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Abstract

Cross-modal retrieval aims to enable flexible retrieval

across different modalities. The core of cross-modal re-

trieval is how to measure the content similarity between

different types of data. In this paper, we present a nov-

el cross-modal retrieval method, called Deep Supervised

Cross-modal Retrieval (DSCMR). It aims to find a common

representation space, in which the samples from different

modalities can be compared directly. Specifically, DSCM-

R minimises the discrimination loss in both the label space

and the common representation space to supervise the mod-

el learning discriminative features. Furthermore, it simul-

taneously minimises the modality invariance loss and uses

a weight sharing strategy to eliminate the cross-modal dis-

crepancy of multimedia data in the common representation

space to learn modality-invariant features. Comprehen-

sive experimental results on four widely-used benchmark

datasets demonstrate that the proposed method is effective

in cross-modal learning and significantly outperforms the

state-of-the-art cross-modal retrieval methods.

1. Introduction

Cross-modal retrieval aims to enable flexible retrieval

across different modalities (e.g., texts vs. images) [30]. It

takes one type of data as the query to retrieve relevant data

of another type. The provided search results across various

modalities can be helpful to the users to obtain comprehen-

sive information about the target events or topics. With the

rapid growth of different types of media data such as texts,

images, and videos on the Internet, cross-modal retrieval

becomes increasingly important in real-world application-

s [32]. Recently, cross-modal retrieval has attracted the con-

siderable attention of the researchers from both academia

and industry. The challenge of cross-modal retrieval is how

to measure the content similarity between different types of
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data since they , which is referred to as the heterogeneity

gap [32].

A common approach to bridge the heterogeneity gap is

representation learning. It tries to find a function to transfor-

m the data samples from different modalities into a common

representation space in which the similarity between them

can be measured directly. A variety of cross-modal retrieval

methods [20] have been developed, which propose different

learning ways for finding the common space. The tradition-

al ones use the statistical correlation analysis to learn linear

projections by optimising target statistical values. For ex-

ample, Canonical Correlation Analysis (CCA) [8] is one

of the most representative works, which learns the common

space by maximising the pairwise correlations between t-

wo sets of heterogeneous data. However, the correlation

of multimedia data in the real world is too complex to be

fully modelled only by applying linear projections. Then,

some kernel-based methods [1, 34] have been developed to

address this issue, but how to select a suitable kernel func-

tion for particular cross-modal learning application is still

an unsolved problem.

Inspired by the great success of deep neural network-

s in representation learning [14], a large number of deep

learning-based approaches [2, 33, 19, 36, 21, 25, 7] have

been proposed to learn a common presentation space for

multimedia data. For instance, Ngiam et al. [18] propose

a bimodal deep auto-encoder to learn the cross-modal cor-

relation as well as preserve the reconstruction information

and apply a Restricted Boltzmann Machine (RBM) to learn

the common space for cross-modal retrieval. Different from

[18], which learns common representations in an unsuper-

vised way, some supervised deep cross-modal learning ap-

proaches have been proposed to learn more discriminative

representations. They are potentially able to provide a much

better separation between classes in the common represen-

tation space. In this class of methods, Jiang et al. [9] pro-

pose to use the label information to learn the discriminative

information between samples from inter-modalities. In ad-

dition, the cross-modal similarity is preserved by enforcing

the representations of each image-text pair to be close to
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each other in a common Hamming space. In [35], Wang et

al. propose a Multi-modal Deep Neural Network (MDNN)

based on a deep Convolutional Neural Network (CNN) and

a Neural Language Model (NLM) to learn mapping func-

tions for the image modality and the text modality, respec-

tively. The (labels of the samples) classification information

is used to learn intra-modal semantics for image and text.

The Euclidean distance is used to measure the difference be-

tween the representations for an image-text pair to guide the

cross-modal learning. In [30], the classification information

is also used to learn intra-modal discrimination in data dur-

ing the feature projection. It is notable that even though the

classification information has been used in these approach-

es, the classification information is only used to learn dis-

criminative features within each modality or between inter-

modalities. The semantic information is not fully exploited

in these cross-modal learning approaches.

