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Abstract

Video-based person re-identification plays an important
role in surveillance video analysis, expanding image-based
methods by learning features of multiple frames. Most ex-
isting methods fuse features by temporal average-pooling,
without exploring the different frame weights caused by var-
ious viewpoints, poses, and occlusions. In this paper, we
propose an attribute-driven method for feature disentan-
gling and frame re-weighting. The features of single frames
are disentangled into groups of sub-features, each corre-
sponds to specific semantic attributes. The sub-features are
re-weighted by the confidence of attribute recognition and
then aggregated at the temporal dimension as the final rep-
resentation. By means of this strategy, the most informa-
tive regions of each frame are enhanced and contributes to
a more discriminative sequence representation. Extensive
ablation studies verify the effectiveness of feature disentan-
gling as well as temporal re-weighting. The experimental
results on the iLIDS-VID, PRID-2011 and MARS datasets
demonstrate that our proposed method outperforms exist-
ing state-of-the-art approaches.

1. Introduction

Person re-identification (Re-ID) is at the core of intelli-
gent video surveillance systems because of a wide range of
potential applications. Given a query person, the task aims
at matching the same person from multiple non-overlapping
cameras. It remains a very challenging task due to the large
variations of human poses, occlusions, viewpoints, illumi-
nations and background clutter.

*This work was done when the author was visiting Alibaba as a re-
search intern.

fCorresponding author.

fCorresponding author.

Image-based single-query re-id task has been widely
investigated in recent years, including feature representa-
tion [15, 21, 44] and distance metric learning [19, 38, 27].
Deep learning methods have shown significant advantages
in feature learning and have been proven highly effec-
tive in person re-id tasks [18, 5, 32, 35, 30]. Existing
works have shown that multi-query strategy obviously out-
performs single-query by simply pooling features across a
track-let [43, 48, 13]. This improvement is almost cost-free
because multi-frame context is easily available by visual
tracking in real-world surveillance applications.

The video informations are further explored to extract
temporal features, nourishing a series of video-based re-id
approaches. Some works [26, 40, 4] involve optical flow
to provide motion features. Recurrent neural networks are
applied in [49, 40, 4] to explore the temporal structure of
input image sequences. Temporal Attention models are also
utilized in [49, 40, 17] to replace temporal average pooling,
motivated by the assumption that the frames with higher
quality and less occlusions ought to have larger weights
in aggregation. Local features of body regions have been
used in previous works [43, 42, 39] and have shown su-
perior for fine-grained identification. While in the video-
based re-id task, it is suboptimal for local features of the
same body region from different frames to share equal tem-
poral weights due to the various human poses and occlu-
sions within the image sequences. Our proposed method
is motivated mainly by this observation and is designed to
enhance the more informative frames of each regions.

An example of our proposed method is shown in Fig. 1.
The feature of one frame is disentangled into several sub-
features corresponding to specific semantic attribute groups.
In the displayed image sequences, frame-1 captured clear
frontal face so it has higher weight in Head group. While
the bag is invisible in frame-1, the weights of Bag groups
are mainly concentrated on frame-2 and frame-3. Frame-2
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Figure 1. Illustration of our approach. The feature of one frame is
disentangled into several sub-features corresponding to a specific
semantic group. In each group, the sub-features from 7" frames are
aggregated with adaptive weights. The aggregated sub-features are
concatenated as the final feature representation of this sequence

also has the highest weight in Shoes group. The weights
of frame-T are relatively low because of the poor detec-
tion bounding box and clutter background. The re-weighted
sub-features are aggregated at the temporal dimension and
then concatenated as the representation of the input se-
quence. We refine the temporal weights to the sub-feature
level for handling various poses, occlusions and detection
localizations within the sequence.

It is worth nothing that our proposed method relied on at-
tribute annotations. However, it is labor expensive to manu-
ally annotate attribute labels for each identity in real-world
applications. To address this problem, we introduce a trans-
fer learning algorithm to automatically annotate attribute la-
bels on re-id dataset by utilizing the knowledges learned on
the attribute dataset.

2. Related Work

Related works of the proposed method can be sum-
marized into three categories: image-based person re-id,
video-based person re-id and attribute learning. We will ex-
plain the connections and differences between our work and
these methods in the corresponding aspects.

