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Figure 1: Our model (D) trained with real raw sensor data achieves better 4X computational zoom. We compare zoomed

output against (B) ESRGAN [30], representative of state-of-the-art learning-based super-resolution methods, which operate

on processed 8-bit RGB input, and (C) our model trained on synthetic sensor data. In (A), digital zoom via bicubic upsampling

is the naı̈ve baseline and optical zoom serves as the reference ground truth. Our output is artifact-free and preserves detail

even for challenging regions such as the high-frequency grillwork.

Abstract

This paper shows that when applying machine learning

to digital zoom, it is beneficial to operate on real, RAW sen-

sor data. Existing learning-based super-resolution meth-

ods do not use real sensor data, instead operating on pro-

cessed RGB images. We show that these approaches for-

feit detail and accuracy that can be gained by operating

on raw data, particularly when zooming in on distant ob-

jects. The key barrier to using real sensor data for training

is that ground-truth high-resolution imagery is missing. We

show how to obtain such ground-truth data via optical zoom

and contribute a dataset, SR-RAW, for real-world computa-

tional zoom. We use SR-RAW to train a deep network with

a novel contextual bilateral loss that is robust to mild mis-

alignment between input and outputs images. The trained

network achieves state-of-the-art performance in 4X and 8X

computational zoom. We also show that synthesizing sen-

sor data by resampling high-resolution RGB images is an

oversimplified approximation of real sensor data and noise,

resulting in worse image quality.

1. Introduction

Zoom functionality is a necessity for mobile phones and

cameras today. People zoom onto distant subjects such

as wild animals and sports players in their captured im-

ages to view the subject in more detail. Smartphones such

as iPhoneX are even equipped with two cameras at differ-

ent zoom levels, indicating the importance of high-quality

zoom functionality for the consumer camera market.

Optical zoom is an optimal choice for image zoom and

can preserve high image quality, but zoom lenses are usually

expensive and bulky. Alternatively, we can conveniently use

digital zoom with a standard lens. However, digital zoom
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simply upsamples a cropped region of the camera sensor

input, producing blurry output. It remains a challenge to

obtain high-quality images for distant objects without ex-

pensive optical equipment.

We propose to improve the quality of super-resolution

by starting with real raw sensor data. Recently, single-

image super-resolution has progressed with deep models

and learned image priors from large-scale datasets [2, 13,

15, 16, 18, 19, 21, 24, 34]. However, these methods are con-

strained in the following two respects. First, they approach

computational zoom under a synthetic setup where the input

image is a downsampled version of the high-resolution im-

age, indirectly reducing the noise level in the input. In prac-

tice, regions of distant objects often contain more noise as

fewer photons enter the aperture during the exposure time.

Second, most existing methods start with an 8-bit RGB im-

age that has been processed by the camera’s image signal

processor (ISP), which trades off high-frequency signal in

higher-bit raw sensor data for other objectives (e.g. noise

reduction).

In this work, we raise the possibility to apply machine

learning to computational zoom that uses real raw sen-

sor data as input. The fundamental challenge is obtaining

ground truth for this task: low-resolution raw sensor data

with corresponding high-resolution images. One approach

is to synthesize sensor data from 8-bit RGB images that are

passed through some synthetic noise model [9]. However,

noise from a real sensor [27] can be very challenging to

model and is not modeled well by any current work that

synthesizes sensor data for training. The reason is that sen-

sor noise comes from a variety of sources, exhibiting color

cross-talk and effects of micro-geometry and micro-optics

close to the sensor surface. We find that while a model

trained on synthetic sensor data works better than using 8-

bit RGB data (e.g. compare (B) and (C) in Figure 1), the

model trained on real raw sensor data performs best (e.g.

compare (C) and (D) in Figure 1).