In this paper, we present a novel cross-modal retrieval

method, called Deep Supervised Cross-modal Retrieval (D-

SCMR). It aims to preserve the discrimination among the

samples from different semantic categories and eliminate

the cross-modal discrepancy as well. To achieve this goal,

it minimises the discrimination loss of the samples both in

the label space and the common representation space to su-

pervise our model learning discriminative features. Further-

more, it simultaneously minimises the modality invariance

loss and uses a weight sharing strategy to learn modality-

invariant features in the common representation space. Fol-

lowing this learning strategy, both the pairwise label infor-

mation and the classification information are as fully ex-

ploited as possible to ensure the learned representation to

be both discriminative in semantic structure and invariant

across modalities.

The main contributions of this work can be summarised

as follows:

• A deep supervised cross-modal learning architecture is

proposed to bridge the heterogeneity gap between dif-

ferent modalities. It can effectively learn the common

representations for the heterogeneous data by preserv-

ing the semantic discrimination and modality invari-

ance simultaneously in an end-to-end manner.

• Two sub-networks with weight sharing constraint at

the last layers are developed to learn the cross-modal

correlation between image and text modalities. Fur-

thermore, the modality-invariance loss is directly for-

mulated into the objective function to eliminate the

cross-modal discrepancy.

• A linear classifier is applied to classify the samples in

the common representation space. In this way, DSCM-

R minimises the discrimination loss in both the label

space and the common representation space, which

makes the learned common representations be signifi-

cantly discriminative.

• Extensive experiments on widely-used benchmark

datasets have been conducted. The results demonstrate

that our method outperforms current state-of-the-art

methods for cross-modal retrieval, which indicates the

effectiveness of the proposed method.

The remainder of this paper is organised as follows. Sec-

tion 2 reviews the related work in cross-modal learning.

Section 3 presents the proposed method, includes the prob-

lem formulation, the DSCMR model, the objective function

and the implementation details. Section 4 provides the ex-

perimental results and analysis. Section 5 concludes this

paper.

2. Related Work

The cross-modal learning methods aim to learn a com-

mon representation space, where the similarity between the

samples from different modalities can be measured direct-

ly. A variety of approaches have been proposed to learn

such a common representation space, which can be roughly

divided into two categories: 1) binary-valued representa-

tion learning [9, 3, 41], also called as cross-modal hashing,

and 2) real-valued representation leaning [30, 19, 21]. The

binary-valued approaches are more geared towards com-

putational efficiency and map the heterogeneous data into

a common Hamming space, in which the cross-modal re-

trieval would be fast. Since the representations are encoded

to binary codes, the retrieval accuracy generally decreases

slightly due to the loss of information [20].

The proposed method in this paper is the one in the

category of real-valued representation learning approaches.

This category includes unsupervised approaches [2, 5, 33],

pairwise approaches [38, 39, 31] and supervised approach-

es [32, 28]. The unsupervised methods only use co-

occurrence information (co-exist in a multimedia documen-

t) to learn common representations for different types of da-

ta. The methods of CCA, Deep CCA (DCCA) [2], Corre-

spondence Auto-encoder (Corr-AE) [5] and Deep Canon-

ically Correlated Auto-encoder (DCCAE) [33] are repre-

sentative ones of this subclass. The pairwise-based meth-

ods utilise more similar pairs to learn a meaning met-

ric for comparing samples from different modalities. The

representative methods of this subclass include the Multi-

view Metric Learning with Global consistency and Local

smoothness (MVML-GL) method [38], the Joint Graph

Regularised Heterogeneous Metric Learning (JGRHML)

method [39] and the Modality-Specific Deep Structure

(MSDS) method[31].

