Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions

Zhilin Zheng Li Sun
Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University
51171214020@stu.ecnu.edu.cn sunli@ee.ecnu.edu.cn

Abstract

VAE requires the standard Gaussian distribution as a prior in the latent space. Since all codes tend to follow the same prior, it often suffers the so-called "posterior collapse". To avoid this, this paper introduces the class specific distribution for the latent code. But different from cVAE, we present a method for disentangling the latent space into the label relevant and irrelevant dimensions, z_s and z_u, for a single input. We apply two separated encoders to map the input into z_s and z_u respectively, and then give the concatenated code to the decoder to reconstruct the input. The label irrelevant code z_u represent the common characteristics of all inputs, hence they are constrained by the standard Gaussian, and their encoder is trained in amortized variational inference way, like VAE. While z_s is assumed to follow the Gaussian mixture distribution in which each component corresponds to a particular class. The parameters for the Gaussian components in z_s encoder are optimized by the label supervision in a global stochastic way. In theory, we show that our method is actually equivalent to adding a KL divergence term on the joint distribution of z_s and the class label c, and it can directly increase the mutual information between z_s and the label c. Our model can also be extended to GAN by adding a discriminator in the pixel domain so that it produces high quality and diverse images.

1. Introduction

Learning a deep generative model for the structured image data is difficult because this task is not simply modeling a many-to-one mapping function such as the classification, instead it is often required to generate diverse outputs for similar codes sampled from a simple distribution. Furthermore, image x in the high dimension space often lies in a complex manifold, thus the generative model should capture the underlying data distribution $p(x)$.

Basically, Variational Auto-Encoder (VAE) [33, 19] and Generative Adversarial Network (GAN) [12, 24] are two strategies for structured data generation. In VAE, the encoder $q_\phi(z|x)$ maps data x into the code z in latent space. The decoder, represented by $p_\theta(x|z)$, is given a latent code z sampled from a distribution specified by the encoder and tries to reconstruct x. The encoder and decoder in VAE are trained together mainly based on the data reconstruction loss. At the same time, it requires to regularize the distribution $q_\phi(z|x)$ to be simple (e.g. Gaussian) based on the Kullback-Leibler (KL) divergence between $q(z|x)$ and $p(z) = \mathcal{N}(0, I)$, so that the sampling in latent space is easy. Optimization for VAE is quite stable, but results from it are blurry. Mainly because the posterior defined by $q_\phi(z|x)$ is not complex enough to capture the true posterior, also known for "posterior collapse". On the other hand, GAN treats the data generation task as a min/max game between a generator $G(z)$ and discriminator $D(x)$. The adversarial loss computed from the discriminator makes generated image more realistic, but its training becomes more unstable. In [9, 21, 27], VAE and GAN are integrated together so that they can benefit each other.

Both VAE and GAN work in an unsupervised way without giving any condition of the label on the generated image. Instead, conditional VAE (cVAE) [36, 3] extends it by showing the label c for both encoder and decoder. It learns data distribution conditioned on the given label. Hence, the encoder and decoder become $q_\phi(z|x, c)$ and $p_\theta(x|z, c)$. Similarly, in conditional GAN (cGAN) [8, 17, 32, 29] label c is given to both generator $G(z, c)$ and discriminator $D(x, c)$. Theoretically, feeding label c to either the encoder in VAE or decoder in VAE or GAN helps increasing the mutual information between the generated x and the label c. Thus, it can improve the quality of generated image.

This paper deals with image generation problem in VAE with two separate encoders. For a single input x, our goal is to disentangle the latent space code z, computed by encoders, into the label relevant dimensions z_s and irrelevant ones z_u. We emphasize the difference between z_s and z_u, and their corresponding encoders. For z_s, since label c is known during training, it should be more accurate and specific. While without any label constraint, z_u should be general. Specifically, the two encoders are constrained with different priors on their posterior distributions $q_\phi_i(z_u|x)$ and
$q_{\phi_u}(z_u|x)$. Similar with VAE or cVAE, in which the full code z is label irrelevant, the prior for z_u is also chosen $\mathcal{N}(0, 1)$. But different from previous works, the prior $p(z_c)$ becomes complex to capture the label relevant distribution. From the decoder’s perspective, it takes the concatenation of z_s and z_u to reconstruct the input x. Here the distinction with cVAE and cGAN is that they uses the fixed, one-hot encoding label, while our work applies z_s, which is considered to be a variational, soft label.

