
PPGNet: Learning Point-Pair Graph for Line Segment Detection

Ziheng Zhang∗ Zhengxin Li∗ Ning Bi Jia Zheng Jinlei Wang Kun Huang

Weixin Luo Yanyu Xu Shenghua Gao†

ShanghaiTech University

{zhangzh, lizhx, bining, zhengjia, wangjinlei, huangkun, luowx, xuyy2, gaoshh}@shanghaitech.edu.cn

Abstract

In this paper, we present a novel framework to detect line

segments in man-made environments. Specifically, we pro-

pose to describe junctions, line segments and relationships

between them with a simple graph, which is more structured

and informative than end-point representation used in ex-

isting line segment detection methods. In order to extract

a line segment graph from an image, we further introduce

the PPGNet, a convolutional neural network that directly

infers a graph from an image. We evaluate our method on

published benchmarks including York Urban and Wireframe

datasets. The results demonstrate that our method achieves

satisfactory performance and generalizes well on all the

benchmarks. The source code of our work is available at

https://github.com/svip-lab/PPGNet.

1. Introduction

Retrieving 3D information from 2D images has long been

a fundamental problem in computer vision. The feasibility

of conventional methods based on local feature detection,

matching and tracking (e.g., corners, edges, SIFT features,

and patches) has been proved. However, modern applications,

which involve interaction between autonomous agents and

man-made physical environments, have presented more com-

plex challenges. On the one hand, man-made environments

often contain abundant homogeneous surfaces and highly

repeated patterns, which introduces difficulties for feature

matching and tracking. On the other hand, for some appli-

cations (e.g., visual odometry), of which the performance

highly depends on the geometric primitives presenting in dif-

ferent views, the choice of such primitives (e.g., points, lines

segments, or other structures) becomes critical: different

primitives provide distinct sets of geometric information.

The prior assumption about a spacial structure like Man-

hattan World [7, 11, 38] or room topology [24, 57, 60] could
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significantly benefit the 3D reconstruction, but they are often

violated in real man-made environments. Instead, common

junctions and line segments are capable of delivering impor-

tant geometric information without dependency to any prior

assumption. For extensive tasks relevant to 3D vision, such

as camera calibration [10,43,56], matching across views [44]

and 3D reconstruction [20,37,56] , edges have demonstrated

more robustness to lighting changes and preserve more infor-

mation than points. Several recent works [22, 55, 60] show

that line segments could largely facilitate 3D modeling of

indoor scenes.

Traditional line segment detection algorithms [1,2,27,49]

generally start from edge detection, followed by merging

procedure and optionally some refinement techniques. How-

ever, such approaches are usually sensitive to changes in

scale and illumination, since they merely depend on the local

features. Additionally, some geometrically informative lines,

such as intersections between two homochromatic walls, of-

ten have low local edge responses, thus tend to be ignored

by such methods. On contrast, a human can easily recognize

such visually obscure intersections through global semantic

inference.

The recent success of deep learning has shown the de-

sirable capability of image understanding, such as image

classification [19,23,47,48], object detection [13,14,17,40],

and semantic segmentation [26, 41]. On the other hand, deep

architectures are also effective in low-level tasks, such as

contour detection [45] and super-resolution [9]. [21] is a

pioneer work of extracting wireframe in man-made scenes

with a deep architecture, for human-level perception of scene

geometry. Their proposed network outputs pixel-wise junc-

tion confidence and directions together with a line heatmap,

followed by a post-processing algorithm merging them to

generate a parameterized presentation of line segments. As

introduced in the literature, the conception of the wireframe

is a small subset of common line segments and junctions,

which is practically defined by their dataset annotation. Con-

sidering that line segments outside the wireframe subset also

contain strong geometrical information, and line segment

detection itself is still a challenging problem in computer
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vision, we focus on robust detection of general line segments.

In this paper, we propose to describe junctions, line seg-

ments and the relationship between them with a simple graph.

In our graph representation, the nodes stand for vertices and

the edges stand for the connectivities between junction pairs,

i.e. the line segments. The graph is fully capable of describ-

ing any complex connections between junctions. Following

this, we introduce the PPGNet, a novel CNN based archi-

tecture which directly infers point-pair graph from given

images. Specifically, we firstly use a backbone network for

feature extraction, which is utilized to detect junctions. Then,

we construct line segment candidate for each junction pair,

and reuse the extracted feature to infer the connectivity of

the line segment candidate. Consequently, all junctions and

their connectivities are formed as a graph, which describes

all line segments in the input image. It should be noted that

our proposed network can predict a graph directly from a

given RGB image .