2.1. Image-based person re-id

Person re-id is a challenging task which has been inves-
tigated for several years, while it still faces the same prob-
lems of various viewpoints, poses, illuminations and occlu-
sions as other computer vision problems. Previous works
mainly develop their solutions from two categories: extract-
ing reliable feature representations [15, 21, 44] and learning
robust distance metrics [19, 38, 27]. By means of the de-
velopment of convolutional neural networks(CNNs), a lot
of recent re-id models are designed based on CNN struc-
ture [1, 8, 6, 18, 31, 34, 42]. For example, [1] propose
a method for simultaneously learning features and a corre-
sponding pairwise similarity metric for person re-id. [8]
present a scalable deep feature learning model for person
re-id via relative distance comparison.

The vanilla CNN models only produce global features,
while local details of body regions have been proven effec-
tive in person re-id task [42, 43, 39]. [42] propose a method
which learns features of different body regions by a multi-
stage ROI pooling network. [43] present a part-aligned
representation approach to handle the body misalignment
problem with attention model. [39] propose an attention-
aware network to deal with the misalignment and occlusion
problem by human parsing. In our proposed method, per-
son attributes are utilized for learning local details and dis-
entangling features into semantic groups, which also align
the sub-feature for temporal fusion.

2.2. Video-based person re-id

Image-based re-id can be naturally extended to multi-
shot re-id in real-world applications with the track-lets de-
tected in video sequences. Recent works begin to explore
video-based re-id problem. [26, 40, 4] involve optical flow
calculated between adjacent frames as the input data, which
provide motion features such as gait pattern. However, the
calculation of optical flow is time-consuming, which is im-
practical in real-time applications. [49, 40, 4] apply re-
current neural networks (RNNs) on sequence of single-shot
features to explore the temporal structure. Average pool-
ing is a common strategy to merge features at the temporal
dimension, while [49, 40, 17] utilize attention model to se-
lectively focus on the most informative frames. In order
to maximize the discriminability of each person regions,
we further refine the temporal weights from feature level to
sub-feature level in our method. [40, 4, 41] design siamese
networks which take pairs of sequences as input and ver-
ify whether they belong to the same identity. The siamese
architecture improves performance by pairwise comparison
but is time-consuming in large-scale retrieval. On the con-
trary, our single-pass method only extracts features on each
sequence once, which is efficient for real-time applications.
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Figure 2. Architecture of our method. The attribute labels are split into N groups. Frame features are disentangled in to N + 1 segments,
N of which correspond to the N attribute groups and one for global representation. The temporal weights w: are calculated by the
recognition confidence, which do not provide gradients for training stability, as shown in dash arrow. Attribute predictor in each group is
trained on the merge sub-features. The concatenated feature, including N 4 1 merge sub-features, represents the input sequence.

2.3. Attribute learning

Attribute learning [3, 2, 23] has attracted much attention
in face identification [33, 37] as well as person re-id [31,
20, 29]. Previous works prove that the discriminability of
recognition model can be improved by correctly predicting
attributes. [37] propose a joint deep architecture for face
recognition and facial attribute prediction. [31] address the
person re-id problem with attributes triplet loss and improve
the performance. [20] demonstrate that re-id task benefit
from the multi-task learning process.

Different from existing multi-task methods that simply
add an attribute prediction loss, our method utilizes at-
tributes to disentangle features into semantic groups and
further calculate the temporal weights of each sub-features.
The annotation cost of attribute labels limits the expansion
of attribute based methods in real-world scenarios. To ad-
dress this problem, our method obtains attribute labels by
transfer learning, without additional annotation cost.

3. Proposed Method

3.1. Feature Disentangling and Temporal Aggrega-
tion

In this section, we will introduce how to produce the fea-
ture of an input sequence with the attribute labels, and the
model architecture is shown in Fig. 2.