To enable learning from real raw sensor data for better

computational zoom, we propose to capture real data with

a zoom lens [17], where the lens can move physically fur-

ther from the image sensor to gather photons from a nar-

rower solid angle for optical magnification. We build SR-

RAW, the first dataset used for real-world computational

zoom. SR-RAW contains ground-truth high-resolution im-

ages taken with high optical zoom levels. During training,

an 8-bit image taken with a longer focal length serves as the

ground truth for the higher-bit (e.g. 12-14 bit) raw sensor

image taken with a shorter focal length.

During training, SR-RAW brings up a new challenge:

the source and target images are not perfectly aligned as

they are taken with different camera configurations that

cause mild perspective change. Furthermore, preprocessing

introduces ambiguity in alignment between low- and high-

resolution images. Mildly misaligned input-output image

pairs make pixel-wise loss functions unsuitable for training.

We thus introduce a novel contextual bilateral loss (CoBi)

that is robust to such mild misalignment. CoBi draws inspi-

ration from the recently proposed contextual loss (CX) [22].

A direct application of CX to our task yields strong artifacts

because CX doesn’t take spatial structure into account. To

address this, CoBi prioritizes local features while also al-

lowing for global search when features are not aligned.

In brief, we “Zoom to Learn” – collecting a dataset with

ground-truth high-resolution images obtained via optical

zoom, to “Learn to Zoom” – training a deep model that

achieves better computational zoom. To evaluate our ap-

proach, we compare against existing super-resolution meth-

ods and also against an identical model to ours, but trained

on synthetic sensor data obtained via a standard synthetic

sensor approximation. Image quality is measured by distor-

tion metrics such as SSIM, PSNR, and a learned perceptual

metric. We also collect human judgments to validate the

consistency of the generated images with human percep-

tion. Results show that real raw sensor data contains useful

image signal for recovering high-fidelity super-resolved im-

ages. Our contributions can be summarized as follows:

• We demonstrate the utility of using real high-bit sen-

sor data for computational zoom, rather than processed

8-bit RGB images or synthetic sensor models.

• We introduce a new dataset, SR-RAW, the first dataset

for super-resolution from raw data, with optical ground

truth. SR-RAW is taken with a zoom lens. Images

taken with long focal length serve as optical ground

truth for images taken with shorter focal length.

• We propose a novel contextual bilateral loss (CoBi)

that handles slightly misaligned image pairs. CoBi

considers local contextual similarities with weighted

spatial awareness.

2. Related Work

Image Super-resolution. Image super-resolution has ad-

vanced from traditional filtering to learning-based methods.

The goal is to reconstruct a high-resolution image from

a low-resolution RGB image. Traditional approaches in-

clude filtering-based techniques such as bicubic upsampling

and edge-preserving filtering [20]. These filtering methods

usually produce overly smooth texture in the output high-

resolution image. Several approaches use patch matching

to search for similar patches in a training dataset or in the

image itself [8, 10, 12]. Recently, deep neural networks

have been applied to super-resolution, trained with a variety

of losses [5, 13, 16].

Many recent super-resolution approaches are based on

generative adversarial networks. SRGAN [19] is an im-
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age super-resolution approach that applies a GAN to gen-

erate high-resolution images. The loss used in SRGAN

combines a deep feature matching loss and an adversarial

loss. Lai et al. [18] propose the Laplacian Pyramid Super-

Resolution Network to progressively predict the residual

of high-frequency details of a lower-resolution image in a

coarse-to-fine image pyramid. Wang et al. [30] propose

ESRGAN, which enhances image super-resolution with a

Relativistic GAN [14] that estimates how much one image

is relatively more realistic than another. Wang et al. [29]

study class-conditioned image super-resolution and propose

SFT-GAN that is trained with a GAN loss and a perceptual

loss. Most existing super-resolution models take a synthetic

low-resolution RGB image (usually downsampled from a

high-resolution image) as input. In contrast, we obtain real

low-resolution images taken with shorter focal lengths and

use optically zoomed images as ground truth.