To learn more discriminative common representation-

s, supervised methods exploit label information to distin-

guish the samples from different semantic categories. The
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Image modality

Text modality

A blue-green hummingbird sits upon a 
twig.
A multicolored bird sits on a branch. Blue 
and green bird perched on a twig.
Blue and Green Hummingbird sitting on 
a branch.
Small bird with colorful feathers 
perched on a branch.

Common space Label space

Label: 𝐘𝒥3: Inter-modal 
invariance loss

𝒥2: Discrimination loss 
in common space

𝒥1: Discrimination 
loss in label space

…Image 
CNN

Text 
CNN

…

𝐏

𝐏
Original high-level 
representations

Figure 1. The general framework of the proposed DSCMR method. The images and the text are inputed into an image CNN [13] and a text

CNN [37], respectively, to obtain original high-level semantic representations. Then, a number of fully-connected layers are separately

added on the top of them to map the samples from different modalities into a common representation space. Finally, a linear classifier (with

parameters in P) is used to predict the category of each sample to supervise the network to learn cross-modal transformation functions f(·)
and g(·).

supervised methods enforce different-category samples to

be transformed far apart while the same-category samples

lie as close as possible. To obtain such a common space,

Sharama et al. [28] proposed a supervised extension of C-

CA, named as Generalised Multi-view Analysis (GMA), by

using the semantic category labels to guide the learning of

common representations. The recently proposed methods

in [9], [22] and [30] also exploited semantic category label-

s to learn discriminative features for cross-modal retrieval.

In [22] and [30], the adversarial learning [6] has been em-

ployed to improve the performance of cross-modal learning

as well. They both have achieved promising performance

on cross-modal retrieval tasks.

This paper is dedicated to fully exploit the classification

information to guide the model learning more discrimina-

tive and modal-invariant representations for the data of d-

ifferent types and bridge the heterogeneity gap, and thus

improving the cross-modal retrieval accuracy.

3. The Proposed Method

In this section, we first introduce the formulation of the

cross-modal retrieval problem. Then, we present the pro-

posed method to learn the common presentations of data

from different modalities. At last, we provide more imple-

mentation details of the proposed method.

3.1. Problem Formulation

Without losing generality, we focus on cross-modal re-

trieval for bimodal data, i.e., for images and text. We as-

sume that there is a collection of n instances of image-text

pairs, denoted as Ψ = {(xα
i ,x

β
i )}

n
i=1, where xα

i is the in-

put image sample and x
β
i is the input text sample of the ith

instance. Each pair of instances (xα
i ,x

β
i ) has been assigned

a semantic label vector yi = [y1i, y2i, . . . , yci] ∈ R
c, where

c is the number of the categories. If the ith instance belongs

to the jth category, yji = 1, otherwise yji = 0.

Since the image feature vectors and text feature vec-

tors typically have different statistical properties and lie

in different representation spaces, they cannot be directly

compared against each other for cross-modal retrieval [30].

Cross-modal learning is to learn two functions for two

modalities: ui = f(xα
i ; Υα) ∈ R

d for the image modal-

ity and vj = g(xβ
j ; Υβ) ∈ R

d for the text modality, where

d is the dimensionality of the representation in the common

representation space, and Υα and Υβ are the trainable pa-

rameters of the two functions. It makes the samples can

be compared directly even though they come from different

modalities, and in the common space, the similarity of the

samples from the same category is larger than the similarity

of the samples from the different categories. Therefore, the

relevant samples of different data types in the data set can

be returned for one query of any data type. In the follow-

ing, the image representation matrix, the text representation

matrix and the label matrix for all instances in Ψ are de-

noted as U = [u1,u2, . . . ,un], V = [v1,v2, . . . ,vn] and

Y = [y1,y2, . . . ,yn] with ui be the learned image rep-

resentation for the ith instance and vj be the learned text

representation for the jth instance in the common represen-

tation space.
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3.2. Framework of DSCMR

