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Abstract

Crowd counting is a challenging task in the presence

of drastic scale variations, the clutter background, and se-

vere occlusions, etc. Existing CNN-based counting methods

tackle these challenges mainly by fusing either multi-scale

or multi-context features to generate robust representations.

In this paper, we propose to address these issues by lever-

aging the heterogeneous attributes compounded in the den-

sity map. We identify three geometric/semantic/numeric at-

tributes essentially important to the density estimation, and

demonstrate how to effectively utilize these heterogeneous

attributes to assist the crowd counting by formulating them

into multiple auxiliary tasks. With the multi-fold regular-

ization effects induced by the auxiliary tasks, the backbone

CNN model is driven to embed desired properties explic-

itly and thus gains robust representations towards more ac-

curate density estimation. Extensive experiments on three

challenging crowd counting datasets have demonstrated the

effectiveness of the proposed approach.

1. Introduction

Crowd counting and density estimation are of great im-

portance in computer vision due to its essential role in a

wide range of surveillance applications including physical

security, public space management, and retail space de-

sign [11, 38]. However, the presence of drastic scale varia-

tions, the clutter background, and severe occlusions make it

challenging to generate high-quality crowd density maps.

Various CNN-based counting methods [35, 36, 29, 12]

have been proposed to handle the challenging situations

mainly by fusing multi-scale or multi-context informa-

tion to improve the feature representations. For example,

Zhang et al. [36] generate multi-scale features with the

multi-column network to handle scale variations. Sindagi et
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Figure 1. Illustration of essential factors influencing the crowd

density estimation.

al. [29] fuse local and global features for density estimation.

Their successes demonstrate the effectiveness to incorpo-

rate information from various sources (i.e., different sub-

models). Motivated by these methods, we propose to lever-

age heterogeneous attributes of the density map as guid-

ances to fully exploit the potential of the underlying rep-

resentation, without explicit modifications to the features.

Figure 1 illustrates our motivation with the observa-

tion of three factors of the density estimation. Consider-

ing the formulation of density-estimation-based counting

paradigm [11] which sums the density values over any re-

gion to report the final count, it is desired the estimated

densities vary along with object scales given the factor of

intra-image scale variations of crowd images. Specifically,

the nearer, larger objects should have smaller density values

compared to farther objects with smaller scales. We term

this as the geometric attribute of the density map. Besides,

the clutter background is another factor that should not be

neglected. For more accurate density estimation, the density

distribution is also desired to conform with the spatial distri-

butions of the crowd to avoid the background clutter, which

can be viewed as the semantic attribute of the density esti-
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mation. Additionally, the global count is also an important

indicator measuring the overall density level of one certain

image, which can be termed as the numeric attribute of the

density estimation. These attributes are heterogeneous and

cater for different aspects of crowd images, which should

be beneficial to the quality of the density map predictions.

Inspired by these observations, in this paper we propose

to leverage the heterogeneous attributes compounded in the

density map to improve crowd counting. Specifically, we

formulate each attribute as an auxiliary task. For the geo-

metric attribute, we propose the monocular depth prediction

to emphasize the relative depth variations of the crowd im-

age, considering that generally the scale variation of one

certain object across the scene is inversely proportional to

the depth. For the semantic attribute, we introduce the

crowd segmentation to highlight the foreground over the

background. For the numeric attribute, we introduce the

direct count estimation to take care of the overall count ac-

curacy while optimizing per-pixel density. Learning of the

auxiliary tasks will drive the intermediate features of the

backbone CNN to embed desired information on geometry,

semantics and the overall density level, which benefits the

generation of robust features against the scale variations and

clutter background. Although more objectives are involved,

they are readily available either with external models or can

be inferred directly from the original density map, which

do not need any additional annotations. Furthermore, the

formulation of the essential attributes as auxiliary tasks can

benefit any backbone CNN model for crowd counting with-

out increasing additional computations at inference, which

further introduces flexibility to the proposed approach.

We highlight the main contributions of this work as fol-

lows:

• We propose to improve crowd counting by leveraging

three heterogeneous attributes compounded in the den-

sity map, which influences the quality of the density

estimation.

• We formulate each attribute as an auxiliary task, which

together provide joint regularization effects to the

backbone CNN for more robust representations and

density estimation.

