional layer withC kernels of 1×1
to generate confidence maps E ∈ RH×W×C , then E and

β are element-wise multiplied and sum-pooled to obtain the

confidence vector y ∈ RC , which can be trained with the

image ground-truth v.

Since the co-attention mechnisam is introduced to cap-

ture the correlations between the target image and its neigh-

bourhood, we formulate the operation of the co-attention

mechanism as the weighted sum of the instance-level at-

tention maps. That is, the target image i and its neighbours

z(|z| = m) firstly pass through the backbone and InsAtten

module to obtain the attention maps βi and βz , and confi-

dence vectors yi and yz , where y ∈ RC , β ∈ RH×W×C .
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Then the co-attention for the neighbour zj can be computed

as:

wj = yi ⊙ yzj (4)

αj = softmax(
C∑

k=1

wk
j ⊙ βk

zj
) (5)

ẑj =
∑

l

αj ⊙ φ(zj) (6)

where αj ∈ RH×W×1, and ⊙ stands for the element-

wise multiply with broadcasting, wj represents the seman-

tic overlaps between the target and its neighbour zj . The

weighted sum ẑj is the weighted feature for jth neighbour.

We omit φ(·) in the weighted feature for the expression sim-

plicity. Similarly, for the target image i, the co-attention is

computed as:

w = yi ⊙ {yz1 ...⊙ yzj ...⊙ yzm} (7)

α = softmax(
C∑

k=1

wk ⊙ βk
i ) (8)

î =
∑

l

α⊙ φ(i) (9)

where î is the weighted target image feature. The weighted

image (and its neighbours) features will be used as node

representations in the proposed neighbourhood graph.

Graph Reasoning with Attented Features After we ob-

tain the attended representation for image i and itsm neigh-

bours as ẑ = {ẑ0, ẑ1, ..., ẑm} 1. The correlation between

every two images can be represented as:

s(ẑk, ẑl) = ψ(ẑk)
Tψ(ẑl), ∀k, l ∈ [0,m] (10)

where the ψ(·) is modelled as FC layer with the hidden state

size 512. We apply the softmax function on each row of the

correlation matrix, which normalises the sum of all the edge

values connected to each node to be one. The normalised

matrix S is taken as the adjacency matrix for the proposed

graph.

We adopt the graph convolutional network (GCN) [14]

to reason on the graph. Based on the definition of neigh-

bourhood relations, the GCN can compute the response of

each node and pass messages inside the graph. The outputs

of the GCN are updated node features, which will be ag-

gregated for further use. More specifically, one layer of the

graph convolution is represented as:

Z ′ = SẐW (11)

1The weighted feature î of the target image i is noted as ẑ0 for the

unified graph representation.

where S is the introduced adjacency matrix with (m+1)×
(m+ 1) dimensions, Ẑ is the features of image nodes with

(m+ 1)× d dimensions, W is the learnable weight matrix

with d×d dimensions. The output Z ′ of one graph convolu-

tional layer is (m+1)×d dimensions, which is followed by

a ReLU activation. For the fast convergence, we use a resid-

ual unit to update the node features i.e. Z ′ = Z ′ + Ẑ. The

updated node features are fed to an average pooling layer to

obtain a 1×d representation. Moreover, we also perform an

average pooling on the target image feature to obtain a 1×d
global representation. Two representations are concatenated

together and sent to the Fully-Connected (FC) layer to pre-

dict the final confidence vector yneb ∈ RC , where C is the

number of classes. See Fig. 2 for the illustration.

3.2. Implementation Details

We employ the pre-trained ResNet-101 [9] as the initial

backbone CNN model φ(·) to extract the convolutional fea-

tures. We adopt the stage-wise training strategy: first we

finetune the pretrained backbone model on each dataset,

then we train the InsAtten module by referring to [33], and

finally we train the CoAtten-GCN module. In practice, the

size of the instance-level attention maps are initially trained

with the size of 14× 14 and then max-pooled as 7× 7. The

cross-entropy loss function and the stochastic gradient de-

scent [2] are used for the optimisation. We train the models

with the batch size 64 and the learning rate of 0.001 from

the start and vary the sizes of the image neighbourhood as

m = 3/7/15. By referring to [12], the nearest neighbour

search for the training and test metadata are performed sep-

arately.