Image Processing with Raw Data. Prior works have used

raw sensor data to enhance image processing tasks. Far-

siua et al. [7] propose a maximum a posteriori technique

for joint multi-frame demosaicing and super-resolution es-

timation with raw sensor data. Gharbi et al. [9] train a

deep neural network for joint demosaicing and denoising.

Zhou et al. [35] address joint demosaicing, denoising, and

super-resolution. These methods use synthetic Bayer mo-

saics. Similarly, Mildenhall et al. [23] synthesize raw burst

sequences for denoising. Chen et al. [3] present a learning-

based image processing pipeline for extreme low-light pho-

tography using raw sensor data. DeepISP is an end-to-end

deep learning model that enhances the traditional camera

image signal processing pipeline [25]. Similarly, we operate

on raw sensor data and propose a method to super-resolve

images by jointly optimizing for the camera image process-

ing pipeline and super-resolution from raw sensor data.

3. Dataset With Optical Zoom Sequences

To enable training with real raw sensor data for compu-

tational zoom, we collect a diverse dataset, SR-RAW, that

contains raw sensor data and ground-truth high-resolution

images taken with a zoom lens at various zoom levels. For

data preprocessing, we align the captured images with dif-

ferent zoom levels via field of view (FOV) matching and

geometric transformation. The SR-RAW dataset enables

training an end-to-end model that jointly performs demo-

saicing, denoising, and super-resolution on raw sensor data.

Training on real sensor data differentiates our framework

from existing image super-resolution algorithms that oper-

ate on low-bit RGB images.

3.1. Data Capture with a Zoom Lens

We use a 24-240 mm zoom lens to collect pairs of RAW

images with different levels of optical zoom. Each pair of

images forms an input-output pair for training a model: the

short-focal-length raw sensor image is used as input and the

long-focal-length RGB image is regarded as the ground-

truth for super-resolution. For example, the RGB image

taken with a 70mm focal length serves as the 2X zoom

ground truth for the raw sensor data taken with a 35mm

focal length. In practice, we collect 7 images under 7 op-

tical zoom settings per scene for data collection efficiency.

Every pair of images from the 7-image sequence forms a

data pair for training a particular zoom model. In total, we

collect 500 sequences in indoor and outdoor scenes. ISO

ranges from 100 to 400. One example sequence is shown in

Figure 2A.

During data capture, camera settings are important.

First, depth of field (DOF) changes with focal length and it

is not practical to adjust aperture size for each focal length

to make DOF identical. We choose a small aperture size

(at least f/20) to minimize the DOF difference (still notice-

able in Figure 2 B2), using a tripod to capture indoor scenes

with a long exposure time. Second, we use the same expo-

sure time for all images in a sequence so that noise level is

not affected by focal length change. But we still observe

noticeable illumination variations due to shutter and phys-

ical pupil being mechanical and involving action variation.

This color variation is another motivation for us to avoid

using pixel-to-pixel losses for training. Third, although

perspective does not change with focal length, there exists

slight variation (length of the lens) in the center of projec-

tion when the lens zooms in and out, generating noticeable

perspective change between objects at different depths (Fig-

ure 2 B1). Sony FE 24-240mm, the lens we use, requires a

distance of at least 56.4 meters from the subject to have less

than one-pixel perspective shift between objects that are 5

meters apart. Therefore, we avoid capturing very close ob-

jects but allow for such perspective shifts in our dataset.

3.2. Data Preprocessing

For a pair of training images, we denote the low-

resolution image by RGB-L and its sensor data by RAW-L.

For high-resolution ground truth we use RGB-H and RAW-

H. We first match the field of view (FOV) between RAW-L

and RGB-H. Alignment is then computed between RGB-L

and RGB-H to account for slight camera movement caused

by manually zooming the camera to adjust focal lengths.