Frame Sampling. The sequence lengths in video re-id
task usually vary greatly, and a common practice is to sam-

ple a sequence of fixed frame number 7'. Existing RNN-
based approaches require continuous frames as the input.
However, a short segment of continuous video frames are
highly correlated and are not much more informative than
single image. On the country, the entire video often contains
variant visual appearances (e.g. viewpoints, body poses). In
order to utilize visual information from the entire video, we
equally divide the sequence into 7' chunks {C;}~ ;. One
frame f; is randomly sampled from each chunk C}, then
the entire video is represented by the set of sampled frames
{fe}iza-

Feature Disentangling. The next step is to produce the
sequence feature with the sampled frames. Due to the vari-
ous human poses and occlusions in the sequence, the infor-
mative local regions of each frame ought to be enhanced.
Hence we firstly disentangle the frame feature into several
groups and then calculate the temporal weights for each
sub-features.

We adopt ResNet [12] for feature extraction. The global
feature, i.e. a full-connected layer fc; after avg-pooling of
Residual _Block 4, is split into N + 1 segments, N of which
correspond to NV local attribute groups and one for global
representation.

fclﬁ[fclv"'vchfoN-‘rl] (1)

According to the attributes in RAP dataset [16], we set
N = 6 in our method and the attribute groups are listed
in Table. 1. Each sub-feature is associated with an attribute
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Table 1. Semantic attribute groups used in our method. Example
attributes of each group are also listed below.

Group Attributes
Gender & Age  Female, AgeLessl6, ..., Age31-45
Head-Shoulder Hat, Glasses, ..., BlackHair
Up-Body Shirt, SuitUp, ..., up-Blue
Low-Body Dress, Skirt, ..., low-Black
Shoes Sport, Leather, ..., shoes-White
Attach Backpack, HandBag, ..., PlasticBag

group by an attribute predictor AP,, which consists of a
fully-connected layer and a sigmoid layer to predict all the
binary attributes in the n-th group. Driven by the attribute
prediction loss, the global features are disentangled to rep-
resent N groups of local regions and the sub-features of
each frame are aligned.

Temporal Aggregation. Next, we need to merge T
sub-features from the sampled sequence at the temporal di-
mension. A common practice is average pooling, i.e. all
sub-feature has the same weight 1/7. However, not all
frames are equally informative due to the variations of hu-
man poses, occlusions and viewpoints. We are more con-
cerned about the frames which provide explicit attribute in-
formation, so we calculate the weight w,,; of the ¢-th frame
in the n-th group by the attribute recognition confidence.
Specifically, the confidence is calculated by the entropy of
the attribute prediction score:

Ent(p)

A,
L A
Conf(p) =e o> Ent(p) = o > _pilog(p:) ()
" i=1

where A,, is the number of attributes in the n-th group, p;
is the prediction result of the i-th attribute in the group, o
is a hyper-parameter to control the degree of re-weighting.
Then the confidence scores of T frames are normalized to
obtain the temporal weights:

Conf(AP,(fc})
SL, Conf(AP,(fcr))

Then the sub-features are aggregated with the temporal
weights to the merged representation:

3)

Wnt =

T
fcyrl;wrge = Z wmfc? (4)
t=1

JCerge 1s finally utilized to train the attribute predictor
AP, by Binary Cross Entropy loss with the attribute la-
bels. It is worth noting that the calculation of temporal
weights w,,; does not contribute to the back propagation for
the training stability, as denoted by the dashed line in Fig. 2.

Besides the N sub-features for local regions, the global
sub-features are merged with equal weights 1/7". Finally,

Attribute Dataset (Source)

Weighted Binary
Cross Entropy Loss

Maximum Mean
Discrepancy Loss

Attribute Attribute

ii CNN Model
Feature Prediction

Re-ID Dataset (Target) Layer Layer

Figure 3. Illustration of the attribute transfer learning model,
which learns to recognize attributes by optimizing the Weighted
Binary Cross Entropy loss. The Maximum Mean Discrepancy loss
is utilized to regularize the feature distribution between source and
target domain.

the entire input sequence is represented by concatenating
the N + 1 merged sub-features [fc}, . g, » fChdrye). At
the training stage, softmax loss on the concatenated fea-
ture and NV attribute prediction losses on the merged sub-
features are deployed to train the whole network. At the
testing stage, the similarity of video sequences is evalu-
ated by Euclidean distance of concatenated features after

Ls-normalization.