The general framework of the proposed method is shown

in Figure 1, from which we can see that it includes t-

wo sub-networks, one for image modality and another for

text modality, and they are trained in an end-to-end man-

ner. The convolutional layers of the deep neural network

for image modality are the same as those in 19-layer VG-

GNet [29], which is pre-trained on the ImageNet. We gener-

ate 4, 096-dimensional feature vector from fc7 layer as the

original high-level semantic representation for image, de-

noted as hα
i . Then, several fully-connected layers conduct

the common representation learning to obtain the common

representation for each image, denoted as ui. To perfor-

m common representation learning for text, we employ the

Word2Vec model [16], which is pre-trained on billions of

words in Google News, to represent each network as a k-

dimensional feature vector first. Thus, each text can be rep-

resented as a matrix with each column as a k-dimensional

feature vector. Then, the text matrix is feed to the convo-

lutional layers as same the configuration as sentence CN-

N [37] to generate the original high-level semantic repre-

sentation for text, denoted as h
β
i . In a similar way, a num-

ber of fully-connected layers are followed to learn the com-

mon representation for text, denoted as vi. To ensure the

two sub-networks to learn a common representation space

for image and text modalities, we enforce these two sub-

networks to share the weights of their last layers. This is

intuitively to generate as similar as possible representations

for the image and text samples from the same category.

Finally, based on the assumption that the common repre-

sentations in the common space are ideal for classification,

a linear classifier with the parameter matrix P is connected

to these two sub-networks to learn discriminative features

by exploiting the label information. Therefore, the cross-

modal correlation could be well learned and the discrimina-

tive features can be simultaneously exacted.

3.3. Objective Function

The goal of DSCMR is to learn the semantic structure of

the data, i.e., to learn a common space where the samples

from the same semantic category should be similar, even

though these data may come from different modalities, and

the samples from different semantic categories should be

dissimilar. To learn discriminative features of the multime-

dia data, we propose to minimise the discrimination loss in

both the label space and the common representation space.

Simultaneously, we minimise the distance between the rep-

resentations of each image-text pair to reduce the cross-

modal discrepancy as well. In the following, we present

more details about the objective function of our DSCMR.

To preserve the discrimination of samples from different

categories after the feature projection, we assume that the

common representations are ideal for classification and use

a linear classifier to predict the semantic labels of the sam-

ples projected in the common representation space. Specif-

ically, a linear layer is connected on the top of the image

modal network and the text modal network. This classifier

takes the representations of the training data in the com-

mon space and generates a predicted label of c-dimensional

vector for each sample. We propose the following objec-

tive function to measure the discrimination loss in the label

space:

J1 =
1

n
‖PTU−Y‖F +

1

n
‖PTV −Y‖F , (1)

where ‖·‖F denotes the Frobenius norm, P is the projection

matrix of the linear classifier.

Furthermore, we also measure the discrimination loss of

all samples from both modalities in the common represen-

tation space directly:

J2 =
1

n2

n∑

i,j=1

(log(1 + eΓij )− S
αβ
ij Γij)

︸ ︷︷ ︸

inter-modalities

+
1

n2

n∑

i,j=1

(log(1 + eΦij )− Sαα
ij Φij)

︸ ︷︷ ︸

image modality

+
1

n2

n∑

i,j=1

log(1 + eΘij )− S
ββ
ij Θij)

︸ ︷︷ ︸

text modality

,

(2)

where Γij = 1

2
cos(ui,vj), Φij = 1

2
cos(ui,uj), Θij =

1

2
cos(vi,vj), S

αβ
ij = 1{ui,vj}, Sαα

ij = 1{ui,uj}, S
ββ
ij =

1{vi,vj}, cos(·) is the cosine function used to compute the

similarity between two input vectors, and 1{·} is an indi-

cator function, whose value is 1 if the two elements are the

representations of intra-class samples, otherwise 0. The first

term of Equation (2) is the negative log likelihood of the

inter-modal sample similarities with the likelihood function

defined as follows:

p(Sαβ
ij |ui,vj) =

{

δ(Γij), if S
αβ
ij = 1;

1− δ(Γij), otherwise,
(3)

where δ(Γij) =
1

1+e
−Γij

is the sigmoid function. It is easy

to find that minimising this negative log likelihood function

is equivalent to maximising the likelihood. We can also see

that, the larger the similarity (cosine similarity cos(ui,vj))
is, the larger p(1|ui,vj) will be, which implies that should

be classified as similar, and vice versa. Likely, the second

and the third terms measure the similarities of the image

samples and the text samples, respectively. Therefore, E-

quation (2) is a reasonable similarity measure for common
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representations and is a well criterion for learning discrimi-

native features.