• We demonstrate the effectiveness of the proposed

method on three challenging datasets, which out-

performs the state-of-the-art methods on the Shang-

haiTech dataset [36] and the worldExpo’2010

dataset [35], and also achieves very competitive

performance on the Mall dataset.

2. Related Work

Numerous methods have been proposed for crowd count-

ing. Detection-based [26, 31] approaches are usually lim-

ited by challenging situations of severe occlusions in ex-

tremely crowded scenes. As a result, regression-based

methods [6, 7] are proposed, which learns a mapping func-

tion from holistic crowd features to the global count. How-

ever, these early methods mainly use hand-crafted features

and have been surpassed by the deep features extracted from

CNNs [9].

Recently, deep CNNs have brought a new era for the

computer vision society. As one of the earliest CNN-based

methods, Zhang et al. [35] train a deep model to estimate

the crowd density map and count in a switchable learning

process. To handle scale variations in the crowd images,

Zhang et al. [36] introduce the multi-column CNN with dif-

ferent receptive field sizes in each column for multi-scale

feature fusion for density estimation. Similarly, a pyramid

of input patches is used for the network in [16] to generate

multi-resolution features. Recently, Li et al. [12] adapt the

VGG model [27] with dilation processing and achieve state-

of-the-art performance on several benchmark datasets. In-

troducing novel deep architectures has benefited the learn-

ing of more robust features and thus boosts the counting

performances.

Other researchers dedicated to incorporate various mod-

ules conveying contextual/scale information to improve the

base CNN. These work include the multi-context fusion

in [29] where global and local contextual information is ad-

ditionally learned and combined with features from the base

model for density estimation. Another typical work is [22]

where a switch network is built to relay each input patch

into different sub-network [36] for density estimation other

than aggregating features from all the sub-models. The

switch module in this method is considered to convey the

information on intra-image density variations. To handle in-

fluences induced by scale variations, in [24] an adversarial

learning framework is proposed to pursue cross scale con-

sistency. Recently, a top-down feedback gating module is

proposed in [20], which introduces multiplicative feedback

to original feature of the base model. The feedback module

can be viewed to learn the correction signal towards a good

density map estimation.

Instead of augmenting the base CNNs with additional

modules, we enhance the features by mining the potential

of a model itself with the formulation of auxiliary tasks.

From this perspective, our work is also related to multi-task

learning [2], where a shared representation is learned for

multiple tasks. The effectiveness of multi-task learning in

deep CNNs has been validated in various tasks [37, 18] and

inspire us to explore its benefits for crowd counting. A sim-

ilar work is proposed in [28] where the count group classifi-

cation is learned as a high-level prior and cascaded with the

features in the density estimation branch. Although both

are using the tool of multi-task learning for counting, our

approach differs in the analysis and the disentanglement of

the heterogeneous attributes emerging from the density es-
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Figure 2. Overview of the proposed approach with the learning of three auxiliary tasks in CNNs (AT-CNN). The symbols of L1 to L3

denote the losses to optimize the auxiliary tasks of crowd segmentation, depth prediction and count regression. The symbols of L4 is the

loss for the main task of density estimation.

timation, especially for the handling of the scale variation

and the clutter background, which has not fully exploited in

existing methods.

3. Methodology

As discussed in Section 1, we propose to leverage hetero-

geneous attributes to assist crowd counting, which mainly

aims to improve the feature representations of the back-

bone CNN with the learning with auxiliary tasks (AT-CNN).

Generally, the crowd density estimation can be viewed as

an encoding-decoding process with a front-end CNN (en-

coder) mapping the input image to high-dimensional fea-

ture maps and a back-end CNN (decoder) interpreting the

features from the encoder into pixel-wise density values.

Denoting the front-end CNN as a function ge parameter-

ized with we, then the features F from the encoder can be

represented as F = ge(X;we) for an input image X. For

any given backbone CNN model, our method constructs

the auxiliary tasks prediction (AT) module which uses the

deep features F from the front-end CNN to optimize the

auxiliary predictions and inversely improve the intermedi-

ate representations itself. The framework of our method is

shown in Figure. 2. During training, ground-truth labels

for the density estimation and the three auxiliary tasks, i.e.,

depth prediction, crowd segmentation and count estimation

are used. Although four different kinds of supervision sig-

nals are involved, we do not require any extra annotation ef-

fort. Specifically, we exploit modern CNN-based depth pre-

diction models to derive the ground-truth labels for the aux-

iliary depth prediction. Ground-truth information for crowd

segment and count can be directly inferred from the density

map labels, respectively.