4. Experiments

We present the experimental results in this section and

analyse the effectiveness of the proposed model. Our model

is evaluated on three benchmark datasets: NUS-WIDE [5],

Mirflickr [11] and MS-COCO [19]. We compare our model

with several baselines and state-of-the-art methods. An ab-

lation study is then performed to evaluate the contribution

of each component of our model. We finally visualise some

of the attention map examples to show their effectiveness.

4.1. Datasets

Both the NUS-WIDE [5] and Mirflickr [11] contain a

large number of images collected from the Flickr website,

a commonly used image-sharing social network. Each im-

age in the dataset is manually annotated for the presence

of the pre-defined label set. By referring to [12, 22], we

query the metadata of images via the Flickr API. To en-

sure the dataset scale, we tokenise and lemmatise the most

common metadata i.e. user tags and image collection de-

scriptions for our experiments. We remove the duplicates in

the processed metadata sets, and the image records without
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Method mAPC mAPO CP CR CF1
OP OR OF1

Meta+Logistic [12] 0.527 0.667 0.679 0.393 0.475 0.768 0.450 0.567

KNN [21] 0.462 0.669 - - - - - -

Multi-CNN [9] 0.580 0.789 0.693 0.408 0.490 0.810 0.565 0.666

CNN Voting [12] 0.599 0.799 0.674 0.423 0.497 0.795 0.597 0.682

TagProp [8] 0.541 0.742 0.674 0.408 0.496 0.784 0.572 0.661

Link-CRF [22] 0.542 0.770 0.698 0.347 0.437 0.805 0.548 0.652

SRN [33] 0.600 0.806 0.704 0.415 0.496 0.811 0.587 0.682

NCNN [12] 0.598 0.803 0.725 0.390 0.478 0.800 0.598 0.685

MangoNet-m3 0.617 0.806 0.715 0.419 0.507 0.802 0.599 0.686

MangoNet-m7 0.626 0.808 0.720 0.415 0.505 0.804 0.599 0.687

MangoNet-m15 0.628 0.808 0.739 0.410 0.501 0.806 0.599 0.687

Table 1. Image annotation results compared with other state-of-

the-art methods and our MangoNet on the NUS-WIDE, where m

indicates the neighbourhood size used in our model.

valid URLs or ground-truth labels. It is worth noting that

the metadata information is only used for locating the im-

age neighbourhood, it does not affect the dataset scale or

involve in the model training. We select the optimal sizes

of the metadata sets based on the grid search. After the pre-

process, we use 201, 302 images for the NUS-WIDE with

81 labels, 3, 010 user tags and 704 collection topics; 12, 682
images for the Mirflickr with 14 labels, 450 user tags. We

then select 150, 000 and 51, 302 images for training and

test respectively on the NUS-WIDE; 5, 200 and 7, 482 im-

ages for training and test respectively on the Mirflickr. For

the MS-COCO [19], the descriptions of each image take

the form of a set of captions. We tokenise the captions and

extract most common 256 visual attributes as the metadata

for this dataset. For the semantic representations of the vi-

sual attributes, we query the pre-trained word2vec. We use

the official train/val split, which is 82, 783 for training and

40, 504 for test.

4.2. Evaluation Metrics

We employ several metrics to evaluate the performance

of the proposed models and compared methods. By refer-

ring to previous works [12, 15, 33], we compute the aver-

age precision (AP), it ranks the retrieved results based on

the relevance regarding the query. For each label, relevant

images should be ranked higher than the irrelevant ones,

noted as the mAPC . To take into consideration of the la-

bel imbalance problem on the dataset splits, we also com-

pute the overall mAP by treating each label assignment

as an independent label, noted as the mAPO. Moreover, to

conduct the quantitative evaluation, we predict up to three

ranked labels above the confidence threshold 0.5 for each

image to compare against the ground-truth. Mean scores of

per label and overall precision, recall and F1 score noted as

CP , CR, CF1
/OP , OR, OF1

are reported.