We apply a Euclidean motion model that allows image ro-

tation and translation via enhanced correlation coefficient

minimization [6]. During training, RAW-L with matched

FOV is fed into the network as input; its ground truth tar-

get is RGB-H that is aligned and has the same FOV with

RAW-L. A scale offset is applied to the image if the optical

zoom does not perfectly match the target zoom ratio. For

example, an offset of 1.07 is applied to the target image if

we use (35mm, 150mm) to train a 4X zoom model.

3764



(A) Example sequence from SR-RAW

(B1) Noticeable perspective misalignment (B2) Depth-of-field misalignment (B3) Resolution alignment ambiguity

Figure 2: Example sequence from SR-RAW and three sources of misalignment in data capture and preprocessing. The

unavoidable misalignment motivates our proposed loss.

3.3. Misalignment Analysis

Misalignment is unavoidable during data capture and can

hardly be eliminated by the preprocessing step. Since we

capture data with different focal lengths, misalignment is

inherently caused by the perspective changes as described

in Section 3.1. Furthermore, when aligning images with

different resolutions, sharp edges in the high-resolution im-

age cannot be exactly aligned with blurry edges in the low-

resolution image (Figure 2 B3). The described misalign-

ment in SR-RAW usually causes 40-80 pixel shifts in an

8-megapixel image pair.

4. Contextual Bilateral Loss

When using SR-RAW for training, we find that pixel-

to-pixel losses such as L1 and L2 generate blurred im-

ages due to misalignment in the training data (Section 3).

On the other hand, the recently proposed Contextual Loss

(CX) [22] for unaligned data is also unsatisfactory as it only

considers features but not their spatial location in the image.

For a brief review, the contextual loss was proposed to train

with unaligned data pairs. It treats the source image P as a

collection of feature points pi
N
i=1

and the target image Q as

a set of feature points qj
M
j=1

. For each source image feature

p, it searches for the nearest neighbor (NN) feature match

q such that q = argminq D(p, qj)
M
j=1

under some distance

measure D(p, q). Given input image P and its target Q, the

contextual loss tries to minimize the summed distance of all

matched feature pairs, formulated as

CX(P,Q) =
1

N

N∑

i

min
j=1,...,M

(Dpi,qj ). (1)

We find that training with the contextual loss yields im-

ages that suffer from significant artifacts, demonstrated in

Figure 3. We hypothesize that these artifacts are caused

by inaccurate feature matching in the contextual loss. We

thus analyze the percentage of features that are matched

uniquely (i.e., bijectively). The percentage of target fea-

tures matched with a unique source feature is only 43.7%,

much less than the ideal percentage of 100%.

In order to train our model appropriately, we need to de-

sign an image similarity measure applicable to image pairs

with mild misalignment. Inspired by the edge-preserving

bilateral filter [28], we integrate the spatial pixel coordinates

and pixel-level RGB information into the image features.

Our Contextual Bilateral loss (CoBi) is defined as

CoBi(P,Q) =
1

N

N∑

i

min
j=1,...,M

(Dpi,qj + wsD
′

pi,qj ), (2)

where D′

pi,qj = ‖(xi, yi)−(xj , yj)‖2. (xi, yi) and (xj , yj)
are spatial coordinates of features pi and qj , respectively,

and ws denotes the weight of spatial awareness for near-

est neighbor search. ws enables CoBi to be flexible to the

amount of misalignment in the training dataset. The average

number of one-to-one feature matches for our model trained

with CoBi increases from 43.7% to 93.9%.