Note that there are two stages for training our model. First, the encoder for z_s gets trained for classification task under the supervision of label c. Here instead of the softmax cross entropy loss, Gaussian mixture cross entropy loss proposed in [39] is adopted since it accumulates the mean μ_c and variance σ_c for samples with the same label c, and models it as the Gaussian $\mathcal{N}(\mu_c, \sigma_c)$. The first stage specifies the label relevant distribution. In the second stage, the two encoders and the decoder are trained jointly in an end-to-end manner based on the reconstruction loss. Meanwhile, priors of $z_s \sim \mathcal{N}(\mu_c, \sigma_c)$ and $z_u \sim \mathcal{N}(0, 1)$ are also considered.

The main contribution of this paper lies in following aspects: (1) for a single input x to the encoder, we provide an algorithm to disentangle the latent space into label relevant and irrelevant dimensions in VAE. Previous works like [14, 4, 35] disentangle the latent space in AE not VAE. So it is impossible to make the inference from their model. Moreover, [26, 4, 22] requires at least two inputs for training. (2) we find the Gaussian mixture loss function is suitable way for estimating the parameters of the prior distribution, and it can be optimized in VAE framework. (3) we give both a theoretical derivation and a variety of detailed experiments to explain the effectiveness of our work.

2. Related works

Two types of methods for the structured image generation are VAE and GAN. VAE [19] is a type of parametric model defined by $p(x|z)$ and $q_{\phi}(z|x)$, which employs the idea of variational inference to maximize the evidence lower bound (ELBO), as is shown in Eq. 1.

$$\log p(x) \geq E_{q_{\phi}(z|x)}(\log p_{\theta}(x|z)) - D_{KL}(q_{\phi}(z|x)||p(z))$$

(1)

The right side of the above is the ELBO, which is the lower bound of maximum likelihood. In VAE, a differentiable encoder-decoder are connected, and they are parameterized by ϕ and θ, respectively. $E_{q_{\phi}(z|x)}(\log p_{\theta}(x|z))$ represents the end-to-end reconstruction loss, and $D_{KL}(q_{\phi}(z|x)||p(z))$ is the KL divergence between the encoder’s output distribution $q_{\phi}(z|x)$ and the prior $p(z)$, which is usually modeled by standard normal distribution $\mathcal{N}(0, 1)$. Note that VAE assumes that the posterior $q_{\phi}(z|x)$ is of Gaussian, and the μ and σ are estimated for every single input x by the encoder. This strategy is named amortized variational inference (AVI), and it is more efficiency than stochastic variational inference (SVI) [16].

VAE’s advantage is that its loss is easy to optimize, but the simple prior in latent space may not capture the complex data patterns which often leads to the mode collapse in latent space. Moreover, VAE’s code is hard to be interpreted. Thus, many works focus on improving VAE on these two aspects. cVAE [36] adds the label vector as the input for both the encoder and decoder, so that the latent code and generated image are conditioned on the label, and potentially prevent the latent collapse. On the other hand, VAE [15, 7] is a unsupervised approach for the latent space disentanglement. It introduces a simple hyper-parameter β to balance the two loss term in Eq. 1. A scheme named infinite mixture of VAEs is proposed and applied in semi-supervised generation [1]. It uses multiple number of VAEs and combines them as a non-parametric mixture model. In [18], the semi-amortized VAE is proposed. It combines AVI with SVI in VAE. Here the SVI estimates the distribution parameters on the whole training set, while the AVI in traditional VAE gives this estimation for a single input.

GAN [12] is another technique to model the data distribution $p_D(x)$. It starts from a random $z \sim p(z)$, where $p(z)$ is simple, e.g. Gaussian, and trains a transform network $g_{\theta}(z)$ under the help of discriminator $D_{\phi}(\cdot)$ so that $p_{\theta}(z)$ approximates $p_D(x)$. The later works [31, 25, 2, 13, 28] try to stabilize GAN’s training. Traditional GAN works in a fully supervised manner, while cGAN [17, 32, 29, 6] aims to generate images conditioned on labels. In cGAN, the label is given as an input to both the generator and discriminator as a condition for the distribution. The encoder-decoder architecture like AE or VAE can also be used in GAN. In ALI [10] and BiGAN [9], the encoder maps x to z, while the decoder reverses it. The discriminator takes the pair of z and x, and is trained to determine whether it comes from the encoder or decoder in an adversarial manner. In VAE-GAN [21, 23], VAE’s generated data are improved by a discriminator. Similar idea also applies to cVAE in [3]. VAE-GAN also applies in some specific applications like [4, 11].