In order to train our proposed PPGNet, we need a dataset

with annotated junctions as well as connectivity between

every possible junction pair. However, annotations in existing

datasets often ignore some overlapped line segments, thus

can not be directly used to train our network. To fix this,

we generate more informative graph-based annotations for

existing datasets. Further, we also introduce a new large

scale line segment dataset containing fully annotated indoor

and outdoor samples, which fills the gap of current datasets

that are either small in size for training deep architectures or

lacking indoor/outdoor samples.

The contribution of this work can be summarized as fol-

low: First, we introduce the new graph-based representation

of line segments against commonly used endpoint represen-

tation, which is capable to describe all possible line segments

in a more structured and informative way; second, we design

a novel deep architecture that directly infers the line segment

graph from the input image; third, we build a new dataset

which covers both indoor and outdoor scenes with fully an-

notated line segments; fourth, results demonstrate that our

method achieves satisfactory performance and generalizes

well on multiple datasets.

2. Related Works

2.1. Line segment detection

The mainstream pipeline of hand-crafted line segment

detector generally consists of local feature extraction, pixel

grouping, and optional refinement. These methods usually

start from detecting pixels with high local gradient and/or

edge response and then group them into line segments

through iterative growing [35], co-linear clustering [27],

Hough domain accumulation [12,30,54] or Markov chain [2],

etc. The line segments are optionally refined with false de-

tection control based on the Helmholtz principle [1, 49], as

well as fragment merging and endpoint relocation [4].

The hand-crafted line segment detectors highly depend

on carefully designated parameters. Even though some of

them are parameter-free, the results still are highly sensitive

to the choice of threshold. In a recent research [21], a CNN

including two branches is proposed to parse a junction map

and a line heatmap from an image, which are then merged

into a set of line segments. This learning-based approach

outperforms the hand-crafted methods with a large margin.

Nonetheless, there is not a framework that directly outputs a

parameterized presentation of line segments by far.

2.2. Junction detection

Although junction detection has been studied for long

[15, 42], it remains a challenging problem. A typical work

is to compute local cornerness based on so-called Harris

matrix [16], which is, however, sensitive to scale and local-

ization. Some works focus on contour curvature or continu-

ation for detecting junctions [3, 5, 32]. Other works exploit

the consistency between textures and gradient-based [6, 46]

or pattern-based [36, 51] templates as an effective cue for

junction detection.

According to a psychophysical analysis, it is difficult to

recognize junctions without context information in a large

enough area, even for humans [31]. In this direction, [28] at-

tains robust edge and junction detection by combining local

cues (e.g., lightness, color and gradient) with a global prob-

ability of boundary (gPb) detector, which is learned from

human-annotated data. Benefiting from the large receptive

field of the deep neural network, [21] achieves state of the

art performance on junction detection.

2.3. CNN­based Graph Inference

A convolutional neural network is capable of inferring

graphs from images. In [34], the multi-person pose estima-

tion problem is resolved by considering each person as a

graph and grouping the body joints with associative embed-

ding. As a more general work, a CNN is trained to detect

all the objects and relationships between them in an image

by means of associative embedding [33]. The objects and

relationships in a scene graph can be further refined with

a gated recurrent unit (GRU) [53]. However, their network

only outputs nodes and edges, together with embedding that

associates edges to nodes, therefore extra steps are required

to construct the final graph. Furthermore, their framework

cannot handle arbitrary overlapped edges. In contrast, our

network can infer an arbitrary simple graph parameterized

by nodes and an adjacency matrix directly from the input.
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3. PPGNet for Line Segment Detection

3.1. Junction­line Graph Representation

Here, we consider the problem of detecting line segments

directly from an RGB image. We propose to use a simple

graph Gn = {V n, En} to represent all line segments in a

given image Xn (a sample indexed by n in a dataset), of

which V n stands for the set of junctions and En for the set of

connectivities between any junction pairs. We now transfer

the original line segment detection problem into the graph

inference problem. In our implementation, V n and En are

parameterized using an ordered list of junctions Jn and an

adjacency matrix An, respectively. Hence, each element in

Jn is the coordinate of the junction and the entry An
ij in the

i-th row and j-th column of matrix An equals one only if

junction pair Jn
i and Jn

j forms a line segment.