To eliminate the cross-modal discrepancy, we propose

to minimise the distance between the representations of all

image-text pairs. Technically, we formulate the modality

invariance loss as follows:

J3 =
1

n
‖U−V‖F . (4)

Combining Equations (1), (2) and (4), we obtain the ob-

jective function of the proposed method DSCMR as:

J = J1 + λJ2 + ηJ3, (5)

where the hyper-parameters λ and η control the contribu-

tions of the last two components, and n is the number of the

input instances. The objective function of DSCMR in Equa-

tion (5) can be optimised using a stochastic gradient descent

optimisation algorithm [12]. The details of the optimisation

procedure are summarised in Algorithm 1.

Algorithm 1 Optimisation procedure of the proposed D-

SCMR

Input: The training data set Ψ = {(xα
i ,x

β
i )}

n
i=1, the label

matrix Y, the dimensionality of the common represen-

tation space d, the batch size nb, the learning rate τ , the

maximal number of epochs ℵ, and the hyper parameters

λ and η.

Output: The optimised parameters in the two sub-

networks Υα, Υβ .

1: Randomly initialise the parameters of the two sub-

networks Υα, Υβ and the parameters of the linear clas-

sifier P.

2: for t = 1, 2, . . . ,ℵ do

3: for ℓ = 1, 2, . . . , ⌊ n
nb
⌋ do

4: Randomly sample nb image-text pair samples

from Ψ to construct a mini-batch.

5: Compute the representations ui and vj for

the samples in the mini-batch by forward-

propagation.

6: Calculate the result of the objective function in E-

quation (5).

7: Update the parameters of the linear classifier P by

minimising J in Equation (5) with:

P = (UUT )−1UTY + (VVT )−1VTY.

8: Update the parameters of the sub-networks, Υα

and Υβ , by minimising J in Equation (5) with de-

scending their stochastic gradient:

Υα = Υα − τ ∂J
∂Υα

; Υβ = Υβ − τ ∂J
∂Υβ

.

9: end for

10: end for

3.4. Implementation Details

In this work, there are two sub-networks, one for im-

age modality and the other for text modality. The convo-

lutional layers have the same configuration with 19-layer

VGGNet [29] for image sub-network and the sentence C-

NN [37] for text sub-network as mentioned in Section 3.2.

Then two fully-connected layers with Rectified Linear U-

nit (ReLU) [17] active function are followed in each sub-

network. The numbers of the hidden units for the two layers

are 2, 048 and 1, 024, respectively. The weights of the sec-

ond fully-layers of the two sub-networks are shared to learn

the correlation of two different modalities.

The entire network is trained on a Nvidia GTX 1080 Ti

GPU in PyTorch. For training, we employ the ADAM [12]

optimiser with a learning rate of 10−4 and set the maximal

number of epochs as 500.

4. Experiments

To verify the effectiveness of the proposed method,

we conduct experiments on four widely-used benchmark

datasets: the Wikipedia dataset [24], the Pascal Sentence

dataset [26], the NUS-WIDE-10k dataset [4] and the X-

MediaNet dataset [20, 23]. In the experiments, we firstly

compare the proposed DSCMR method with the state-of-

the-art methods to evaluate its performance. Then, we pro-

vide further analysis of the DSCMR method. It includes the

convergency investigation, the visualisation of the learned

representation in the common representation space and the

impact of different components in Equation (5).