3.1. Auxiliary Tasks Prediction

Based on the deep features from the front-end CNN,

we build the three auxiliary tasks, i.e., crowd segmenta-

tion, depth prediction and the count estimation. These three

tasks, with each in charge of different characteristics of the

density map, can provide multi-fold regularization effects

to optimize the front-end CNN. We describe the details for

each auxiliary task in the following article.

Attentive Crowd Segmentation Due to the complex sit-

uations such as the extremely limited pixels of pedestrians

occupied in the image as well as the clutter background, the

crowd density map is usually noisy. Towards this problem,

we introduce the crowd segmentation as an auxiliary task,

which will help the front-end CNN generate more discrimi-

native representations and thus purify the output prediction.

A segmentation decoder network gseg parameterized

with wseg is built as the back-end CNN for crowd seg-

mentation. Performing a two-way classification task, the

decoder accepts feature F from the front-end encoder and

outputs a crowd segment Ŝ with values indicating the proba-

bility of pixels belonging to the targets: Ŝ = gseg(F ;wseg).
Ground-truth labels for crowd segmentation can be in-

ferred from the dotted annotations of pedestrians provided

in counting dataset [36, 35] by simple binarization as shown

in Figure 3. We dubbed the result an as attentive crowd

segment, since it conveys important information clarifying

the attentive areas occupied by the targeted objects. Strictly

speaking the derived segment map is not the same as the

ones in semantic segmentation [5] where detailed bound-

aries of objects are depicted, however we show in experi-

ments that this simple strategy can yield effective improve-

ments for density estimation.

Given a pair of input image and the ground-truth atten-
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Figure 3. Label generation for auxiliary tasks. Given a pair of

crowd image and its ground truth density map (the first column),

the depth map can be estimated using external depth prediction

algorithms [13] and the crowd segment is inferred through bina-

rization of the density map (the second column). The distilled

depth map (the third column) used to supervise the auxiliary task

is obtained by masking the originally estimated depth map with

the crowd segment map.

tive crowd segmentation map {X, S}, loss function for the

segmentation decoder is the binary cross-entropy between

the predicted and the ground-truth probability of each pixel:

L1 =
1

|X|

∑

(i,j)∈X

tij logoij + (1− tij)log(1− oij), (1)

where tij ∈ {0, 1} is the actual classes of pixels in S with 1

for the target area and 0 for the background, and oij denotes

the pixel-wise probability in the prediction Ŝ.

Distilled Depth Prediction To handle the perspective

distortion in surveillance scenes [30], we introduce the

single-image monocular depth prediction as an auxiliary

task. Informally speaking, for a given object category (e.g.

pedestrians) the size of an object in the image is inversely

proportional to the distance from the camera [8]. In the

regions with larger depth values, the objects have smaller

sizes and should be adversely assigned with larger density

values to guarantee their summation gives accurate counts.

By inferring the depth maps, the front-end CNN is imposed

to take care of the scene geometry and hence gains the

awareness of the intra-image scale variations, which will

help generate more discriminative features for scale-aware

density estimation.

Similar to the task of crowd segmentation, a depth de-

coder network gdep parameterized with wdep is built for

depth prediction. The input to the decoder is the features

F from the front-end CNN and the output is the depth map

with values indicating the distances of each pixel to the

camera: D̂ = gdep(F ;wdep).
Towards this task, we resort to depth maps derived from

a CNN-based single-image depth prediction model [13]

(DCNF) for monocular depth prediction. The DCNF model

can estimate depths for general scenes with no geomet-

ric priors nor any extra information injected, and hence is

suitable in our situation to help illustration of geometry in

crowded scenes. Given the input crowd image X, we use the

pre-trained DCFN model [13] to generate a raw measure-

ment of depth Draw. As observed in Figure 3, it is capable

of depicting depth disparities between pedestrians at differ-

ent positions. However, due to the DCNF model has not

been specifically adapted to the target scenes in the crowd

counting tasks and hence the depth predictions contain clut-

ter that degrades the efficiency, especially for background

areas. Towards this problem, we further calculate a distilled

depth map D which only preserve the depth information of

the attentive target areas. This is derived using both the raw

depth map and the attentive crowd segment: D = S⊙Draw,

where ⊙ denotes the Hadamard matrix multiplication. With

the distilled depth as the supervision for depth prediction,

the front-end CNN is desired to be especially aware of the

depth relationships/scale variation between those attentive

areas with target objects.