4.3. Overall Performance

We compare the proposed model with several popular

and state-of-the-art annotation models, which involve util-

ising the image metadata or the attention mechanism. Since

the different metadata and dataset splits are studied in these

Method mAPC mAPO CP CR CF1
OP OR OF1

Meta+Logistic [12] 0.571 0.719 0.771 0.334 0.429 0.767 0.494 0.601

KNN [21] 0.745 0.839 - - - - - -

Multi-CNN [9] 0.816 0.915 0.889 0.638 0.696 0.857 0.800 0.827

CNN Voting [12] 0.825 0.916 0.902 0.630 0.685 0.860 0.798 0.828

TagProp [8] 0.818 0.856 0.776 0.625 0.657 0.864 0.594 0.704

Link-CRF [22] 0.800 0.902 0.883 0.601 0.671 0.853 0.766 0.807

SRN [33] 0.831 0.925 0.839 0.711 0.760 0.853 0.827 0.840

NCNN [12] 0.840 0.918 0.840 0.724 0.765 0.849 0.826 0.837

MangoNet-m3 0.849 0.924 0.870 0.713 0.769 0.865 0.822 0.843

MangoNet-m7 0.852 0.924 0.866 0.718 0.772 0.865 0.826 0.845

MangoNet-m15 0.851 0.925 0.881 0.705 0.761 0.867 0.823 0.844

Table 2. Image annotation results compared with other state-of-

the-art methods and our MangoNet on the Mirflickr, where m in-

dicates the neighbourhood size used in our model.

Method mAPC mAPO CP CR CF1
OP OR OF1

Meta+Logistic [12] 0.703 0.779 0.851 0.556 0.643 0.882 0.575 0.696

KNN [21] 0.699 0.766 - - - - - -

Multi-CNN [9] 0.738 0.812 0.827 0.563 0.646 0.848 0.601 0.703

CNN Voting [12] 0.750 0.818 0.816 0.558 0.635 0.839 0.582 0.687

TagProp [8] 0.720 0.814 0.815 0.570 0.641 0.832 0.607 0.703

Link-CRF [22] 0.718 0.787 0.823 0.548 0.642 0.831 0.594 0.693

SRN [33] 0.771 0.839 0.852 0.588 0.674 0.874 0.625 0.729

NCNN [12] 0.760 0.833 0.838 0.579 0.669 0.871 0.608 0.716

MangoNet-m3 0.775 0.843 0.871 0.579 0.676 0.895 0.619 0.732

MangoNet-m7 0.778 0.845 0.881 0.577 0.676 0.902 0.618 0.733

MangoNet-m15 0.779 0.846 0.876 0.584 0.680 0.898 0.622 0.735

Table 3. Image annotation results compared with other state-of-

the-art methods and our MangoNet on the MS-COCO, where m

indicates the neighbourhood size used in our model.

models, for fair comparisons, we re-implement some of

them [8, 12, 22, 21, 33] by using the metadata vocabular-

ies and dataset splits we processed, and the hand-crafted

features from the original models are replaced with the av-

erage pooled 2048-d convolutional features from the back-

bone. For fair comparisons, the compared models share the

same finetuned backbone on each dataset. We give the de-

tails of the main compared models as follows:

- Meta+Logistic [12]: This model is to investigate the

annotation capability by only using the metadata. Each im-

age is represented by the binary vector with the metadata

vocabulary size |T |-dimension, and trained with the logistic

loss to generate the label confidence.

- CNN Voting [12]: This model is to investigate the

contribution of the image metadata neighbourhood for the

voting-based methods. Different from the KNN, which allo-

cates the visually similar neighbourhood in the training set,

this model uses the metadata neighbourhood directly gen-

erated from the test set (same as the proposed MangoNet).

Then the label confidence of the test image is set to be a

weighted sum of its Multi-CNN prediction and the mean of

the Multi-CNN predictions of its neighbours.