4.1. Datasets and Features

In our experiments, we follow the dataset partition and

feature exaction strategies from [22, 25]. We adopt a 19-

layer VGGNet [29] to learn the representations of the sam-

ples and obtain a 4, 096-dimensional representation vector

outputted by the fc7 layer of the VGGNet for each im-

age. For representing text samples, we use the sentence

CNN [37] to learn a 300-dimensional representation vec-

tor for each text. The statistical results of the three datasets

are summarised in Table 1. It is notable that all the com-

pared methods adopt the same CNN features as for both

image and text obtained by the CNN architectures used in

our method.

4.2. Evaluation Metric

We evaluate the compared methods by using the mean

Average Precision (mAP) score for all returned results with

cosine similarity on all the four datasets. The mAP met-

ric jointly considers the ranking information and precision,

which is a widely-used performance evaluation criterion in

the research on cross-modal retrieval [32, 19, 30]. In our

experiments, we report the mAP scores of the compared
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Table 1. Statistical results of the four benchmark datasets used in

our experiments, where ntrain and ntest stand for the numbers of

training and test image-text pairs, respectively. The symbol c is

the number of categories, di and dt are the dimensionalities of the

image and text features obtained by VGGNet [29] and sentence

CNN [37], respectively.

Dataset ntrain ntest c di dt
Wikipedia 2,173 462 10 4,096 300

Pascal Sentence 800 100 20 4,096 300

NUS-WIDE-10k 8,000 1,000 10 4,096 300

XMediaNet 32,000 4,000 200 4,096 300

methods for two different cross-modal retrieval tasks: 1) re-

trieving text samples using image queries (Image2Text) and

2) retrieving images using text queries (Text2Image).

4.3. Comparison with State­of­the­art Methods

To verify the effectiveness of our proposed methods,

we compare the proposed method with ten state-of-the-art

methods in the experiments, including five traditional meth-

ods, namely CCA [8], MCCA [27], MvDA [10], MvDA-

VC [11] and JRL [40], as well as five deep learning-based

methods, namely CMDN [19], CCL [21], DCCA [2], DC-

CAE [33] and ACMR [30].

Table 2. Performance comparison in terms of mAP scores on the

Wikipedia dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average

CCA [8] 0.134 0.133 0.134

MCCA [27] 0.341 0.307 0.324

MvDA [10] 0.337 0.308 0.323

MvDA-VC [11] 0.388 0.358 0.373

JRL [40] 0.449 0.418 0.434

CMDN [19] 0.487 0.427 0.457

CCL [21] 0.504 0.457 0.481

DCCA [2] 0.444 0.396 0.420

DCCAE [33] 0.435 0.385 0.410

ACMR [30] 0.477 0.434 0.456

Ours 0.521 0.478 0.499

Tables 2-5 report the mAP scores of the proposed D-

SCMR and the compared methods on the four benchmark

datasets (the mAP score results of CCL [21] and CMD-

N [19] are provided by their authors), from which we have

the following observations:

• DSCMR significantly outperforms both the traditional

peer methods and the deep learning-based methods on

all of the four datasets. Specifically, DSCMR outper-

forms the second-best methods with an improvement

of 0.018, 0.038, 0.020 and 0.050 in terms of average

Table 3. Performance comparison in terms of mAP scores on the

Pascal Sentence dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average

CCA [8] 0.225 0.227 0.226

MCCA [27] 0.664 0.689 0.677

MvDA [10] 0.594 0.626 0.610

MvDA-VC [11] 0.648 0.673 0.661

JRL [40] 0.527 0.534 0.531

CMDN [19] 0.544 0.526 0.535

CCL [21] 0.576 0.561 0.569

DCCA [2] 0.678 0.677 0.678

DCCAE [33] 0.680 0.671 0.675

ACMR [30] 0.671 0.676 0.673

Ours 0.710 0.722 0.716

Table 4. Performance comparison in terms of mAP scores on the

NUS-WIDE-10K dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average

CCA [8] 0.378 0.394 0.386

MCCA [27] 0.448 0.462 0.455

MvDA [10] 0.501 0.526 0.513

MvDA-VC [11] 0.526 0.557 0.542

JRL [40] 0.586 0.598 0.592

CMDN [19] 0.492 0.515 0.504

CCL [21] 0.506 0.535 0.521

DCCA [2] 0.532 0.549 0.540

DCCAE [33] 0.511 0.540 0.525

ACMR [30] 0.588 0.599 0.593

Ours 0.611 0.615 0.613

Table 5. Performance comparison in terms of mAP scores on the

XMEDIANET dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average

CCA [8] 0.598 0.595 0.597

MCCA [27] 0.620 0.616 0.618

MvDA [10] 0.651 0.639 0.645

MvDA-VC [11] 0.650 0.627 0.638

JRL [40] 0.586 0.578 0.582

CMDN [19] 0.485 0.516 0.501

CCL [21] 0.537 0.528 0.533

DCCA [2] 0.583 0.596 0.590

DCCAE [33] 0.594 0.606 0.600

ACMR [30] 0.639 0.639 0.639

Ours 0.697 0.693 0.695

mAP scores on the Wikipedia, Pascal Sentence, NUS-

WIDE-10k and XMediaNet datasets, respectively.

• The nonlinear transformations in the deep learning-
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based methods can be helpful to improve the perfor-

mance of the traditional methods, e.g., DCCA outper-

forms CCA with a significant margin on the first three

datasets.

• The traditional methods with the deep features could

also potentially be able to achieve a high mAP s-

core on cross-modal retrieval. For example, the linear

methods CCA, MCCA, MvDA, MvDA-VC and JR-

L obtained promising results (average mAP of 0.597,

0.618, 0.645, 0.638 and 0.582) on the XMediaNet

dataset. This may be contributed to that the image CN-

N and the text CNN have transformed the input image

and text samples into approximately linear subspaces,

which significantly reduced the difficulty of the origi-

nal cross-modal learning task.

4.4. Further Analysis on DSCMR

4.4.1 Convergency

Figure 2 shows the value of the objective function of our

method versus the different number of training epochs on

the Pascal Sentence dataset. From the result, we can see

that during the entire training procedure, the value of the

objective function decreases almost monotonously and con-

verges smoothly. The value of the objective function of D-

SCMR becomes stable after 500 epochs, which illustrates

that the proposed method can be efficiently trained by us-

ing the stochastic gradient descent optimisation algorithm

Adam [12].
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Figure 2. The value of the objective function of DSCMR versus

the different number of training epochs on the Pascal Sentence

dataset.

4.4.2 Visualisation of the Learned Representation

To visually investigate the effectiveness of the proposed D-

SCMR, we adopt the t-SNE approach to embed the repre-

sentations of the image and text samples (in the common

representation space) into a two-dimensional visualisation

plane. The results of the original images represented by

the 4, 096-dimensional (VGGNet [29]) features and the text

samples represented by the 300-dimensional (sentence CN-

N [37]) features (after the embedding process) are displayed

in Figure 3(d) and Figure 3(e), respectively. We can see that

the distributions of the image modality and the text modality

in the Wikipedia dataset are largely different and the sam-

ples are hard to be classified in the original input space.

Figure 3(a) and Figure 3(b) show the two-dimensional

distributions of the image and text representations in the

common space. From the results, we can see that the formu-

lation of the discrimination loss in both the common space

and the label space is able to model the discrimination be-

tween the samples from different semantic categories, and

effectively separates the representations into several seman-

tically discriminative clusters. We can also find that a s-

mall number of the representations from different seman-

tic categories are mixed together, which makes DSCMR

returns some irrelevant results for a query. These result-

s are in accordance with the retrieval results shown in Ta-

ble 2. Furthermore, the distributions of image modality and

text modality in Figure 3(c) are well mixed together and

are difficult to be separated from each other. It means that

the cross-modal discrepancy is largely reduced by using the

proposed method.