With the training pairs of {X,D}, the depth decoder can

be trained using a simple Euclidean loss for the predicted

depth map D̂:

L2 =
1

|D|

∑

(i,j)∈D

∥∥∥D̂ij − Dij

∥∥∥
2

2
(2)

Crowd Count Regression Most density estimation

based counting algorithms optimize their counting model

by measuring the per-pixel errors between the predicted and

the ground-truth density maps [35, 36, 22, 16, 29]. How-

ever, one problem is this supervision is not directly related

to the evaluation metric of MAE/MSE [15] which measures

global counting errors of input images. To this end, we

introduce another auxiliary task of crowd count regression

which directly estimates the crowd count from the encoded

features. Empowered with this auxiliary task, the front-end

encoder will generate features adapted to the overall density

level of the input image, which helps produce more accurate

density values.

A count decoder gnum parameterized with wnum is built

to map the features F from the front-end encoder to the

crowd count Ĉ: Ĉ = gcnt(F ;wcnt). The ground-truth

count C can be directly derived by summing up all the dot-

ted annotations in an input image X. The L2 norm is used

to train the count decoder:

L3 =
∥∥∥Ĉ − C

∥∥∥
2

2
(3)

3.2. Main Tasks Prediction

The density estimation decoder g is built on the features

F emitted from the front-end encoder to perform the main

task of density estimation. To generate the ground-truth

density maps, we follow [11] to apply 2D Gaussian kernels
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on each dotted annotations, where the same-spread (sigma

Σ) Gaussian kernels are simply adopted at different posi-

tions. The decoder for the main task is trained using the

Euclidean loss for the density map Ŷ:

L4 =
1

|Y|

∑

(i,j)∈Y

∥∥∥Ŷij − Yij

∥∥∥
2

2
(4)

3.3. Optimization

The final learning objective function utilizes multiple

losses weighted by hyper-parameters:

Lmt =

4∑

i=1

λiLi (5)

We employ a stage-wise procedure to train the network with

auxiliary tasks, by varying the hyper-parameters as detailed

in Section 4.

4. Implementation

We implemented the network using the publicly avail-

able Matconvnet toolbox [32] with an Nvidia GTX Titan

X GPU. Stochastic gradient descent (SGD) is used to op-

timize the parameters. We set the momentum and weight

decay to 0.9 and 0.0005, respectively. We used the initial

learning rate of 10−6 and divided it by 10 when the valida-

tion loss plateaus. Parameters of all the deconvolution lay-

ers are fixed as the bilinear up-sampling kernels for training

and inference. During training, random flipping is applied

to augment the input image patches.

Training of the proposed model proceeds in three stages.

First, we train the feed-forward baseline model for density

estimation. Based on the base model, the segment decoder,

the depth decoder and the count decoder are successively

trained. In the third stage, the four decoders are jointly op-

timized and the model is trained end-to-end using the ob-

jective function of Eq. 5.

Once the model has been trained, the auxiliary tasks pre-

diction module can be detached and the original model with

more powerful capacity is used at inference.

5. Experiments

In this section, we evaluate the proposed crowd counting

method on three benchmark datasets of the shanghaiTech-

B [36], the worldExpo’2010 [35] and the Mall [3] dataset.

Following the convention of existing work [35, 36], metrics

of the mean absolute error (MAE) and the mean square error

(MSE) are computed for evaluation.

5.1. Datasets

ShanghaiTech part B It is the largest dataset for crowd

counting in terms of the number of annotated people. It

contains 716 images with a fixed size of 768×1024 taken

from busy streets. Compared to the Mall dataset [3], it poses

more challenging situations with severe perspective distor-

tion and diverse scenes. Following the public splits, 400

images are for training and the remaining 316 are for test-

ing. We crop image patches with a size of 224×224 for

training.

