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Abstract

Crowd counting in single-view images has achieved out-

standing performance on existing counting datasets. How-

ever, single-view counting is not applicable to large and

wide scenes (e.g., public parks, long subway platforms, or

event spaces) because a single camera cannot capture the

whole scene in adequate detail for counting, e.g., when the

scene is too large to fit into the field-of-view of the camera,

too long so that the resolution is too low on faraway crowds,

or when there are too many large objects that occlude large

portions of the crowd. Therefore, to solve the wide-area

counting task requires multiple cameras with overlapping

fields-of-view. In this paper, we propose a deep neural net-

work framework for multi-view crowd counting, which fuses

information from multiple camera views to predict a scene-

level density map on the ground-plane of the 3D world. We

consider 3 versions of the fusion framework: the late fu-

sion model fuses camera-view density maps; the naı̈ve ear-

ly fusion model fuses camera-view feature maps; and the

multi-view multi-scale early fusion model favors that fea-

tures aligned to the same ground-plane point have consis-

tent scales. We test our 3 fusion models on 3 multi-view

counting datasets, PETS2009, DukeMTMC, and a newly

collected multi-view counting dataset containing a crowd-

ed street intersection. Our methods achieve state-of-the-art

results compared to other multi-view counting baselines.

1. Introduction

Crowd counting aims to estimate the number of the peo-

ple in images or videos. It has a wide range of real-

world applications, such as crowd management, public safe-

ty, traffic monitoring or urban planning [43]. For exam-

ple, crowd counting can detect overcrowding on the railway

platform and help with the train schedule planning. Further-

more, the estimated crowd density map provides spatial in-

formation of the crowd, which can benefit other tasks, such

as human detection [8, 18, 27] and tracking [18, 34, 36].

Recently, with the strong learning ability of deep neural
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Figure 1: The pipeline of the proposed multi-view fusion frame-

work. Feature maps are extracted from multiple camera views,

aligned on the ground-plane, and fused to obtain the scene-level

ground-plane density map. The scene map is shown for reference.

networks (DNNs), density map based crowd counting meth-

ods have achieved outstanding performance on the existing

counting datasets [1, 12, 42], where the goal is to count the

crowd in a single image. However, a single image view is

not adequate to cover a large and wide scene, such as a large

park or a long train platform. For these wide-area scenes,

a single camera view cannot capture the whole scene in ad-

equate detail for counting, either because the the scene is

too large (wide) to fit within the field-of-view of the cam-

era, or the scene is too long so that the resolution is too

low in faraway regions. Furthermore, a single view cannot

count regions that are still within the scene, but are totally

occluded by large objects (e.g., trees, large vehicles, build-

ing structures). Therefore, to solve the wide-area counting

task requires multiple camera views with overlapping field-

of-views, which combined can cover the whole scene and

can see around occlusions. The goal of wide-area counting

is then to use multiple camera views to estimate the crowd

count of the whole scene.

Existing multi-view counting methods rely on fore-

ground extraction techniques and hand-crafted features.

Their crowd counting performance is limited by the effec-

tiveness of the foreground extraction, as well as the rep-

resentation ability of hand-crafted features. Considering

the strong learning power of DNNs as well as the perfor-
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Figure 2: The pipeline of our late fusion model and naı̈ve early fusion model for multi-view counting. In the late fusion model, single-view

density maps are fused. In the naı̈ve early fusion model, single-view feature maps are fused.

mance progress of single view counting methods using den-

sity maps, the feasibility of end-to-end DNN-based multi-

view counting methods should be explored.

In this paper, we propose a DNN-based multi-view

counting method that extracts information from each cam-

era view and then fuses them together to estimate a scene-

level ground-plane density map (see Fig. 1). The method

consists of 3 stages: 1) Information extraction – single view

feature maps are extracted from each camera image with

DNNs; 2) Information alignment – using the camera geom-

etry, the feature maps from all cameras are projected onto

the ground-plane in the 3D world so that the same person’s

features are approximately aligned across multiple views,

and properly normalized to remove projection effects; 3) In-

formation fusion – the aligned single-view feature maps are

fused together and used to predict the scene-level ground-

plane density map.