The graph representation is more structured than endpoint

representation for line segments. Line segments that share

the same endpoints only add more ones to the adjacency

matrix without introducing extra terms. Besides, graph rep-

resentation is also much more informative. Connectivities

between junctions are fully described in a combinational way

(Fig.1) and both longer line segments and any inner shorter

ones are depicted by the graph, which benefits the selection

of befitting line segments from the graph in accordance with

specific applications.

Figure 1. Some cases where junctions are densely connected. The

connectivities among junctions, as indicated by red dashed curves,

can be more completely identified in graph representation than

end-point representation. The green lines are simple line segments

without inner junctions.

In this work, we use a deep neural network to learn the

mapping from RGB image X to graph G. Due to the fact

that G fully describes all line segments in X and can be

transferred to endpoint representation with minor efforts, our

method is a unified solution, although containing multiple

stages, to settle line segment detection problem.

3.2. PPGNet

Motivated by Faster R-CNN [40], we propose a two-

staged framework that detects junction points at the first

stage and then identifies the connectivities between all point

pairs at the second stage. The proposed PPGNet, as illus-

trated in Fig.2, comprises four parts: (i) a convolutional back-

bone architecture for feature extraction over the entire input

image, (ii) the Junction Detection Module (JDM), (iii) the

Line Segment Alignment Module (LSAM) which extracts

a feature tensor for the line segment candidate defined by

a pair of detected junctions, and (iv) the Adjacency Matrix

Inference Module (AMIM) which detects the connectivity

between each junction pair. Given an image, our network

predicts both junction locations and their connectivities rep-

resented by an adjacency matrix.

3.2.1 Backbone Network

We use the semantic segmentation network implemented by

CSAIL [52, 58, 59] as our backbone network, which consists

of a dilated ResNet-50 encoder and a decoder with pyramid

pooling, except for the last convolution layer, of which the

number of output channels C is changed to be 256 instead of

1. 1 For an input image of size H×W , the backbone network

extracts a 256-channel feature map of size H/4×W/4.

3.2.2 Junction Detection Module

The JDM extracts junctions over the input image represented

by their coordinates. Unlike commonly used anchor based

detection methods such as R-CNN [40], YOLO [39] or

SSD [25], the JDM first regresses a junction heatmap, then

applies Local Maximum Filter (LMF) to get coordinates

where junction response is higher than its eight neighbors.

Non-maximum Suppression (NMS) is also used to avoid

multiple detections of the same junctions. Unlike that in

detection methods, the NMS in JDM is implemented by a

hierarchical clustering using the single linkage algorithm,

where the clusters are formed by the inconsistency method

with a cutoff threshold (3 pixels in all our experiments).

In detail, the JDM first regresses junction heatmap from

the feature extracted by the backbone network through a

convolutional architecture, which comprises two conv3x3-

bn-relu blocks followed by a conv1x1 layer with sigmoid

activation. Then it identifies all points in the heatmap where

junction responses are higher than a threshold τ and are the

highest among 8-neighbors. After that, the detected points

are clustered into groups, within which the distance between

arbitrary two points is no greater than ǫ, and all the points

with the highest junction responses in their groups are pre-

dicted as junction points. We use ǫ = 3 pixels in all our

experiments.

1The details about the backbone can be found in the Github page

https://github.com/CSAILVision/

semantic-segmentation-pytorch
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Figure 2. The PPGNet architecture. First, the backbone computes shared features of size C ×
H

4
×

W

4
for Junction detection and adjacency

matrix inference. Second, the Junction Detection Module output a list of N junctions. Third, each junction pair is formed as two line segment

candidates of different directions, over which features are evenly sampled into two feature matrix of size C × L. After that, we apply 1D

convolution over each feature matrix, which outputs a feature vector of size C. Fourth, each feature vector is used by the Adjacency Matrix

Inference Module to infer the connectivity of the corresponding junction pairs.

3.2.3 Line Segment Alignment Module

Given two junctions and a feature map, the LSAM samples

the feature map along the line segment candidate defined by

the junction pair, and extracts a fixed-length feature vector

from the feature map. LSAM works in a way similar as ROI

Align Module [17], except that LSAM aligns feature vectors

instead of patches.