WorldExpo’2010 It is a large-scale dataset including

3980 annotated video frames captured by 108 surveillance

cameras from Shanghai 2010 worldExpo, with a fixed size

of 576×720. Compared to the ShanghaiTech part B [36], it

covers a large variety of scenes. Following the public splits,

3380 frames from 103 scenes are treated as training and val-

idation sets. The left 600 frames, with 120 from each of the

5 test scenes, are set for testing. It provides Region of In-

terest (ROI) for each scene, and hence only the pedestrians

within the ROI are considered in evaluation following pre-

vious methods [35, 36]. Image patches in a size of 256×256

are cropped from the original image for training.

Mall It contains 2000 frames with a fixed size of

320×240 recorded from a surveillance camera in a shop-

ping mall. We use the public splits for training and test-

ing, i.e., the first 800 frames for training, and the rest 1200

frames for testing. 1/6 of the training images are randomly

selected as validation, which is the same for all the eval-

uation datasets. To augment training data, we crop image

patches with a size of 160×160 from the original image.

Table 1. Different encoder-decoder architectures evaluated in the

experiment.
Architecture AT-CFCN AT-CSRNet

Encoder

7×7×32 conv, stride 2
7×7×64 conv, stride 2

5×5×128 conv

(3×3×64 conv)×2, stride 2

(3×3×128 conv)×2, stride 2

(3×3×256 conv)×2, stride 2

(3×3×512 conv)×2, stride 2

Decoder (for

density, depth

and segment

prediction)

5×5×64 conv
7×7×32 deconv, upsample 2

7×7×1 deconv, upsample 2

(3×3×512 conv, dilate 2)×3

3×3×256 conv, dilate 2

3×3×128 conv, dilate 2

3×3×64 conv, dilate 2

3×3×1 conv

Decoder (for

count regression)

N× N× 64 conv
1× 1×32 conv
1× 1× 1 conv

N× N× 512 conv, dropout 0.5

1× 1× 256 conv

1× 1× 128 conv

1× 1× 64 conv

1× 1× 1 conv

5.2. Diagnostics Experiments

To deeply analyze the proposed approach and demon-

strate its effectiveness, we conduct diagnostics experiments

on two evaluation datasets: the ShanghaiTech-B [36] and

the Mall [3]. For the backbone CNN, we experiment with

two models with various capacity to adapt to various dataset

sizes and also to study the performance gains grounded

on different models. A lightweight counting FCN model

(CFCN) with three convolution layers for both the encoder

and decoder is chosen for the Mall dataset [3]. Another

one is a much deeper model (CSRNet [12]) which adapts
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VGG network [27] for crowd counting with dilation pro-

cessing. Detailed architectures of the AT-CFCN and AT-

CSRNet which integrate the auxiliary tasks prediction mod-

ule are shown in Table. 1. The convolution kernel N in the

decoder for count regression depends on the input image

size and the downsample factors in the front-end encoder,

which transforms the feature maps into 1×1 vectors for

count estimation. In both two baseline models, each convo-

lutional layer is followed by a rectified linear unit (RELU)

and is accordingly padded to keep the spatial resolution.

From the base backbone model of CFCN/CSRNet, we

compare several different variants, including those with

only one auxiliary task (i) base CNN + DE: performing the

depth prediction (DE) task with the front-end CNN; (ii) base

CNN + SE: performing the crowd segmentation (SE) task

with the front-end CNN; (iii) base CNN + CT: performing

the count estimation (CT) task with the front-end CNN. The

variants with two auxiliary task include (iv) base CNN + DE

+ SE: performing the depth prediction and crowd segmen-

tation task at the same time; (v) base CNN + DE + CT and

(vi) base CNN + SE + CT which are similar to (iv) with

learning of two auxiliary tasks. Finally, we compare with

the variant where all the three auxiliary tasks are integrated:

(vii) of base CNN + DE + SE + CT.

Several conclusions could be drawn from Table 2. i).

The three auxiliary tasks all take effects on decreasing the

counting errors in terms of the MAE and MSE (compare b∼
d vs a). This demonstrates that the auxiliary tasks carry the

key information that influences the accuracy of the density

estimation and jointly optimize the main task. ii). Including

any two of the three auxiliary tasks will further decrease the

counting errors (compare e vs b, e vs c, f vs b, etc.), and

leveraging all of them achieves the best performance. This

result is in alignment with our hypothesis that the auxiliary

tasks each focus on heterogeneous attributes of the density

map and their collaboration will further improve the repre-

sentations for more accurate density estimation. iii). The

proposed approach not only improves the simpler model

(CFCN), and also significantly improves the deep model

(CSRNet) which are naturally armed with stronger repre-

sentation ability. This further validates the necessity and

effectiveness of the proposed approach to explicitly lever-

age the heterogeneous attributes existing in the density map.