We propose three versions of our multi-view framework

that differ in the kind of information that is fused. First,

in our late-fusion model (see Fig. 2 top), view-level den-

sity maps are predicted for each camera view, projected to

the ground-plane, and fused for estimating the scene-level

density map. We also propose a post-projection normaliza-

tion method that removes the projection effect that distorts

the sum of the density maps (and thus the count). Second,

in our naı̈ve early-fusion model (see Fig. 2 bottom), convo-

lutional feature maps are extracted from each camera view,

projected to the ground-plane and fused to predict the scene-

level density map. Third, to handle the scale variations of

the same person across camera views, our multi-view multi-

scale (MVMS) early-fusion model (see Fig. 5) extracts fea-

tures with consistent scale across corresponding locations

in the camera views before applying projection and fusion.

We consider 2 approaches for selecting the suitable scales,

based on distances computed from the camera geometry.

The existing multi-view datasets that can be used for

multi-view counting are PETS2009 [9] and DukeMTMC

[35]. However, PETS2009 is not a wide-area scene as it

focuses on one walkway, while DukeMTMC is a wide-area

scene but does not contain large crowds. To address these

shortcomings, we collect a new wide-area dataset from a

busy street intersection, which contains large crowds, more

occlusion patterns (e.g., busses and cars), and large scale

variations. This new dataset more effectively tests multi-

view crowd counting in a real-world scene.

In summary, the main contributions of the paper are:

• We propose an end-to-end trainable DNN-based multi-

view crowd counting framework, which fuses infor-

mation from multiple camera views to obtain a scene-

level density map. To the best of our knowledge, this

is the first study of scene-level density map estimation

for multi-view counting.

• We propose 3 fusion models based on our multi-view

framework (late fusion, naı̈ve early fusion, and multi-

view multi-scale early fusion), which achieve better

counting accuracy compared to baseline methods.

• We collect a real-world wide-area counting dataset

consisting of multiple camera views, which will ad-

vance research on multi-view wide-area counting.

2. Related Work

We briefly review methods of crowd counting from

single-view and multi-view cameras.
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2.1. Single­view counting

Traditional methods. Traditional single-view count-

ing methods can be divided into 3 categories [4, 43]: de-

tection, regression, and density map methods. Detection

methods try to detect each person in the images by extract-

ing hand-crafted features [38, 45, 48] and then training a

classifier [10, 14, 46] using the extracted features. How-

ever, the detection methods do not perform well when the

people are heavily occluded, which limits their application

scenarios. Regression methods extract the image features

[2, 6, 15, 19] and learns a mapping directly to the crowd

count [3, 5, 29, 31]. But their performance is limited by

the weak representation power of the hand-crafted low-level

features. Instead of directly obtaining the counting number,

[21] proposed to estimate density maps, where each pixel

in the image contains the local crowd density, and the count

is obtained by summing over the density map. Traditional

density map methods learn the mapping between the hand-

crafted local features and the density maps [21, 32, 47, 49].

DNN-based methods. Crowd counting with DNNs has

mainly focused on density map estimation. The first net-

works used a standard CNN [50] to directly estimate the

density map from an image. Scale variation is a critical is-

sue in crowd counting, due to perspective effects in the im-

age. [51] proposed the multi-column CNN (MCNN) con-

sisting of 3 columns of different receptive field sizes, which

can model people of different scales. [39] added a switch

module in the MCNN structure to choose the optimal col-

umn to match the scale of each patch. [30] proposed to

use the patch pyramid as input to extract multi-scale fea-

tures. Similarly, [16] used an image pyramid with a scale-

selecting attention block to adaptively fuse predictions on d-

ifferent scales. Recently, more sophisticated network struc-

tures have been proposed to advance the counting perfor-

mance [1, 23, 25, 40, 41]. [42] incorporated global and lo-

cal context information in the crowd counting framework,

and proposed the contextual pyramid CNN (CP-CNN). [17]

proposed an adaptive convolution neural network (ACNN)

that uses side information (camera angle and height) to in-

clude context into the counting framework. [1] proposed

the scale aggregation module to extract multi-scale features

and generated high-resolution density maps by using a set

of transposed convolutions.