Since code z potentially affects the generated data, some works try to model its effect and disentangle the dimensions of z. InfoGAN [8] reveals the effect of latent space code c by maximizing the mutual information between c and the synthetic data $g_{\theta}(z, c)$. Its generator outputs $g_{\theta}(z, c)$ which is inspected by the discriminator $D_{\phi}(\cdot)$. $D_{\phi}(\cdot)$ also tries to reconstruct the code c. In [26], the latent dimension is disentangled in VAE based on the specified factors and unspecified ones, which is similar with our work. But its encoder takes multiple inputs, and the decoder combines codes from different inputs for reconstruction. The work in [14] modifies [26] by taking a single input. To stabilize training, its model is built in AE not VAE, hence it can’t perform vari-
the objective can be rewritten as (derived in detail in Appendices).

\[
\log p(x) = \log \int \int \sum_c p(x, z_s, z_u, c) dz_s dz_u \\
\geq \mathbb{E}_{q_\phi(z_s|x), q_\phi(z_u|x)} [\log p_\theta(x|z_s, z_u)] \\
- D_{KL}(q_\phi(z_u|x)||p(z_u)) \\
- D_{KL}(q_\phi(z_s, c|x)||p(z_s, c))
\]

(2)

In Eq. 2, the ELBO becomes 3 terms in our setting. The first term is the negative reconstruction error, where \(p_\theta\) is the decoder parameterized by \(\theta\). It measures whether the latent code \(z_s\) and \(z_u\) are informative enough to recover the original data. In practice, the reconstruction error \(L_{rec}\) can be defined as the \(l_2\) loss between \(x\) and \(x'\). The second term acts as a regularization term of label irrelevant branch that pushes \(q_\phi(z_u|x)\) to match the prior distribution \(p(z_u)\), which is illustrated in detail in Section 3.2. The third term matches \(q_\phi(z_s|x)\) to a class-specific Gaussian distribution whose mean and covariance are learned with supervision, and it will be further introduced in Section 3.3.

3.2. Label irrelevant branch

Intuitively, we want to disentangle the latent code \(z\) into \(z_s\) and \(z_u\), and expect \(z_u\) to follow a fixed, prior distribution which is irrelevant to the label. This regularization is realized by minimizing KL divergence between \(q_\phi(z_u|x)\) and the prior \(p(z_u)\) as illustrated in Eq. 3. More specifically, \(q_\phi(z_u|x)\) is a Gaussian distribution whose mean \(\mu\) and diagonal covariance \(\Sigma\) are the output of \(Encoder^u\) parameterized by \(\phi\). \(p(z_u)\) is simply set to \(N(0, I)\). Hence the KL regularization term is:

\[
L_{kl} = D_{KL}[N(\mu, \Sigma)||N(0, I)]
\]

(3)

Note that Eq. 3 can be represented in a closed form, which is easy to be computed.

To ensure good disentanglement in \(z_u\) and \(z_s\), we introduce adversarial learning in the latent space as in AAE [24] to drive the label relevant information out of \(z_u\). To do this, an adversarial classifier is added on the top of \(z_u\), which is trained to classify the category of \(z_u\) with cross entropy loss as is shown in Eq. 4:

\[
L_C^{adv} = -\mathbb{E}_{q_\phi(z_u|x)} \sum_c I(c = y) \log q_\omega(c|z_u)
\]

(4)

where \(I(c = y)\) is the indicator function, and \(q_\omega(c|z_u)\) is softmax probability output by the adversarial classifier parameterized by \(\omega\). Meanwhile, \(Encoder^u\) is trained to fool the classifier, hence the target distribution becomes uniform over all categories, which is \(\frac{1}{C}\). The cross entropy loss is defined as Eq. 5.

\[
L_E^{adv} = -\mathbb{E}_{q_\phi(z_u|x)} \sum_c \frac{1}{C} \log q_\omega(c|z_u)
\]

(5)
3.3. Label relevant branch

Inspired by GM loss [39], we expect z_s to follow a Gaussian mixture distribution, expressed in Eq. 6, where μ_c and Σ_c are the mean and covariance of Gaussian distribution for class c, and $p(c)$ is the prior probability, which is simply set to $\frac{1}{C}$ for all categories. For simplicity, we ignore the correlation among different dimensions of z_s, hence Σ_c is assumed to be diagonal.