Similar situations can be observed from Table 6 for the Mall

dataset [3].

5.3. Comparison with Stateoftheart

The proposed method is compared with several state-

of-the-art methods on three challenging benchmarks. The

comparison results are shown in Table 4, 6 and 5. As

demonstrated in Table 4 and 5, our method outperforms pre-

vious state-of-the-art methods on both the ShanghaiTech-B

dataset [36] and the WorldExpo’2010 dataset [35]. The im-

Table 2. Diagnostic experiments of AT-CFCN and AT-CSRNet on

the ShanghaiTech-B dataset [36].

Item Method
AT-CFCN AT-CSRNet

MAE MSE MAE MSE

a base CNN 12.89 22.3 10.6 16.0

b base CNN + DE 11.72 19.76 8.73 13.63

c base CNN + SE 12.31 20.66 9.20 14.14

d base CNN + CT 12.24 21.49 9.11 14.39

e base CNN + DE + SE 11.52 19.78 8.28 13.97

f base CNN + DE + CT 11.58 19.73 8.32 13.57

g base CNN + SE + CT 11.88 20.42 8.51 13.66

h base CNN + DE + SE + CT 11.05 19.66 8.11 13.53

Table 3. Diagnostic experiments of AT-CFCN on the Mall

dataset [3].
Item Method MAE MSE

a base CNN 3.14 3.90

b base CNN + DE 2.79 3.51

c base CNN + SE 2.68 3.37

d base CNN + CT 2.83 3.55

e base CNN + DE + SE 2.36 3.02

f base CNN + DE + CT 2.48 3.18

g base CNN + SE + CT 2.34 2.99

h base CNN + DE + SE + CT 2.28 2.90

ages in both of these two datasets are collected from outdoor

scenes with significant perspective variations and complex

background clutter, which easily incurs the geometric and

the semantic inconsistency problems. The superior perfor-

mance of the proposed method demonstrates the effective-

ness to leverage the auxiliary attributes during the training

process to help pursue the geometric and semantic consis-

tency of the density estimation. Our method is also vali-

dated on the Mall dataset [3] for sparse crowds in indoor

scenes. Due to the perspective distortion is not very obvi-

ous in the indoor scenes, the effectiveness of our approach

against the scale variations is limited in this dataset. How-

ever in Table 6 we still achieve competitive results com-

pared with prior art, showing our approach is not only ef-

fective to in dense scenarios but also generalizes well to the

images with sparse pedestrians.

Table 4. Comparison with other state-of-the-art crowd counting

methods on the ShanghaiTech-B dataset [36].

Method MAE MSE

LBP + RR [23] 59.1 81.7

Crowd-CNN [35] 32.0 49.8

MCNN [36] 26.4 41.3

Cascade-CNN [28] 20.0 31.1

Switch-CNN [22] 21.6 33.4

CP-CNN [29] 20.1 30.1

DecideNet [14] 20.75 29.42

ACSCP [24] 17.2 27.4

IG-CNN [21] 13.6 21.1

CSRNet [12] 10.6 16.0

AT-CSRNet 8.11 13.53

To gain further understanding of the proposed approach,

we conduct detailed comparison experiments with the re-

cent state-of-the-art CSRNet [12] on ShanghaiTech part-B.
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Figure 4. (a) Histogram: comparison of average count estimation

on 10 splits of ShanghaiTech-B dataset according to the increasing

number of people in each image. (b) Visualization of a failure case

from the last split.

Table 5. Comparison with other state-of-the-art crowd counting

methods on the WorldExpo’2010 dataset [35].
Method S1 S2 S3 S4 S5 Average

LBP + RR [23] 13.6 59.8 37.1 21.8 23.4 31.0

Cascade-CNN [28] 4.8 32.5 10.8 13.3 4.5 13.2

Crowd-CNN [35] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [36] 3.4 20.6 12.9 13.0 8.1 11.6

Switch-CNN [22] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [29] 2.9 14.7 10.5 10.4 5.8 8.86

IG-CNN [21] 2.6 16.1 10.15 20.2 7.6 11.3

DecideNet [14] 2.0 13.14 8.9 17.40 4.75 9.23

CSRNet [12] 2.9 11.5 8.6 16.6 3.4 8.6

AT-CSRNet 1.8 13.7 9.2 10.4 3.7 7.8

Table 6. Comparison with other state-of-the-art crowd counting

methods on the Mall dataset [3].