All these methods are using DNNs to estimate a densi-

ty map on the image plane of a single camera-view, with

different architectures improving the performance across

scenes and views. In contrast, in this paper, we focus on

fusing multiple camera views of the same scene to obtain a

ground-plane density map in the 3D world.

2.2. Multi­view counting

Existing multi-view counting methods can be divided in-

to 3 categories: detection/tracking, regression, 3D cylin-

der methods. The detection/tracking methods first perfor-

m detection or tracking on each scene and obtain single-

view detection results. Then, the detection results from each

view are integrated by projecting the single-view results to

a common coordinate system, e.g., the ground plane or a

reference view. The count of the scene is obtained by solv-

ing a correspondence problem [7, 22, 26, 28]. Regression

based methods first extract foreground segments from each

view, then build the mapping relationship of the segments

and the count number with a regression model [37, 44]. 3D

cylinder-based methods try to find the people’s locations in

the 3D scene by minimizing the gap between the people’s

3D positions projected into the camera view and the single

view detection [11].

These multi-view counting methods are mainly based

on hand-crafted low-level features and regression or detec-

tion/tracking frameworks. Regression-based methods on-

ly give the global count, while detection/tracking methods

cannot cope well with occlusions when the scene is very

crowded. In contrast to these works, our approach is based

on predicting the ground-plane density map in the 3D world

by fusing the information across camera views using DNNs.

Two advantages of our approach are the abilities to learn the

feature extractors and fusion stage in end-to-end training,

and to estimate the spatial arrangement of the crowd on the

ground plane. While the previous methods are mainly test-

ed on PETS2009, which only contains low/moderate crowd

numbers on a walkway, here we test on a newly collected

dataset comprising a real-world scene of a street intersec-

tion with large crowd numbers, vehicles, and occlusions.

3. Multi-view counting via multi-view fusion

For multi-view counting, we assume that the cameras

are fixed, the camera calibration parameters (both intrin-

sic and extrinsic) are known, and that the camera frames

across views are synchronized. Given the set of multi-view

images, the goal is to predict a scene-level density map de-

fined on the ground-plane of the 3D scene (see Fig. 1). The

ground-truth ground-plane density map is obtained in a sim-

ilar way as the traditional camera-view density map – the

ground-plane annotation map is obtained using the ground-

truth 3D coordinates of the people, which is then convolved

by a fixed-width Gaussian to obtain the density map.

In this section, we propose three fusion approaches for

multi-view counting: 1) the late fusion model projects

camera-view density maps onto the ground plane and then

fuses them together, and requires a projection normalization

step; 2) the naı̈ve early fusion model projects camera-view

feature maps onto the ground plane then fuses them; 3) to

handle inter-view and intra-view scale variations, the multi-

view multi-scale early fusion model (MVMS) selects fea-

tures scales to be consistent across views when projecting

to the same ground-plane point. We first present the com-
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FCN-7

Layer Filter

conv 1 16×1×5×5

conv 2 16×16×5×5

pooling 2×2

conv 3 32×16×5×5

conv 4 32×32×5×5

pooling 2×2

conv 5 64×32×5×5

conv 6 32×64×5×5

conv 7 1×32×5×5

Fusion

Layer Filter

concat -

conv 1 64×n×5×5

conv 2 32×64×5×5

conv 3 1×32×5×5

Table 1: FCN-7 backbone and fusion module. The Filter dimen-

sions are output channels, input channels, and filter size (w×h).

mon components, and then the 3 fusion models.

3.1. Backbone FCN for camera views

A fully-convolutional network (denoted as FCN-7) is

used on each camera view to extract image feature maps

or estimate a corresponding view-level density map. The

FCN-7 settings are shown in Table 1. Although more com-

plex DNNs, e.g., [39, 42, 51], could be applied to the

camera-views, in this paper, we mainly focus on how to ef-

fectively fuse multi-view information to perform wide-area

crowd counting, and thus using FCN-7 suffices.