We experiment with different feature spaces for CoBi

and conclude that a combination of RGB image patches

3765



(A) Bicubic (B) Train with CX (C) Train with CoBi (D) Ground truth

Figure 3: Training with the contextual loss (CX) results in periodic artifacts as shown on the flat wall in (B). These artifacts

are caused by inappropriate feature matching between source and target images, which does not take spatial location into

account. In contrast, training with the proposed contextual bilateral loss (CoBi) leads to cleaner and better results, as shown

in (C).

and pre-trained perceptual features leads to the best perfor-

mance. In particular, we use pretrained VGG-19 features

[26] and select ‘conv1 2’, ‘conv2 2’, and ‘conv3 2’ as our

deep features, shown to be successful for image synthesis

and enhancement [4, 33]. Cosine distance is used to mea-

sure feature similarity. Our final loss function is defined as

CoBiRGB(P,Q, n) + λCoBiVGG(P,Q), (3)

where we use n×n RGB patches as features for CoBiRGB,

and n should be larger for the 8X zoom (optimal n = 15)

than the 4X zoom model (optimal n = 10). Qualitative

comparisons on the effect of λ are shown in the supplement.

5. Experimental Setup

We use images from SR-RAW to train a 4X model and

an 8X model. We pack each 2 × 2 block in the raw Bayer

mosaic into 4 channels as input for our model. The pack-

ing reduces the spatial resolution of the image by a fac-

tor of two in width and height, without any loss of signal.

We subtract the black level and then normalize the data to

[0, 1]. White balance is read from EXIF metadata and ap-

plied to the network output as post-processing for compari-

son against ground truth. We adopt a 16-layer ResNet archi-

tecture [11] followed by log2 N + 1 up-convolution layers

where N is the zoom factor.

We split 500 sequences in SR-RAW into training, vali-

dation, and test sets with a ratio of 80:10:10, so that there

are 400 sequences for training, 50 for validation, and 50 for

testing. For a 4X zoom model, we get 3 input-output pairs

per sequence for training, and for an 8X zoom model, we

get 1 pair per sequence. Each pair contains a full-resolution

(8-megapixel) Bayer mosaic image and its corresponding

full-resolution optically zoomed RGB image. We randomly

crop 64 × 64 patches from a full-resolution Bayer mosaic

as input for training. Example training patches are shown

in the supplement.

We first compare our approach to existing super-

resolution methods that operate on processed RGB images.

Then we conduct controlled experiments on our model vari-

ants trained on different source data types. All comparisons

are tested on the 50 held-out test sequences from SR-RAW.

5.1. Baselines

We choose a few representative super-resolution (SR)

methods for comparisons: SRGAN [19], a GAN-based SR

model; SRResnet [19] and LapSRN [18], which demon-

strate different network architectures for SR; a model by

Johnson et al. [13] that adopts perceptual losses; and finally

ESRGAN [30], the winner of the most recent Perceptual SR

Challenge PIRM [1].

For all baselines except [13], we use public pretrained

models; we first try to fine-tune their models on SR-RAW,

adopting the standard setup in the literature: for each image,

the input is the downsampled (bicubic) version of the target

high-resolution image. However, we notice little difference

in average performance (<±0.04 for SSIM, <±0.05 for

PSNR, and <±0.025 for LPIPS) in comparison to the pre-

trained models without fine-tuning, and thus we directly use

the models without fine-tuning for comparisons. For base-

line methods without pretrained models, we train their mod-

els from scratch on SR-RAW.

5.2. Controlled Experiments on Our Model

“Ours-png”. For comparison, we also train a copy of our

model (“Ours-png”) using 8-bit processed RGB images to

evaluate the benefits of having real raw sensor data. Dif-

ferent from the synthetic setup described in Section 5.1, in-

stead of using downsampled RGB image as input, we use

the RGB image taken with a shorter focal length as input.

The RGB image taken with a longer focal length serves as

the ground truth.