For each junction pair and feature map of an image, the

LSAM generates a feature tensor of size C × L, where C
is the number of channels of feature map and L is the spa-

tial length of line segment feature. Specifically, LSAM first

generates L equidistant sampling points from the starting

point to the end point of the junction pair, then uses bilinear

interpolation to sample pixel value for each point on the

feature map. In our main model, L is set to be 64, so that

each junction pair yields a feature tensor of size C × 64 for

connectivity inference.

3.2.4 Adjacency Matrix Inference Module

The AMIM predicts the connectivity of every combination

of junction pairs within an image. It takes the features for all

line segment candidates provided by the LSAM, and uses a

convolutional structure to predict the connection probability

for each candidate.

Given K junctions predicted by JDM, AMIM generates

a K ×K adjacency matrix A, by which the line segment de-

tection problem is turned into a binary classification problem

of whether two junctions are connected. For every possible

junction pair, two feature vectors of a line segment corre-

sponding to different junction orders are extracted by LSAM,

which are then fed into three cascaded conv2d-gn-relu blocks,

where gn represents the Group Normalization Layer [50].

The kernel sizes, stride size and padding size of the three

convolution layers are 8, 4, 2, respectively. After that, a sin-

gle conv2d-sigmoid block is used to get the connectivity

confidence of the junction pair in different orders, of which

the lowest becomes the final confidence for the junction pair.

Intuitively, this processing acts as an ‘and’ logic to ensure

that a junction pair is connected regardless of the order of

feature concatenation.

In practice, because JDM can detect an arbitrary number

of junctions, AMIM predicts one block of matrix A of fixed

size 64×64 at a time and runs multiple times to get the whole

adjacency matrix. Furthermore, as all possible connectivities

between all junction pairs are inspected in AMIM, which

causes an O(n2) complexity, it is impractical to process a too

large number of junctions in AMIM. Due to an observation

that JDM tends to assign a higher score to the junctions

associated with more line segments, we only choose the first

512 junctions with the highest responses on the heatmap

when more than 512 junctions are outputted by JDM. In

our experiments, it takes about 0.9s to process an image

containing 512 junctions with a Tesla P40 GPU.

3.2.5 Loss Function

Both junction heatmap and adjacency matrix are supervised

using binary cross entropy loss, and the final loss is the
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Table 1. Dataset statistics
# images resolution # avg. junc. # avg. lines scenes\line types

Wireframe 5462 480 ∗ 405(avg.) 150 75 indoor\wireframe

York Urban 102 640 ∗ 480 209 119 both\Manhattan

Ours-indoor 1378 900 ∗ 1200 67 41 indoor\general

Ours-outdoor 2534 2048 ∗ 1080 537 311 outdoor\general

weighted sum of two losses, i.e.

L = λjuncLjunc + λadjLadj

Ljunc = −
∑

i
H̃i logHi + (1− H̃i) log (1−Hi)

Ladj = −
∑

i
Ãi logAi + (1− Ãi) log (1−Ai)

where H̃i and Hi are the elements of prediction and ground

truth of junctions, respectively, and Ãi and Ai are the el-

ements of prediction and ground truth of the adjacency

matrix, respectively. BCE stands for the cross en We set

λjunc = λadj = 1 in all our experiments.

3.3. Training and Evaluating Details

All modules are jointly optimized using Stochastic Gra-

dient Decent (SGD), with lr = 0.2, weight decay =
5 × 10−4, and momentum = 0.9, except for all normal-

ization layers, of which weight decay is set to zero. The

backbone network is initialized with parameters pretrained

for segmentation task on the MIT ADE20K dataset, and

other modules are initialized with kaiming initialization [18],

as the common practice. During the training phase, AMIM

infers adjacency matrix for ground truth junctions instead

of junctions predicted by JDM because we do not have cor-

responding ground truth adjacency matrix for supervision.

During evaluating phase, junctions and adjacency matrix are

jointly estimated by our PPGNet.

4. Experiments and Results

We conduct experiments to evaluate the performance of

our proposed approach and compare it with several SOTA

methods. Our model is implemented with the Pytorch frame-

work trained with four Tesla M40 GPUs.

4.1. Datasets and Evaluation Metrics

Experimental Datasets So far as we know, there exist

two line segment datasets namely Wireframe [21] and York

Urban [8]. However, the former only has wireframes line

segments in mostly indoor scenes annotated, while the later,

though containing both indoor and outdoor scenes, is small

in size (102 samples), and only has Manhattan lines labeled.

In order to validate the capability of our framework to detect

general line segments for new indoor and outdoor scenes,

we build a new line segment dataset, which consists of 1,378

indoor images and 2,534 outdoor images, together with care-

fully labeled line segments.