3.2. Camera­view to scene projection

As we assume that the intrinsic and extrinsic parameters

of the cameras are known, the projection from a camera’s

2D image space to a 3D scene-level representation can be

implemented as a differentiable fixed-transformation mod-

ule (see Fig. 3). The 3D height (z-coordinate) correspond-

ing to each image pixel is unknown. Since the view-level

density maps are based on head annotations and the head is

typically visible even during partial occlusion, we assume

that each pixel’s height in the 3D world is a person’s av-

erage height (1750 mm). The camera parameters together

with the height assumption are used to calculate the corre-

spondence mapping P between 2D image coordinates and

the 3D coordinates on the 3D average-height plane. Final-

ly, the Sampler from the Spatial Transformer Networks [13]

is used to implement the projection, resulting in the scene-

level representation of the input map.

3.3. Late fusion model

The main idea of the late fusion model is to first estimate

the density maps in each camera view, and then fuse them

together to obtain the scene-level density map. In partic-

ular, the late fusion model consists of 3 stages (see Fig. 2

top): 1) estimating the camera-view density maps using

FCN-7 on each view; 2) projecting the density maps to the

ground-plane representation using the projection module; 3)

concatenating the projected density maps channel-wise and

then applying the Fusion module to obtain the scene-level

density map. The network settings for the fusion network

Coordinate correspondence 

Sampler

World planeImage plane

Camera parameters

Camera-view map
Scene-level map

Figure 3: The projection module to transform camera-view map-

s to a scene-level representation. Here the camera-view map is

visualized as a density map.

are presented in Table 1.

Projection Normalization. One problem is that the den-

sity map is stretched during the projection step, and thus

the sum of the density map changes after the projection.

Considering that the density map is composed of a sum

of Gaussian kernels, each Gaussian is stretched different-

ly depending on its location in the image plane. To address

this problem, we propose a normalization method to ensure

that the sum of each Gaussian kernel remains the same af-

ter projection (see Fig. 4). In particular, let (x0, y0) and

(x, y) be the corresponding points in the image plane and

the 3D world ground-plane representation. The normaliza-

tion weight wxy for ground-plane position (x, y) is

wxy =

∑
ij Dx0,y0

(i, j)
∑

mn P(Dx0,y0
(m,n))

, (1)

where Dx0,y0
denotes an image-space density map contain-

ing only one Gaussian kernel centered at (x0, y0), P is the

projection operation from image space to ground plane, and

(i, j) and (m,n) are the image coordinates and ground-

plane coordinates, respectively. The normalization map

W = [wxy] for each camera is element-wise multiplied to

the corresponding projected density map before concatena-

tion. As illustrated in Fig. 4, after normalization, the sum-

mation of the projected density map remains similar to that

of the original view-level density map.

3.4. Naı̈ve early fusion

The naı̈ve early fusion model directly fuses the feature

maps from all the camera-views to estimate the ground-

plane density map. Similar to the late fusion model, we

implement the early fusion model by replacing the density

map-level fusion with feature-level fusion (see Fig. 2 bot-

tom). Specifically, the naı̈ve early fusion model consists of

3 stages: 1) extracting feature maps from each camera view

using the first 4 convolution layers of FCN-7; 2) projecting

the image feature maps to the ground-plane representation

using the projection module; 3) concatenating the projected

feature maps and applying the Fusion module to estimate

8300



.

View-level density map Normalized projected 
density map

Projected density map Normalization 
weight map

..

.

.

.

. .

Figure 4: The projection normalization process for the late fusion

model. Sum is the sum of the whole density map, while Sum(⊙) is

the sum over the circled region.

the scene-level density map. Note that the projection nor-

malization step used in the late fusion model is not required

for the early fusion model, since feature maps do not have

the same interpretation of summation yielding a count.