3.2. Transfer Learning for Attribute Recognition

Our proposed method relies on attribute labels for feature
disentangling and temporal aggregation. Different from ex-
isting works [20] which require expensive labor to manu-
ally annotates attribute labels on person re-id datasets, we
transfer attribute information from person attribute datasets
to re-id datasets. By means of transfer learning, no addi-
tional annotation cost are required so that this method can
be easily extended to other datasets and more scenarios.

Given a person attribute dataset (source domain), a direct
practice for generating attribute labels on re-id dataset (tar-
get domain) is training an attribute recognition model first
and then predict labels on the re-id images. However, the
attribute recognition model trained only with source set is
suboptimal on the target set due to the non-ignorable do-
main gap. The inconsistent feature distributions influence
the attribute prediction on the re-id dataset.

Under the assumption that the person images (both in
source and target datasets) share the same set of seman-
tic attributes, the distribution distance of the attribute fea-
ture space between the source set and the target set ought
to be minimize. The architecture is shown in Fig. 3 and a
CNN model is designed to recognize person attributes. The
penultimate layer is the attribute feature layer (denoted by
F) and the last layer is the prediction layer. We use the
Maximum Mean Discrepancy (MMD) [11, 24, 25] to mea-
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Figure 4. Positive ratios of the selected attributes on RAP dataset. Many attributes are extremely unbalanced.

sure the distance between two distribution. Given the source
and target attribute features {F'*}}"*, {F*}"* in each mini-
batch, the MMD loss can be calculated by:
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The distribution variance of attribute feature space between
the attribute dataset and re-id dataset is regularized by the
MMD loss EM]\/[D .

The attribute feature layer is followed by a fully-
connected layer for attribute recognition. The outputs are
activated by Sigmoid to predict the binary attributes. A wide
used loss for binary label is Binary Cross Entropy (BCE)
loss:

k(F},F}) = exp(— ) (6)

L
1
Lpce = 7 E yilog(p:) + (1 —yi)log(1 —pi) (7)
=1

where L is the number of attributes, p; is prediction proba-
bility of the ¢-th attribute and y; is the corresponding label.

However, most of the binary attributes are unbalanced, as
shown in Fig. 4. The positive ratios of rare attributes (e.g.
ub-SuitUp, low-Red) are quite small. The model trained
with BCE loss prefer to output common attributes due to
their higher prior probabilities. The similar attribute labels
between different identities will influence the discriminabil-
ity of the feature model for video re-id. To address this
problem we apply Weighted Binary Cross Entropy (WBCE)
loss:

L
1 1-w; wi
LwpcE = —T 2. > y;log(ps)+e+® (1—y;) log(1—p;)

i=1
®)

where w; is the positive ratio of the ¢-th attribute in the
training set , indicating its relative frequency. It encourages
model to output rare attributes and the wrong prediction of
common attributes will result in higher loss.

The attribute transfer model is trained by jointly optimiz-
ing Lwpcp and Ly p. After training, the model is uti-
lized to predict attribute labels for the re-id dataset. Specif-
ically, for each identity, the prediction for the i-th attribute
of person z is calculated by sequence merging:

T

wlw) = 7 Y piteo)

t=1

)

where x; is the t-th frame of this person, and p; is the pre-
diction for the ¢-th attribute. The ¢-th voted attribute label
of person z is obtained by binarization:

Li() { .

where th is the threshold of binarization and we set th =
0.5 in our method. The transferred labels are utilized as the
ground truth for feature disentangling and temporal aggre-
gation as aforementioned.

a;i(x) > th

a;(x) < th (10)

4. Experiments

We evaluate our proposed model on three video-based
person re-id datasets: iLIDS-VID [36], PRID2011 [14] and
MARS [45]. We will first introduce the datasets and evalua-
tion metric, and then present the effectiveness of each com-
ponents of our method. After comparisons with state-of-
the-art methods, some qualitative results will be presented.