4.4.3 Impact of Different Components

The objective function of the proposed DSCMR combines

three terms, which aim to minimise the discrimination loss

in the label space, the discrimination loss in the common

representation space, and the modality invariance loss in the

common representation space, respectively. To investigate

the impact of these terms on the performance of the pro-

posed method, we developed and evaluated four variation-

s of DSCMR: DSCMR without J1 (DSCMR1), DSCMR

without J2 (DSCMR2), DSCMR without J3 (DSCMR3)

and DSCMR only with J1 (DSCMR4). The optimisation

procedure of these four cases is similar to the proposed D-

SCMR.

Table 6. Performance comparison of the proposed DSCMR and

its four variations in terms of mAP scores on the Pascal Sentence

dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average

DSCMR1 0.583 0.631 0.607

DSCMR2 0.708 0.722 0.715

DSCMR3 0.691 0.683 0.694

DSCMR4 0.690 0.680 0.685

Full DSCMR 0.710 0.722 0.716

Table 6 and Table 7 show the performance comparisons

of DSCMR and its four variations on the Pascal Sentence

dataset and the NUS-WIDE-10K dataset. From the result-

s, we can see that the full DSCMR performs best on both

datasets, which indicates that all of the three terms in the

10400



-40 -20 0 20 40
-60

-40

-20

0

20

40

60

80

(a) Image representations

-40 -20 0 20 40
-60

-40

-20

0

20

40

60

80

(b) Text representations

-40 -20 0 20 40
-60

-40

-20

0

20

40

60

80

(c) Image and text representations

-40 -20 0 20 40
-30

-20

-10

0

10

20

30

(d) Original image samples

-40 -20 0 20 40
-40

-30

-20

-10

0

10

20

30

40

(e) Original text samples

Figure 3. The visualisation for the test data in the Wikipedia dataset by using the t-SNE method [15]. The triangles denote the samples from

image modality and the circles denote the samples from text modality. The samples come the same semantic category are marked with the

same colour. (a) the image representations in the common representation space. (b) the text representations in the common representation

space. (c) the image and text representations in the common representation space. (d) the original image samples represented by the 4, 096-

dimensional (VGGNet [29]) features. (e) the original text samples represented by the 300-dimensional (sentence CNN [37]) features.

Table 7. Performance comparison of the proposed DSCMR and its

four variations in terms of mAP scores on the NUS-WIDE-10K

dataset. The highest score is shown in boldface.

Method Image2Text Text2Image Average

DSCMR1 0.267 0.262 0.265

DSCMR2 0.610 0.612 0.611

DSCMR3 0.534 0.541 0.538

DSCMR4 0.527 0.520 0.524

Full DSCMR 0.611 0.615 0.613

objective function contribute to the final retrieval accuracy.

We can also see that DSCMR outperforms DSCMR1 with

a large margin, which demonstrates the importance of the

first term (the discrimination loss in the label space). Fur-

thermore, DSCMR4 (the variation only with the first term)

obtained competitive results on both datasets. This also in-

dicates that the importance of the first term for the model

to learn modal-invariant discriminative features. Howev-

er, DSCMR4 is still inferior to the DSCMR2 and DSCM-

R3, which demonstrates the significance of the second term

and the third term of the proposed method. Based on the

above analysis, we find that formulating both the discrimi-

nation loss and the inter-modal invariance loss in the objec-

tive function is a valuable strategy for multimodal learning.

5. Conclusion

In this paper, we proposed a new approach (DSCMR) to

learn common representations for heterogeneous data. The

learned common representations can be both discriminative

and modality-invariant for cross-modal retrieval. DSCM-

R achieved this goal by minimising the discrimination loss

(in the common representation space and the label space)

and modality invariance loss simultaneously. Extensive ex-

perimental results on four widely-used benchmark datasets

and the comprehensive analysis have demonstrated the ef-

fectiveness of the proposed cross-modal learning strategy,

leading to superior cross-modal retrieval performance com-

pared to state-of-the-art methods.
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