3.5. Multi­view multi­scale early fusion

Intra-view scale variations are an important issue in

single-view counting, as people will appear with different

sizes in the image due to perspective effects. Using multi-

ple views increases the severity of the scale variation issue;

in addition to intra-view scale variation, multi-view images

have inter-view scale variations, where the same person will

appear at different scales across multiple views. This inter-

view scale variation may cause problems during the fusion

stage as there are a combinatorial number of possible scales

appearing across all views, which the network needs to be

invariant to. To address this problem, we instead extract

feature maps at multiple scales, and then perform scale se-

lection so that the projected features are at consistent scales

across all views (i.e., a given person appears at the same

scale across all views).

Our proposed multi-view multi-scale (MVMS) early fu-

sion architecture is shown in Fig. 5. The MVMS fusion

model consists of 4 stages: 1) extracting multi-scale feature

maps by applying the first 4 convolution layers of FCN-7 on

an image pyramid for each camera view; 2) upsampling all

the feature maps to the largest size, and then selecting the

scales for each pixel in each camera-view according to the

scene geometry; 3) projecting the scale-consistent feature

maps to the ground-plane representation using the projec-

tion module; 4) fusing the projected features and predicting

a scene-level density map using the fusion module. We con-

sider 2 strategies for selecting the consistent scales, fixed

scale selection and learnable scale selection.

Fixed scale-selection. The fixed scale selection strate-

gy is illustrated in Fig. 5 (right-top). For a given camera,

let {F0, · · · , Fn} be the set of feature maps extracted from

the image pyramid, and then upsampled to the same size.

Here F0 is the original scale and Fn is the smallest scale.

A distance map is computed for the camera-view, where

d(x0, y0) is the distance between the camera’s 3D location

and the projection of the point (x0, y0) into the 3D-world

(on the average height plane). A scale selection map S,

where each value corresponds to the selected scale for that

pixel, is computed using the distance map,

S(x0, y0) = sr − ⌊logz
d(x0, y0)

dr
⌋, (2)

where z is the zoom factor between neighboring scales in

the image pyramid, and ⌊·⌋ is the floor function. dr and sr
are the reference distance and the corresponding reference

scale number, which are the same for all camera-views. In

our experiments, we set the reference distance dr as the dis-

tance value for the center pixel of the first view, and sr as

the middle scale of the image pyramid. Given the scale s-

election map S, the feature maps across scales are merged

into a single feature map, F =
∑

i ✶(S = i) ⊗ Fi, where

⊗ is element-wise multiplication, and ✶ is an element-wise

indicator function.

Learnable scale-selection: The fixed scale selection s-

trategy requires setting the reference distance and reference

scale parameters. To make the scale selection process more

adaptive to the view context, a learnable scale-selection

model is considered (Fig. 5 (right-down)),

S(x0, y0) = b+ k logz
d(x0, y0)

dr
, (3)

where the learnable parameter b corresponds to the refer-

ence scale, and k adjusts the reference distance. The learn-

able scale selection can be implemented as a 1×1 convolu-

tion on the log distance map. Then, a soft scale selection

mask Mi for scale i can be obtained,

Mi(x0, y0) =
e−(S(x0,y0)−i)2

∑n

j=0 e
−(S(x0,y0)−j)2

. (4)

The scale consistent feature map is then F =
∑

i Mi ⊗ Fi.

3.6. Training details

A two-stage process is applied to train the model. At

the first stage, the single-view density maps together with

the scene-level density maps are used as supervisory infor-

mation. Each single-view FCN-7 backbone is trained using

the camera-view images and the corresponding single-view

density maps. The learning rate is set to 1e-4. In the second

stage, the supervisory information of the single-view densi-

ty maps is removed. FCN-7 (either density map estimator

or feature extractor) is fixed and the fusion and scale selec-

tion parts are trained. The loss function is the pixel-wise

squared error between the ground-truth and predicted den-

sity maps. The learning rate is set to 1e-4, and decreases
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Figure 5: The pipeline of multi-view multi-scale (MVMS) early fusion model. First, multi-scale feature maps are extracted with an image

pyramid. The multi-scale feature maps are up-sampled to the same size. The scale selection module (the dotted box) favors the scales

of features that represent the same ground-plane point are consistent across all views. The scale-consistent features are projected to the

average-height plane and then fused to obtain the scene-level density map. Two kinds of scale selection strategies (the two dotted boxes on

the right) are utilized: the fixed scale selection uses the distance information relative to a reference distance, and learnable scale selection

makes the reference distance a learnable parameter.