“Ours-syn-raw”. To test whether synthesized raw data can
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Features Syn Real

1. AA Filter No Yes/No

2. Bit Depth 8 12-14

3. Crosstalk No Yes

4. Fill Factor 100% <100%

Figure 4: A range of sensor characteristics exist in real sen-

sor data, but are not accurately reflected in synthesized sen-

sor data. Each of the features listed in the table corresponds

to its numbered label on the illustration, indicating the chal-

lenge to model realistic synthetic sensor data.

replace real sensor data for training, we adopt the standard

sensor synthesis model described by Gharbi et al. [9] to gen-

erate synthetic Bayer mosaics from 8-bit RGB images. In

brief, we retain one color channel per pixel according to

the Bayer mosaic pattern from a white-balanced, gamma-

corrected sRGB image, and introduce Gaussian noise with

random variance. We train a copy of our model on these

synthetic sensor data (“Ours-syn-raw”) and test on real sen-

sor data that is white-balanced and gamma-corrected.

6. Results

6.1. Quantitative Evaluation

To quantitatively evaluate the presented approach, we

use the standard SSIM and PSNR metrics, as well as the

recently proposed learned perceptual metric LPIPS [32],

which measures perceptual image similarity using a pre-

trained deep network. Although there is mild misalignment

in the input-output image pairs in SR-RAW (see Section 3),

this misalignment exists across all methods and thus the

comparisons are fair.

The results are reported in Table 1. They indicate that ex-

isting super-resolution models do not perform well on real

low-resolution images that require digital zoom in practice.

These models are trained under a synthetic setting where in-

put images (usually downsampled) are clean and only con-

tain 8-bit signal. GAN-based methods often generate noisy

artifacts and lead to low PSNR and SSIM scores. Bicubic

upsampling and SRResnet produce blurry results and get a

low score in LPIPS. Our model, trained on high-bit real raw

data and supervised by optically zoomed images, can effec-

tively recover high-fidelity visual information with 4X and

8X computational zoom.

In Table 2, we show evaluations on our model trained

with two different strategies. “Ours-png” is our model

trained on processed RGB images. By accessing real low-

resolution data taken by a short focal length, the model

learns to better handle noise, but its super-resolution power

is limited by the low-bit image source. “Ours-syn-raw” is

our model trained on synthetic Bayer images. While the

model gets access to raw sensor data during test time, it is

limited by the domain gap between synthetic and real sen-

sor data. We illustrate in Figure 4 that a range of real sensor

features are not reflected in a synthetic sensor model. Anti-

aliasing filter (AA filter) exists in selected camera mod-

els. Synthetic sensor data is generated from 8-bit images

while real sensor data contains high-bit signals. Inter-sensor

crosstalk and sensor fill factor introduce noise into the color

filter array and can be hardly parameterized by a simple

noise model [31]. The synthetic sensor model is insufficient

to represent these complicated noise patterns.

6.2. Qualitative Results

We show qualitative comparisons in Figure 5 against

baseline methods, and in Figure 6 against our model vari-

ants trained with different data. Most input images contain

objects that are far from the viewpoint and require compu-

tational zoom in practice. Ground truth is obtained using

a zoom lens with 4X optical zoom. In Figure 5, baseline

methods fail to separate contents from the noise; it appears

that their performance is limited by only having access to

8-bit signals in color images, especially in “Stripe”, which

contains high-frequency details. Text in “Parking” appear

noisy in all baseline results, while our model generates a

clean and discernible output image. In Figure 6, the model

trained on synthetic sensor data produces jagged edges in

“Mario” and “Poster,” and demosaic color artifacts in “Pat-

tern.” Our model, trained on real sensor data with SR-RAW,

can generate a clean demosaiced image with high image fi-

delity.