$$p(z_s) = \sum_c p(z_s|c)p(c) = \sum_c N(z_s; \mu_c, \Sigma_c)p(c) \quad (6)$$

Recall that in Eq. 2, the KL divergence between $q_v(z_s, c|x)$ and $p(z_s, c)$ is minimized. If z_s is formulated as a Gaussian distribution with its $\Sigma \to 0$ and its mean \hat{z}_s output by $Encoder^u$, which is actually a Dirac delta function $\delta(z_s - \hat{z}_s)$, the KL divergence turns out to be the likelihood regularization term L_{likd} in Eq. 7, which is proved in Appendices. Here μ_y and Σ_y are the mean and covariance specified by the label y.

$$L_{likd} = -\log N(\hat{z}_s; \mu_y, \Sigma_y) \quad (7)$$

Furthermore, we want z_s to contain label information as much as possible, thus the mutual information between z_s and class c is added to the maximization objective function. We prove in Appendices that it’s equal to minimize the cross-entropy loss of the posterior probability $q(c|z_s)$ and the label, which is exactly the classification loss L_{cls} in GM loss as is shown in Eq. 8.

$$L_{cls} = -E_{q_v(z_s|x)} \sum_c \mathbb{I}(c = y) \log q(c|z_s)$$

$$= -\log \frac{N(z_s; \mu_y, \Sigma_y)p(y)}{C \sum_k N(z_s; \mu_k, \Sigma_k)p(k)} \quad (8)$$

These two terms are added up to form GM loss in Eq. 9. Here L_{GM} is finally used to train the $Encoder^u$.

$$L_{GM} = L_{cls} + \lambda_{likd}L_{likd} \quad (9)$$

3.4. The decoder and the adversarial discriminator

The latent codes z_s and z_u output by $Encoder^u$ and $Encoder^u$ are first concatenated together, and then further given to the decoder to reconstruct the input x by x'. Here the $Decoder$ is indicated by $p_\theta(x|z)$ with its parameter θ learned from the l_2 reconstruction error L_{rec}. To synthesize a high quality x', we also employ the adversarial training in the pixel domain. Specifically, a discriminator $D_{\theta_d}(x, c)$ with adversarial training on its parameter θ_d is used to improve x'. Here the label c is utilized in D_{θ_d} like in [29]. The adversarial training loss for discriminator can be formulated as in Eq. 10.

$$L^{adv}_{D} = -E_{x \sim P_r} [\log D_{\theta_d}(x, c)] - E_{z_s \sim N(0, I), z_u \sim p(z_u)} [\log (1 - D_{\theta_d}(G(z_s, z_u), c))] \quad (10)$$

while this loss becomes

$$L^{adv}_{GD} = -E_{z_u \sim N(0, I), z_s \sim p(z_s)} [\log (D_{\theta_d}(G(z_s, z_u), c))]$$

for the generator. Note that here $G(z_s, z_u)$ is the decoder and $p(z_s)$ is defined in Eq. 6.

3.5. Training algorithm

The training detail is illustrated in Algorithm 1. The $Encoder^u$, modeled by q_v, extracts label relevant code z_s. $Encoder^u$ is trained with L_{GM} and L_{rec}, encouraging z_s to be label dependent and follow a learned Gaussian mixture distribution. Meanwhile, the $Encoder^u$ represented by q_v is intended to extract class irrelevant code z_u. It’s trained by L_{kl}, L^{adv}_{E} and L_{rec} to make z_u irrelevant to the label and close to $N(0, I)$. The adversarial classifier parameterized by ω is learned to classify z_u using L^{adv}_{C}. Then the decoder p_θ generates reconstruction image using the combined feature of z_s and z_u with the loss L_{rec}.

In the training process, a 2-stage alternating training algorithm is adopted. First, $Encoder^u$ is updated using L_{GM} to learn mean μ_c and covariance Σ_c of the prior $p(z_s|c)$. Then, the two encoders and the decoder are trained jointly to reconstruct images while the distributions of z_s and z_u are considered.