to 5e-5 during training. After training the two stages, the

model is fine-tuned end-to-end. The training batch-size is

set to 1 in all experiments.

4. Experiments

In this section we present our experiments on multi-view

crowd counting using DNNs.

4.1. Datasets

We test on two existing datasets, PETS2009 and

DukeMTMC, and our newly collected City Street dataset.

Table 2 provides a summary, and Fig. 6 shows examples.

PETS2009: PETS2009 [9] is a multi-view sequence

dataset containing crowd activities from 8 views. The first

3 views are used for the experiments, as the other 5 views

have low camera angle, poor image quality, or unstable

frame rate. To balance the crowd levels, we use sequences

S1L3 (14 17, 14 33), S2L2 (14 55) and S2L3 (14 41) for

training (1105 images in total), and S1L1 (13 57, 13 59),

S1L2 (14 06, 14 31) for testing (794 images). The calibra-

tion parameters (extrinsic and intrinsic) for the cameras are

provided with the dataset. To obtain the annotations across

all views, we use the View 1 annotations provided by [20]

and project them to other views followed by manual anno-

tations to get all the people heads in the images.

DukeMTMC: DukeMTMC [35] is a multi-view video

dataset for multi-view tracking, human detection or ReID.

The multi-view video dataset has video from 8 synchro-

nized cameras for 85 minutes with 1080p resolution at 60

fps. For our counting experiments, we use 4 cameras (cam-

eras 2, 3, 5 and 8) that have overlapping fields-of-view. The

synchronized videos are sampled every 3 seconds, resulting

in 989 multi-view images. The first 700 images are used for

training and the remaining 289 for testing. Camera extrinsic

and homography parameters are provided by the dataset. In

Dataset resolution view train / test crowd

PETS2009 [9] 768×576 3 1105 / 794 20-40

DukeMTMC [35] 1920×1080 4 700 / 289 10-30

City Street 2704×1520 3 300 / 200 70-150

Table 2: The comparison of three multi-view datasets.

the original dataset, annotations for each view are only pro-

vided in the view ROIs, which are all non-overlapping on

the ground-plane. Since we are interested in overlapping

cameras, we project the annotations from each camera view

to the overlapping areas in all other views. Region R2 (see

Fig. 6) is excluded during the experiment, since there are

no annotations provided there.

City Street: We collected a multi-view video dataset of

a busy city street using 5 synchronized cameras. The videos

are about 1 hour long with 2.7k (2704×1520) resolution at

30 fps. We select Cameras 1, 3 and 4 for the experimen-

t (see Fig. 6 bottom). The cameras’ intrinsic and extrin-

sic parameters are estimated using the calibration algorithm

from [52]. 500 multi-view images are uniformly sampled

from the videos, and the first 300 are used for training and

remaining 200 for testing. The ground-truth 2D and 3D an-

notations are obtained as follows. The head positions of the

first camera-view are annotated manually, and then project-

ed to other views and adjusted manually. Next, for the sec-

ond camera view, new people (not seen in the first view), are

also annotated and then projected to the other views. This

process is repeated until all people in the scene are anno-

tated and associated across all camera views. Our dataset

has larger crowd numbers (70-150), compared with PET-

S (20-40) and DukeMTMC (10-30). Our new dataset also

contains more crowd scale variations and occlusions due to

vehicles and fixed structures.