4.1. Experiment Settings

Datasets. The iLIDS-VID dataset consists of 600 image
sequences of 300 identities appearing in 2 cameras. The se-
quence length ranges from 23 to 192 frames with an average
number of 73 frames. The bounding boxes are human an-
notated and the challenge is mainly due to occlusion. The
PRID2011 dataset contains 2 cameras with 385 identities in
camera A and 749 identities in camera B. As previous works
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Figure 5. Attribute transfer results of models trained by different
loss.

we use the 200 identities appear in both cameras. The length
of sequence varies from 5 to 675. The bounding boxes are
also annotated by human. The MARS dataset is a newly re-
leased large scale dataset consisting of 1261 identities and
20715 track-lets under 6 cameras. The bounding boxes are
produced by DPM detector [9] and GMMCP tracker [7].
Many sequences are of poor quality due to the failure of de-
tection or tracking, increasing the difficulty of this dataset,
which is close to real-world applications.

The attribute transfer model is trained on RAP [16], a
large-scale pedestrian attribute dataset which provides 91
fine-grained binary attributes for each image. We choose
68 id-specific attributes (e.g. BlackHair, TShirt) and discard
other image-specific attributes (e.g. Talking, faceRight).
The 68 attributes are divided into 6 groups as in Table. 1.

Evaluation metrics. The standard protocols are per-
formed for evaluation on these three datasets. For iLIDS-
VID and PRID2011 dataset, we randomly split the dataset
half-half for training and testing. The experiments are re-
peated 10 times with different splits and the results are av-
eraged for stable evaluation. For MARS dataset, we fol-
low the predefined train/test split by the original authors.
625 identities are used for training and the remaining for
testing. We use the Cumulative Matching Characteristic
(CMCQ) curve and Mean Average Precision (mAP) to evalu-
ate the performance. The CMC value represents the average
true matching being found within the first n query results.
The average precision (AP) for each query is computed
from its precision-recall curve. The mAP is calculated as
the mean value of average precisions across all queries.

Experiment setting. For the network architecture, we
choose ResNet-18 [12] pre-trained on ImageNet ILSVRC-
2012 [28]. Input images are first resized to 144 x 288 and
cropped at 128 x 256. For the data augmentation, we use
random crops with random horizontal mirroring for training
and a single center crop for testing. We use SGD to train our
model and the batch size is 32. The learning rate starts from
0.05 and is divided by 10 every 40 epochs to train the model
for 100 epochs. The sequence length is set to 7" = 8.

Table 2. Person re-id results with different attribute transfer mod-
els. The Rank-1 CMC accuracies and mAP scores are reported.

Dataset MARS iLIDS | PRID
loss mAP R-1 R-1 R-1

BCE 674 81.0 | 78.7 89.7
BCE+MMD 70.0 81.7 | 799 90.6
WBCE 69.2 81.5 | 803 90.3
WBCE+MMD | 71.2 82.6 | 81.5 91.7

4.2. Ablation Studies

Attribute Transfer. As aforementioned, the attribute
transfer models are trained by jointly optimizing Weighted
BCE loss Ly pcg and MMD loss Ly p. Fig. 5 dis-
plays two examples of attribute transfer results from RAP
to MARS dataset. Due to the unbalanced label distribution,
the model trained by Lpcp prefers to output common at-
tributes, which provide little discriminative information for
identification. With the variant weights corresponding to
positive ratio, the Ly pog model is encouraged to predict
unusual attributes. This model enriches the diversity of pre-
diction results and produces important local attributes (e.g.
shoes and attachments). However, the attributes predicted
by the model trained with Ly pc g only are not exact due to
the non-ignorable domain gap between the attribute dataset
and re-id dataset. Hence we propose L/ p to regularize
the feature distribution and filter out some noise attributes.

It is hard to evaluate the attribute recognition accuracy
on the re-id dataset without ground-truth labels, while the
advantage of Lyy pog and Ly p can be indirectly proven
by the quantitative re-id accuracy, as shown in Table. 2. The
person re-identification models trained with attributes trans-
ferred by Ly pc g outperforms ones that trained by Lo g,
both with or without L£y;y;p. We attribute the improve-
ments to the discriminative attributes produced by Ly o k.
The joint training with £y;5/p provides consistent boost,
and improves the mAP score on MARS dataset by 2.6% and
2.0% with Lpcg and Ly pog respectively. The improve-
ments demonstrate the superiority of regularizing the fea-
ture distributions between attribute dataset and re-id dataset.