For the indoor part, we capture the images with resolution

900×1200 using a camera array that comprises seven GoPro

cameras. For the outdoor part, we take aerial videos of our

campus with a 4K camera equipped on a DJI UAV, and

extract frames with high quality at the interval of at least two

seconds. Since the resolution of original videos is too large

for labeling and training neural networks, we further crop

each frame into four 2048 ∗ 1080 images.

All the line segments in both indoor and outdoor part

are annotated following the protocols that any visible line

segments that are longer than 10% of the image diagonal

and occluded by less than 10% of their length is labeled.

Every sample is annotated by one volunteer and then double

checked by another. Different from the conception of wire-

frame [21] or Manhattan lines, the labeled line segments in

our dataset only need to be visible and geometrically infor-

mative. Table 1 summarizes the statistics of existing datasets

and ours.

Data Preprocessing In order to learn the mapping from

image to line segment graph, the complete description of

connectivities among all junctions is required. However, all

existing datasets use endpoints to represent line segments,

where both junctions and connectivities can be missing in

some cases. Therefore, we introduce the data preparation

scheme to convert each annotation in the original datasets

into their graph representation version, which can be outlined

as follows.

1. Remove isolate junctions associated with no line seg-

ments.

2. Find the longest line segments by searching the furthest

endpoint junctions for every line segment, then mark

all junctions in a longest line segment as connected.

Note that the searching is not exactly along the line, but

within a belt around the line, due to possible annotation

error.

3. Remove a line segment if all its inner junctions is a

subset of those of another line segment. The inner junc-

tions of a line segment are determined by their distance

to the line segment.
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Figure 3. Qualitative evaluation of our line segment detection method. 1st row: ground truth (Wireframe); 2nd row: prediction (Wireframe);

3rd row: ground truth (York Urban); 4th row: prediction (York Urban); 5th row: ground truth (Our dataset); 6th row: prediction (Our dataset).

4. Refine each line segment by re-fitting it to its inner

junctions.

5. Refine all of the junctions that are the intersections

of two or more line segments by solving the linear

equations imposed by the corresponding line segments.

6. Retrieve possibly missing junctions by finding all inter-

sections of all line segment pairs.

7. Construct the final line segment graph, which is param-

eterized by an ordered list of junctions and an adjacency

matrix.

Generally, the data preparation scheme tries to correct

some bad annotations and to supplement possibly missing

junctions and connectivities. We refer readers to our released

code for the details of the scheme.

Evaluation Metric We quantitatively evaluate the meth-

ods using recall and precision as described in [21,28,29,51].

The recall is the fraction of true line segment pixels that are

detected, whereas the precision is the fraction of detected

line segment pixels that are indeed true positive. Specifically,

they are calculated as follows:

Recall =̇ |G ∩Q|/|G|, Precision =̇ |G ∩Q|/|Q|,

where G denotes the ground truth and Q denotes the predic-

tion. Note that, following the protocols of previous works

[28, 29, 51], the particular measures of recall and precision

allow for some small tolerance in the localization of line

segment pixels. The tolerance in our experiments is set to be

0.01 of the image diagonal, which is the same as [21].

4.2. Performance evaluation

In order to evaluate the performance of our framework,

we compared the performance of our method with the state

of the art (LSD [49], MCMLSD [2] and wireframe parser

of Huang et al.. [21]) upon three experiment settings: (a)

training and testing on Wireframe dataset using the standard

splits; (b) training on Wireframe dataset and testing on the

York-Urban dataset; (c) training on Wireframe dataset and
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testing on our dataset. Since the Wireframe and York Urban

datasets are released benchmarks, we do quantitative com-

parison under the setting (a) and (b). Qualitative evaluation

is done under the third setting to observe the generalizing

capability between different data distribution.

Quantitative Comparison For our PPGNet, we conduct

two experiments under setting (a) and (b) where (i) AMIM

uses junctions predicted by JDM (marked as PPGNet) and

where (ii) AMIM uses ground truth junctions to predict line

segments (marked as PPGNet*). We include the second

experiment for the reason that both the two benchmarks only

have a subset of line segments annotated, i.e. wireframes

and Manhattan lines, but our framework is for general line

segment detection. Only with ground truth junctions can our

framework understand which type of junctions should be

considered.