Method MAE MSE

SquareChn Detector [1] 20.55 439.1

R-FCN [4] 6.02 5.46

Faster R-CNN [19] 5.91 6.60

Ridge Regression [23] 3.59 19.0

MORR [3] 3.15 15.7

Count Forest [17] 4.40 2.40

Cascade-CNN [28] 3.02 3.81

Weighted VLAD [25] 2.41 9.12

Exemplary Density [34] 1.82 2.74

Boosting CNN [33] 2.01 N/A

MoCNN [10] 2.75 13.4

DecideNet [14] 1.52 1.90

AT-CFCN 2.28 2.90

Test images are divided into ten groups according to the

increasing number of people in each image. It can be ob-

served from Figure. 4 (a) that our method outperforms the

CSRNet across most data splits, demonstrating the robust-
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Figure 5. Comparison of MAE with different weight of the loss for

the three auxiliary tasks on ShanghaiTech-B dataset [36].

ness and the effectiveness of the proposed approach. We

further visualize a failure case from the last data split in

Figure 4 (b). We keep the depth decoder at testing and save

the depth predictions. As shown in the second column of

Figure 4 (b), we found that the depth map for the sam-

ple image failed to properly depict the depth relationships

especially for the farthest crowd in the left upper corner,

which may lead to inaccuracy of the density estimation and

hence the count result. This indicates the insufficient abil-

ity of the trained depth decoder. Considering the fact that

ground truth depth maps currently used to train our model

are generated by existing depth algorithms which have not

been specifically adapted to crowd scenes, we guess with

more accurate depth ground truth provided, the depth de-

coder could be better optimized and inversely benefit the

base model for better results on such kind of examples.

Figure. 6 visualize and compares the predicted density

maps and counts of our method (AT-CSRNet) and the CSR-

Net. Overall we achieve more accurate count estimations

and reserve more consistency with the crowd distributions.
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Figure 6. Visualization and comparison. First column: test image. The second and third columns show the predicted depth map and the

crowd segment from the corresponding decoder, respectively. The last three columns are the estimated density map by CSRNet [12], by

our method (AT-CSRNet) and the ground-truth, respectively. Count estimation are labeled at the right corner of each density prediction.

For instance, for the first image, the estimation of CSR-

Net shows inaccuracy in the umbrella area, however with

the learning of auxiliary segmentation task which inversely

help refine the intermediate features and avoid such falsely

activated density estimations in our prediction. Similar sit-

uations can be observed for other sample images.

5.4. Parameter Study of the Weights for Auxiliary
Tasks

The weights λi in Equation 5 determines the influence of

each auxiliary task on the main task, which is a key param-

eters in our approach. To optimize the selection of λi, we

conduct comparative experiments with the AT-CFCN model

on the ShanghaiTech-B dataset. Figure. 5 shows the influ-

ences on density estimation when λ for each auxiliary task

varies (parameters for other auxiliary tasks are set to be 0).

As observed, for the depth prediction task, the MAE error

decreases when the weights lie in a certain range of values.

Too small weights are hard to contribute to the main tasks

while too large weights will drift the feature representations

and deteriorate the performances. Similar situations can be

be observed for the crowd segmentation loss and the count

regression loss. In our experiment, we select the weights

for depth prediction loss, crowd segmentation loss and the

count regression loss as 0.6, 0.04 and 1, respectively.

6. Conclusion

In this paper, we propose to leverage the heterogeneous

attributes compounded in the density map to assist the

crowd counting task. Specifically, we formulate the ob-

served attributes as three auxiliary tasks to regularize the

learning of the intermediate features for the main task of

density estimation. Learning of the auxiliary tasks drives

the embedding the information on geometry, semantics and

the overall density level, which helps the feature to be more

robust against the scale variations and clutter background.

The proposed method does not incur any additional compu-

tations at inference, which gains efficiency over the general

feature fusion scheme to augment the representations. Ex-

tensive experiments on multiple datasets shows our model

achieves significant improvements or competitive results

compared to recent state-of-the-art methods .
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