- SRN [33]: This is a state-of-the-art attention-based

model, which utilises the instance-level attention as the

spatial and semantic regularisation to strengthen the CNN

framework. We report the results on the MS-COCO from

the original model since we also use the same official

dataset splits. For the NUS-WIDE and Mirflickr, the dataset

splits are different after the preprocess, therefore, we train

and test this model using the same splits as the proposed
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Method mAPC mAPO CP CR CF1
OP OR OF1

NGCN 0.612 0.807 0.727 0.381 0.470 0.808 0.595 0.685

MangoNet w/o GF 0.499 0.691 0.656 0.328 0.412 0.739 0.492 0.591

InsAtten 0.579 0.801 0.700 0.383 0.468 0.822 0.562 0.668

MangoNet 0.617 0.806 0.715 0.419 0.507 0.802 0.599 0.686

Table 4. Ablation studies of our model on the NUS-WIDE.

Method mAPC mAPO CP CR CF1
OP OR OF1

NGCN 0.843 0.923 0.885 0.667 0.731 0.866 0.813 0.838

MangoNet w/o GF 0.768 0.876 0.807 0.613 0.679 0.821 0.737 0.777

InsAtten 0.820 0.916 0.884 0.665 0.723 0.857 0.806 0.831

MangoNet 0.849 0.924 0.870 0.713 0.769 0.865 0.822 0.843

Table 5. Ablation studies of our model on the Mirflickr.

model for these two datasets.

- NCNN [12]: This model employs the metadata neigh-

bourhood to assist the target annotation. The image neigh-

bours are embedded with the hidden state size 512 from im-

age global features and then max-pooled. We use the same

processed metadata neighbourhood in this model to investi-

gate the importance of the co-attention GCN module.

Tab. 1, 2 and 3 show that our proposed models, noted as

the MangoNet, achieve the best performances on the over-

all evaluation metrics mAPC , mAPO and OF1
on all three

datasets. The Meta+Logistic [12] represents each image

with a binary vector indicating the presence of the metadata

and trains the classifiers with the logistic loss regarding each

label. Most vision-based methods outperform this model,

which proves that learning from the image visual content is

crucial for the annotation. The Multi-CNN [9] is a standard

multi-label annotation model trained with the logistic loss,

which serves as a baseline. The CNN Voting [12] utilises

the same metadata neighbourhood we processed and aver-

ages the label confidences from the Multi-CNN on the test

set neighbours. It outperforms the classic KNN [21], which

indicates that the metadata can be useful for eliminating

the visual ambiguous and locating the neighbours that con-

tribute to the annotation. The superior performance against

these models shows the significance of the proposed graph

structure for exploring the neighbourhood feature.

Instead of treating image neighbours equally, the Tag-

Prop [8] is a trained nearest neighbour method, where each

image neighbour is re-weighted by the discriminative met-

ric learning. Compared to this model, our proposed Man-

goNet represents relationships between the target image

and its neighbours as a graph. By reasoning on the graph,

we can aggregate the node features as the neighbourhood

representation to assist the annotation, which outperforms

this model by a large margin. The state-of-the-art method

SRN [33] employs the instance-level attention mechanism

as the spatial and semantic regularisation to boost the anno-

tation on the individual image, while in our model, we not

only consider the target regional attention but also value the

visual clues harvested by the proposed graph model from

the neighbourhood. The graphical solution Link-CRF [22]

defines the image relations via metadata, and models them

as the CRF. We have the similar motivation to use the

Method mAPC mAPO CP CR CF1
OP OR OF1

NGCN 0.765 0.834 0.842 0.568 0.663 0.880 0.610 0.721

MangoNet w/o GF 0.692 0.774 0.811 0.504 0.599 0.854 0.547 0.667

InsAtten 0.741 0.816 0.831 0.565 0.649 0.851 0.603 0.706

MangoNet 0.775 0.843 0.871 0.579 0.676 0.895 0.619 0.732

Table 6. Ablation studies of our model on the MS-COCO.

neighbourhood defined by the metadata. However, we not

only look into the neighbourhood but also propose to cap-

ture the visual clues from each neighbour by a co-attention

mechanism, which achieves better results. The most related

method NCNN [12] also proposes to utilise the neighbour

features to assist the annotation. However, in this model,

these neighbours are embedded separately from the target

image, and only the holistic features are considered. Dif-

ferent from the NCNN, our MangoNet establishes a graph

structure to represent the neighbourhood and employ a co-

attention mechanism to guide the message passing within

the graph.