(a) (b)

Figure 4. Precision-Recall curves of our PPGNet and state of the

art methods evaluated on (a) Wireframe dataset and (b) York-

Urban dataset. For PPGNet and PPGNet*, we set the thresh-

old for JDM to 0.25, and vary the threshold for AMIM in

[0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7].

As one can see, though our PPGNet shows worse per-

formance compared to [21] in experiment(i), it achieves

superior performance in experiment(ii). In a comprehensive

view, our method achieves satisfactory performance.

Qualitative Analysis Fig. 3 illustrates visualized results

of line segment detection of our method on several (random)

samples. It can be seen that our method is capable to robustly

detect the line segments in complicated environments, and

generalize well on datasets on which it has not been trained.

In order to qualitatively compare the performance of our

method with that of wireframe parser [21] on general line

segments, we refine the annotations of the test split in Wire-

frame dataset by adding the missing general line segments

apart from wireframes. Fig.5 shows the visualized results on

some randomly picked samples for PPGNet and the method

in [21]. It can be observed that our method is capable of re-

trieving more abundant line segment information than [21].

We also noticed that out model fails in some cases, as

shown in Fig. 6. There are two typical cases: (1) for small

boxes in an image, our model tends to predict the diago-

nal junctions as connected and (2) for close co-linear line

segments, our model tends to ignore the gaps and predict

all junctions as connected. These cases may be caused by

the sampling procedure in AMIM. For case (1), the bilinear

sampling may introduce nearby features around sampled

locations. Hence the nearby junctions may interfere with

connectivity prediction of current junction. On the other

hand, case (2) may happen when few or no sampling points

fall in the gaps between those co-linear line segments, which

prevents AMIM from recognizing the discontinuity.

4.3. Junction Threshold of JDM

In our framework, the AMIM predict connectivities of

junctions detected by JDM, for which the threshold τ has a

fundamental effect on the performance. We comprehensively

compare the performance under different choices of the value

for τ . It can be seen in Fig.7 that τ ∈ [0.2, 0.3] lead to a

better precision-recall curves. According to the quantitative

evaluation in AUC, τ = 0.25 is slightly better than τ = 0.2
and τ = 0.3.

4.4. Sampling Rate of LSAM

LSAM predicts the connectivity of junction pairs from the

spatially sampled features between the two junctions. There-

fore the sampling rate of LSAM has a fundamental effect on

the performance of our model. In order to analyze the effect

of sampling rate on performance, we conduct experiments

in which different sampling rate is used in LSAM. The re-

sults are shown in Fig. 8.(a), we can see that LSAM benefits

from higher sampling rates. However, higher sampling rates

also introduce extra memory usage and computational cost.

Hence one should consider both performance and efficiency

requirements for different applications when choosing the

sampling rate.

As an extreme case, the sampling rate equals 2 means that

only features at the location of junction pairs are sampled.

In this case, LSAM suffers from insufficient information

to determine the connectivities of junction pairs. Fig.8.(a)

shows the typical results when only two points are sampled.

As one can see, LSAM fails to recognize gaps between

two co-linear line segments and directions of line segments

starting from the same junctions.

5. Conclusion and Disscusion

In this paper, we propose to use graphs to represent all

line segments in a given image and introduce the PPGNet,

an multi-staged deep architecture that directly infers a graph

directly from an image. Our method achieves satisfactory

performance on multiple public benchmarks and shows re-

markable generalization ability.

There is still room for improvement in our framework. For

example, currently the LSAM predicts connectivities for all
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Figure 5. Qualitative results on the refined Wireframe dataset. 1st row: the ground truth; 2nd row: results of the method proposed in [21]; 3rd

row:results of PPGNet.

(a) (b)

Figure 6. Failure cases: (a) image samples that contain small rect-

angulars; (b) image samples that contain very close co-linear line

segments.
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Figure 7. Precision-recall curves for different choices of JDM

threshold τ .
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Figure 8. Illustrations of (a) precision-recall curves with different

sampling rate of LSAM; (b) example prediction when only junction

features are pooled.

O(n2). Maybe one could filter some line segment candidates

according to the specific applications, but there may exists a

better way to further reduce the computational cost.

On the other hand, PPGNet itself is a general framework

to infer a graph from an image. In principle, PPGNet could

also be used to solve other problems that need to detect

visual parts and their spatial connections. Human pose esti-

mation is a typical example of such problems, and we are

interested in exploiting possible applications of PPGNet for

such problems in future work.
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