Experiment settings: The image resolutions (w×h) used

in the experiments are: 384×288 for PETS2009, 640×360
for DukeMTMC, and 676×380 for City Street. The res-

olutions of the scene-level ground-plane density maps are:
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Figure 6: Examples from 3 multi-view counting datasets. The first column shows the camera frames and annotations. The second column

shows the camera layout and scene-level ground-plane density maps.

152×177 for PETS2009, 160×120 for DukeMTMC and

160× 192 for City Street. For the detection baseline, the o-

riginal image resolutions are used (Faster-RCNN will resize

the images).

4.2. Experiment setup

Methods: We test our 3 multi-view fusion models, de-

noted as “Late fusion”, “Naı̈ve early fusion”, and “MVMS”

(multi-view multi-scale early fusion). The late fusion model

uses projection normalization. MVMS uses learnable scale

selection, and a 3-scale image pyramid with zoom factor of

0.5. These settings will be tested later in the ablation study.

For comparisons, we test two baseline methods. The first

baseline is a simple approach to fusing camera-view density

maps into a scene-level count, denoted as “Dmap weight-

ed”, which is an adaptation from [37]. First FCN-7 is ap-

plied to get the density map Di for each camera-view. The

density maps are then fused into a scene-level count using a

weight map Wi for each view,

C =
∑

i

∑

x0,y0

Wi(x0, y0)Di(x0, y0), (5)

where the summations are over the camera-views and the

image pixels. The weight map Wi is constructed based on

how many views can see a particular pixel. In other words,

Wi(x0, y0) = 1/t, where t is the number of views that can

see the projected point P(x0, y0). Note that [37] used this

simple fusion approach with traditional regression-based

counting (in their setting, the Di map is based on the pre-

dicted counts for crowd blobs). Here, we are using recent

DNN-based methods and crowd density maps, which out-

perform traditional regression-based counting, and hence

form a stronger baseline method compared to [37].

The second baseline is using human detection methods

and person re-identification (ReID), denoted as “Detection

+ ReID”. First, Faster-RCNN [33] is used to detect humans

in each camera-view. Next, the scene geometry constraints

and the ReID method LOMO 2015 [24] are used to asso-

ciate the same people across views. Specifically, each de-

tection box’s top-center point in one view is projected to

other views, and ReID is performed between the original

detection box and detection boxes near the projected point

in other views. Finally, the scene-level people count is ob-

tained by counting the number of unique people among the

detection boxes in all views. The bounding boxes needed

for training are created with the head annotations and the

perspective map of each view.

Evaluation: The mean absolute error (MAE) is used to

evaluate multi-view counting performance, comparing the

scene-level predicted counts and the ground-truth scene-

level counts. In addition, we also evaluate the MAE of the

predicted counts in each camera-view. The ground-truth

count for each camera-view is obtained by summing the

ground-truth scene-level density map over the region cov-

ered by the camera’s field-of-view. Note that people that are

totally occluded from the camera, but still within its field-

of-view, are still counted.

4.3. Experiment results

The experimental results are shown in Table 3. On PET-

S2009, our 3 multi-view fusion models can achieve bet-

ter results than the two comparison methods in terms of

both single-view counting and scene-level counting. De-

tection+ReID performs worst on this dataset because the

people are close together in a crowd, and occlusion caus-

es severe misdetection. Among our three multi-view fusion

models, naı̈ve early fusion performs worse, which suggest-

s that the scale variations in multi-view images limits the

performance. Furthermore, MVMS performs much better
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Dataset PETS 2009 [9] DukeMTMC [35] City Street

Camera 1 2 3 scene 2 3 5 8 scene 1 3 4 scene

Dmap weighted 3.37 5.59 5.84 7.51 0.62 0.91 0.98 1.41 2.12 10.16 12.55 21.56 11.10

Detection+ReID 8.60 11.19 14.61 9.41 2.06 0.25 0.96 3.58 2.20 41.38 32.94 28.57 27.60

Late fusion (ours) 2.62 3.17 3.97 3.92 0.49 0.77 0.39 1.15 1.27 8.14 7.72 8.08 8.12

Naı̈ve early fusion (ours) 2.37 4.27 4.92 5.43 0.64 0.44 0.93 1.72 1.25 8.13 7.62 7.89 8.10

MVMS (ours) 1.66 2.58 3.46 3.49 0.63 0.52 0.94 1.36 1.03 7.99 7.63 7.91 8.01

Table 3: Experiment results: mean absolute error (MAE) on three multi-view counting datasets. “scene” denotes the scene-level counting

error, while camera numbers denote to camera-view counting error. The late fusion model uses projection normalization, and MVMS uses

learnable scale selection.