6.3. Perceptual Experiments

We also evaluate the perceptual quality of our generated

images by conducting a perceptual experiment on Amazon

Mechanical Turk. In each task, we compare our model

against a baseline on 100 4X-zoomed images (50 test im-

ages from SR-RAW and additional 50 images taken without

ground truth). We conduct blind randomized A/B testing

against LapSRN, Johnson et al., ESRGAN, and our model

trained on synthetic sensor data. We show the participants

both results side by side, in random left-right order. The

original low-resolution image is also presented for refer-

ence. We ask the question: “A and B are two versions of

the high-resolution image of the given low-resolution im-

age. Which image (A or B) has better image quality?” In

total, 50 workers participated in the experiment. The re-

sults, listed in Table 3, indicate that our model produces im-

ages that are seen as more realistic in a significant majority

of blind pairwise comparisons.
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4X 8X

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Bicubic 0.615 20.15 0.344 0.488 14.71 0.525

SRGAN [19] 0.384 20.31 0.260 0.393 19.23 0.395

SRResnet [19] 0.683 23.13 0.364 0.633 19.48 0.416

LapSRN [18] 0.632 21.01 0.324 0.539 17.55 0.525

Johnson et al. [13] 0.354 18.83 0.270 0.421 18.18 0.394

ESRGAN [30] 0.603 22.12 0.311 0.662 20.68 0.416

Ours 0.781 26.88 0.190 0.779 24.73 0.311

Table 1: Our model, trained with raw sensor data, performs better computational zoom than baseline methods, as measured

by multiple metrics. Note that a lower LPIPS score indicates better image quality.

4X 8X

SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Ours-png 0.589 22.34 0.305 0.638 21.21 0.584

Ours-syn-raw 0.677 23.98 0.231 0.643 22.02 0.473

Ours 0.781 26.88 0.190 0.779 24.73 0.311

Table 2: Controlled experiments on our model, demonstrating the importance of using real sensor data.

Preference rate

Ours>Syn-raw 80.6%

Ours>ESRGAN [30] 83.4%

Ours>LapSRN [18] 88.5%

Ours>Johnson et al. [13] 92.1%

Table 3: Perceptual experiments show that our results are

strongly preferred over baseline methods.

6.4. Generalization to Other Sensors

Different image sensors have different structural noise

patterns in their Bayer mosaics (See Figure 4). Our model,

trained on one type of Bayer mosaic, may not perform as

well when applied to a Bayer mosaic from another device

(e.g. iPhoneX). To explore the potential of generalization

to other sensors, we capture 50 additional iPhoneX-DSLR

data pairs in outdoor environments. We fine-tune our model

with only 5000 iterations to adapt our model to the iPhoneX

sensor. A qualitative result is shown in Figure 7 and more

results can be found in the supplement. The results indi-

cate that our pretrained model can be generalized to another

sensor by fine-tuning the model on a small dataset captured

with that sensor, and also indicate that input-output data

pairs can come from different devices, suggesting the appli-

cation of our method to devices with limited optical zoom

power.
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Figure 7: Our model can adapt to input data from a different

sensor after fine-tuning on a small dataset.

7. Conclusion

We have demonstrated the effectiveness of using real

raw sensor data for computational zoom. Images are di-

rectly super-resolved from raw sensor data via a learned

deep model that performs joint ISP and super-resolution.

Our approach absorbs useful signal from the raw data and

produces higher-fidelity results than models trained on pro-

cessed RGB images or synthetic sensor data. To enable

training with real sensor data, we collect a new dataset that

contains optically-zoomed images as ground truth and in-

troduce a novel contextual bilateral loss that is robust to

mild misalignment in training data pairs. Our results sug-

gest that learned models could be integrated into cameras

for high-quality digital zoom. Our work also indicates that

preserving signal from raw sensor data may be beneficial

for other image processing tasks.
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Input GT Johnson et al. [13] SRResnet [19] ESRGAN [30] LapSRN [18] Ours

Figure 5: Our 4x zoom results show better perceptual performance in super-resolving distant objects against baseline methods

that are trained under a synthetic setting and applied to processed RGB images.

Input Bicubic Synthetic sensor Ours GT

Figure 6: The model trained on synthetic sensor data produces artifacts such as jagged edges in “Mario” and “Poster” and

color aberrations in “Pattern”, while our model, trained on real sensor data, produces clean and high-quality zoomed images.
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