Feature disentangling and temporal aggregation.
Temporal re-weighting on disentangle features will be dis-
cussed in this section. Comprehensive experiments are per-
formed and the results are displayed in Table. 4. Model A
is the baseline model which learns feature embedding only
with softmax loss and the features from different frames
are merged by average pooling. Avg-pooling is a com-
mon practice for temporal aggregation in video-based re-
id methods and shows competitive results [4, 10, 22]. Us-
ing map-pooling will led to about 10% point decrease in
mAP on MARS. L2-normalization is also important for
softmax-based method and have been chosen as an effi-
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Table 3. Comparisons of our proposed approach to the state-of-the-art methods.

13

-” means customized networks. RGB-Only(RO) means

that the method requires RGB frames only without optical flow for input. SP represents the method extract features by Single-Pass, instead

of pairwise comparison for verification.

settings MARS iLIDS PRID
Method backbone RO SP | mAP R-1 R-5 R-20| R-1 R-5 R-20| R-1 R-5 R-20
ASTPN [40] - - 44,0 700 810 | 620 86.0 98.0 | 770 95.0 99.0
Joint-ST [40] CaffeNet v 50.7 70.6 90.0 976 | 552 865 970 | 794 944 993
Seq-Decision [41] | Inception v - 712 857 943 | 60.2 847 952 | 852 97.1 99.6
Set2set [22] GoogleNet v v | 51.7 737 846 916 | 680 86.8 974 | 90.3 982 100.0
k-reciprocal [46] CaffeNet v 580 67.8 - - - - - - - -
Ours Res-18 v v | 71.2 82.6 932 97.7 | 82.0 943 98.5 | 91.7 98.8 100.0
k-reciprocal [46] Res-50 v 68.5 739 - - - - - - - -
TriNet [13] Res-50 v v | 6777 798 914 - - - - - - -
DRSA [17] Res-50 v v | 658 823 - - 80.2 - - 93.2 - -
Snippet [4] Res-50 76.1 863 947 982 | 854 967 99.5 |93.0 99.3 100.0
Ours Res-50 v v | 782 87.0 954 98.7 | 86.3 97.4 99.7 | 939 99.5 100.0

Table 4. Person re-id results with different model settings. The
Rank-1 CMC accuracies and mAP scores are reported. F denotes
Feature disentangling. A means Attribute recognition. T repre-
sents Temporal aggregation with attribute confidence. o is the
hyper-parameter controlling the degree of re-weighting in Eq. 2

settings MARS iLIDS | PRID

F A T o | mAP R-1 R-1 R-1

A - 66.1 79.0 | 783 86.8
B v - 682 80.1 | 79.9 88.6
C v v 05] 695 8I.1 80.9 90.2
D|lv V - 70.3 81.7 | 804 90.9
E|lv v v 03] 706 826 | 814 91.5
F|v v v 05] 712 826/| 820 91.7
G|v v v 09| 710 821 | 813 91.3
H|v v v 121 705 819 809 90.9

cient baseline for image-based re-id [47, 42]. Model B

slightly outperforms model A with an additional attributes
recognition loss. This improvement has been shown in pre-
vious works of multi-task learning. Based on model B,
model C calculates the feature level temporal weights by
the attribute recognition confidence. The improvements
(1.0%/1.0%/1.6% on Rank-1 CMC) demonstrate that all
frames in sequence are not equally informative and the at-
tribute confidence provides effective evidence for tempo-
ral quality. The comparison between model B and model
D shows that semantic disentangling increases the dis-
criminability of feature representation. Model F combines
model D with sub-feature level temporal aggregation and
achieves the best results, outperforming baseline by 5.1%
on mAP and 3.6%/3.7%/4.9% on Rank-1 CMC. The sub-
features of one frame corresponding to different semantics
ought not to share same weights due to pose changing and

occlusions, hence we further refine the temporal weights
into sub-feature level. The improvement is also evident by
the comparison between model F and model C.

We also carry out experiments to investigate the effect
of the hyper-parameter o of Eq. 2. o controls the degree
of temporal re-weighting. The larger the o is, the smaller
the variance of the temporal weights will be. The results
of model E/F/G/H shows that smaller o (e.g. 0.3 or 0.5)
performs better by means of the high variance of temporal
weights. Larger o (model H) results in almost equal weights
and the performance is close to average fusion (model D).
We fix ¢ = 0.5 and choose model F as the final result of our
proposed method.