Dataset PETS2009 [9] DukeMTMC [35] City Street

Camera 1 2 3 scene 2 3 5 8 scene 1 3 4 scene

Late fusion (with) 2.62 3.17 3.97 3.92 0.49 0.77 0.39 1.15 1.27 8.14 7.72 8.08 8.12

Late fusion (without) 2.75 3.86 4.37 4.22 0.63 0.73 0.51 1.31 1.43 9.89 9.60 9.82 9.87

MVMS (fixed) 1.74 2.57 3.81 3.82 0.65 0.46 0.88 1.44 1.09 8.11 7.83 8.32 7.80

MVMS (learnable) 1.66 2.58 3.46 3.49 0.63 0.52 0.94 1.36 1.03 7.99 7.63 7.91 8.01

Table 4: Ablation study comparing the late fusion model with and without projection normalization, and MVMS with fixed or learnable

scale selection.

than other models, which shows the multi-scale framework

with scale selection strategies can improve the feature-level

fusion to achieve better performance.

On DukeMTMC, our multi-view fusion models can

achieve better performance than comparison methods at the

scene-level and on most camera-views. Detection+ReID

achieves the best result on camera 3 because this camera

is almost parallel to the horizontal plane, has low people

count, and rarely has occlusions, which is an ideal operat-

ing regime for the detector. Due to lower crowd numbers

in DukeMTMC, the performance gap among the 3 fusion

models is not large, but MVMS still performs best.

On City Street, our 3 multi-view fusion models achieve

better results than the comparison methods. Compared to

PETS2009, City Street has larger crowds and more oc-

clusions and scale variations. Therefore, the performance

of the baseline methods decreases a lot, especially Detec-

tion+ReID. Our MVMS model achieves better performance

than all other models. Example results of scene-level den-

sity maps and counts can be found in the supplemental.

4.4. Ablation study

We perform an ablation study on the late fusion mod-

el with and without the projection normalization step, and

the results are presented in Table 4 (top). Using projection

normalization reduces the error of the late fusion model,

compared to not using the normalization step.

We also perform an ablation study on the scale-selection

strategy of MVMS, and the results are presented in Table

4 (bottom). Most of the time the learnable scale-selection

strategy can achieve lower error than fixed scale-selection.

We note that even using the fixed scale-selection strategy

with MVMS still outperforms the naı̈ve early fusion, which

performs no scale selection. Thus obtaining features that

have consistent scales across views is an important step

when fusing the multi-view feature maps.

5. Conclusion

In this paper, we propose a DNN-based multi-view

counting framework that fuses camera-views to predic-

t scene-level ground-plane density maps. Both late fusion of

density maps and early fusion of feature maps are studied.

For late fusion, a projection normalization method is pro-

posed to counter the effects of stretching caused by the pro-

jection operation. For early fusion, a multi-scale approach

is proposed that selects features that have consistent scales

across views. To advance research in multi-view counting,

we collect a new dataset of large scene containing a street

intersection with large crowds. Experiments show that our

proposed multi-view counting framework can achieve bet-

ter counting results than other methods.

In this paper, we have assumed that the cameras are fixed

and camera parameters are known. Adapting our frame-

work to moving cameras and unknown camera parameters

(using the full spatial transformer net) is interesting future

work. In addition, we have trained and tested the network

on each dataset individually. Another interesting future di-

rection is on cross-scene multi-view counting, where the

scenes in the test set are distinct from those in the train-

ing set – however, this requires more multi-view scenes to

be collected.
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