Moreover, we also investigate the influences of the dif-

ferent sizes of the neighbourhood, we report the results of

the m = 3/7/15 in the tables. As we can see, in gen-

eral, with the larger neighbourhood, the visual ambiguous

can be further eliminated, and the proposed model achieves

the better results. To indicate the significance of the pro-

posed components on the whole label set, we show the com-

parisons of AP values against the NCNN (no co-attention

neighbourhood graph is adapted in this model) in Fig. 5,

where the x-ray stands for the NCNN value on each label,

and y-ray is the corresponding value of our MangoNet. As

we can see, the majority of the values are above the y = x,

which proves the effectiveness of the proposed graph model

on the whole tag set.

4.4. Ablation Study

We conduct the ablation analysis on three datasets to

further investigate the individual contributions of proposed

components in a tiered manner. We compare the following

ablation models:

- NGCN: This is a plain graph model without the pro-

posed co-attention mechanism. To implement this model,

we replace the node representations in our proposed GCN

model as the holistic features, i.e. average-pooled convolu-

tional features.

- MangoNet w/o GF: This is the co-attention guided

GCN part of the proposed model without the target global

feature concatenation.

- InsAtten: In this model, we train the instance-level at-

tention module independently.

- MangoNet is the proposed full model with the neigh-

bourhood size m = 3, same as all other ablation models.

The results are shown in Tab. 4, 5 and 6. As we can see,

by introducing the co-attention mechanism into the graph

model, our MangoNet achieves better results against the

NGCN, which proves the effectiveness of the proposed at-
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Figure 5. The AP comparisons of the proposed MangoNet against

the NCNN model on the NUS-WIDE, Mirflickr and MS-COCO.

tention mechanism in capturing the correlations within the

neighbourhood. Without using the global feature concatena-

tion in the GCN module, as we can see, MangoNet w/o GF

has lower performance, since the image neighbours do not

guarantee to contain all the labels associated with the tar-

get image. The instance-level only attention model InsAtten

performs lower than others, but based on the co-attention

maps generated from the InsAtten module, our full model

MangoNet achieves the best performance.

4.5. Visualisation of Attention

To verify the proposed attention mechanisms, we vi-

sualise the attention maps from the co-attention module.

The brighter colour (yellow) indicates the higher attention

weights. We show the examples of the co-attention maps

of the given images in Fig. 6. The first column of every

two rows is the target image and its co-attention map, while

the rest columns are the neighbours and their correspond-

ing attention maps. As we can see, the co-attention maps

capture the correlations between the target image and its

neighbours in both simple and complex scenes. For ex-

ample, small subjects like ‘surfboard’ and ‘ball’ are well-

captured in example 2 and 4, while in the complex scenes

such as example 3, the ‘people’ and ‘car’ are also well-

captured in the neighbours. The co-attention mechanism is

employed to find the most relevant visual features to elim-

inate the recognition uncertainties, then the neighbourhood

graph receives these features and communicates within the

neighbourhood, which improves the ability of the annota-

tion model to recognise the target image.

5. Conclusion

Images are connected to each other via the abundant

metadata. Fully making use of these connections can as-

sist the image annotation. In this paper, we explore the im-

age neighbours by measuring their metadata similarities and

propose a graph network to model the correlations between

the target image and its neighbours. A co-attention mecha-

nism is introduced to leverage the visual attention within the

neighbourhood. Experimental results on three benchmark

datasets show that the proposed model achieves the best

performances against compared methods. Since the textual

metadata is mainly used in our experiments, we will explore

Figure 6. The visualisations of the co-attention maps of the targets

and their neighbours. The first column is the target and its atten-

tion map, the rest columns are the neighbours, where the neigh-

bourhood size m = 3.

other metadata types in our future work.
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