4.3. Comparison with the State-of-the-art Methods

In this section, the proposed approach is compared with
state-of-the-art methods, and the results are displayed in
Table. 3. ASTPN [40] designed a joint spatial and tem-
poral attention pooling network. Joint-ST [40] proposed
a joint spatial and temporal RNN model for video re-id.
Seq-Decision [41] introduced a reinforcement learning
method for pairwise decision making. Set2set [22] pro-
posed a quality-aware network for sequence recognition.
K-reciprocal [46] utilized feature encoding to address the
re-ranking problem. TriNet [13] elaborated the triplet loss
to train the feature model. DRSA [17] is a spatiotempo-
ral attention model with diversity regularized item. Snip-
pet [4] proposed competitive similarity aggregation and co-
attentive snippet embedding for video re-id.

The backbone models of each method are listed for com-
prehensive comparison. ASTPN designed customized net-
works, the capability of which is comparable with Incep-
tion, CaffeNet and ResNet-18. We also display the results of
our method with ResNet-50 for fair comparison with other
methods. On both two levels of network capability, our
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Figure 6. Temporal weights of sub-features from 3 sequence. Red
represents large weight and white means small weight. Best
viewed in color.

methods attains the highest performance for each datasets.
The superiority is prominent on the small level backbone,
which improves the mAP and CMC-1 by 13.2% and 14.8%
respectively on MARS dataset. Our method also boost the
mAP on MARS by 2.1% with the Res-50 backbone.

In real-world applications, computational efficiency is
equally important to performance. It is worth noting that
Snippet and ASTPN require optical flow as input to pro-
vide motion features. However, the calculation of optical
flow is very time-consuming and is hard to be applied in
real-time system. Some existing methods perform pairwise
comparison to calculate the similarity between query and
gallery sequences, e.g. a pair of sequence are input to the
network for verification. This strategy is impracticable in
large-scale scenarios because all the gallery sequences need
to be calculated once for each query. An efficient practice
is extracting features of large gallery set once in an off-
line way and sorting them by Euclidean distances in fea-
ture space when given a query sequence. Our proposed
method, which does not require optical flow and pairwise
comparison, is more suitable for real-world applications.
Based on the same “Res50 + RGB-Only + Sing-Pass” set-
ting, our method significantly improves the mAP on MARS
by 10.5% and boosts the CMC-1 by 4.7%/6.1%/0.7% on
the three dataset.

4.4. Temporal Weights Visualization

In order to demonstrate our proposed method more intu-
itively, the temporal weights of three sequence from MARS
dataset is visualized in Fig. 6. In the first sequence, the
weights of frame-7 and frame-8 are relatively small due to
the occlusion and poor detection. The weights of low-body
and shoes group focus in frame-2 and frame-3 due to the
occlusions in ofter frames. Frame-3 has the highest weight
in attach group because of the obvious bag in this frame.
In the second sequence, the weights of frame-3 are small
due to the occlusion, as well as frame-6. While frame-6 has
the highest weight in gender&age group because the frontal
face is visible in this frame. Frame-4 has the highest weight
in up-body group because of the standard pose and few self-
occlusion. The variance of weights in shoes group is small
because the shoes attributes are hard to predict in all frames.
The sub-feature weights in the third sequence are relatively
uniform because the viewpoint and pose do not dramatically
change through the sequence.

The results demonstrate that the attribute prediction con-
fidence reflects the information quantity of each frame. The
temporal weights ought to be further split into sub-feature
level, because different parts are not equally informative
in the sequence due to the occlusion, viewpoints and pose
changing.

5. Conclusion

In this paper, we propose a novel algorithm of feature
disentangling and temporal aggregation for video-based
person re-identification. An attribute-driven method is pro-
posed for feature disentangling, based on which we further
develop sub-feature re-weighting with attribute recognition
confidence, maximizing the informative regions of different
frames. Moreover, a transfer learning method is introduced
for automatically annotating attribute labels. Extensive ex-
perimental results on three datasets demonstrate the advan-
tage of the proposed model over the compared state-of-the-
art methods.
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