3.6. Application in semi-supervised generation

Given L unlabeled extra data $D_u = \{x^{(N+1)}, x^{(N+2)}, \ldots, x^{(N+L)}\}$, we now use our architecture for the semi-supervised generation, in which the labels $y^{(N+1)}$ of $x^{(N+1)}$ in D_u are not presented. Here we hold the assumption that D_u are in the same domain as the fully supervised D_s, but $y^{(N+1)}$ can be satisfied $y^{(N+1)} \in \{0, 1, \ldots, C - 1\}$, or out of the predefined range. In other words, if the absent $y^{(N+1)}$ is in the predefined range, its z_s follows the same Gaussian mixture distribution as in Eq. 6. Otherwise, z_s should follow an ambiguous Gaussian distribution defined in Eq. 11.

$$\mu_c = \sum_c p(c) \mu_c$$

$$\sigma^2 = \sum_c p(c) \sigma^2_c + \sum_c p(c)(\mu_c)^2 - (\sum_c p(c)\mu_c)^2 \quad (11)$$

More specifically, z_s is expected to follow $N(\mu_c, \Sigma_c)$ where μ_c and Σ_c are the total mean and covariance of all the class-specific Gaussian distributions $N(\mu_c, \Sigma_c)$ as illustrated in Eq. 6. Here, Σ_c is diagonal matrix with σ^2 as its variance vector. σ^2 is also the variance vector of Σ_c. Hence, the likelihood regularization term becomes $L_{likd} = -\log N(\hat{z}_s; \mu_c, \Sigma_c)$. The whole network is trained in a end-to-end manner using total losses. Note that in this setting, the label y is not provided, so L_{GM}, L^{adv}_{E} and L^{adv}_{C} are ignored in the training process.
4. Experiments

In this section, experiments are carried out to validate the effectiveness of the proposed method. A toy example is first designed to show that by disentangling the label relevant and irrelevant codes, our model has the ability of generating diverse data samples than cVAE-GAN [3]. We then compare the quality of generated images on real image datasets. The latent space is also analyzed. Finally, the experiments of semi-supervised generation and image inpainting show the flexibility of our model, hence it may have many potential applications.

4.1. Toy examples

This section demonstrates our method on a toy example, in which the real data distribution lies in 2D with one dimension (x axis) being label relevant and the other (y axis) being irrelevant. The distribution is assumed to be known. There are 3 types of data points indicated by green, red and blue, belonging to 3 classes. The 2D data points and their corresponding labels are given to our model for variational inference and the new sample generation.

For comparison, we also give the same training data to cVAE-GAN for the same purpose. The two compared models share the similar settings of the network. In our model, the two encoders are both MLP with 3 hidden layers, and there are 32, 64, and 64 units in them. In cVAE-GAN, the encoder is the same, but it only has one encoder. The discriminators are exactly the same, which is also an MLP of 3 hidden layers with 32, 64, and 64 units. Adam is used as the optimization method in which a fixed learning rate of 0.0005 is applied for both. Each model is trained for 50 epochs until they all converge. The generated samples of each model are plotted in Figure 2.

From Figure 2 we can observe that both two models can capture the underlying data distribution, and our model converges at the similar rate. The advantage of our model is that it tends to generate diverse samples, while cVAE-GAN generates samples in a conserving way in which the label irrelevant dimensions are within the limited value range.

4.2. Analysis on generated image quality

In this section, we compare our method with other generative models for image generation quality. The experiments are conducted on two datasets: FaceScrub [30] and CIFAR-10 [20]. The FaceScrub contains 92k training images from 530 different identities. For FaceScrub, a cascaded object detector proposed in [38] is first used to detect faces first, and then the face alignment is also conducted based on SDM proposed in [41]. The detected cropped faces are resized to the fixed size 64 x 64. In the training process, Adam optimizer with $\alpha = 0.0005$ is used. The hyper parameter λ_{kd}, λ_k, and λ_{rec} are set to 0.1, $\frac{10}{N_{\text{pixel}}}$, and $\frac{1}{N_u}$, respectively. Here, N_{pixel} is the number of image pixels, and N_u is the dimension of z_u. Since our method incorporates the label for training, popular generative networks conditioned on label, like cVAE [36], cVAE-GAN [3], and cGAN [29], are chosen for comparison. For cVAE, cVAE-GAN and cGAN, we randomly generate samples of class c by first sampling $z \sim \mathcal{N}(0, 1)$ and then concatenating z and one hot vector of c as the input of decoder/generator. As for ours, $z_v \sim \mathcal{N}(\mu_v, \sigma_v)$ and $z_u \sim \mathcal{N}(0, 1)$ are sampled and combined for decoder to generate samples. Some of
generated images are visualized in Figure 3. It shows that samples generated by cVAE are highly blurred, and cGAN suffers from mode collapse. Samples generated by CVAE-GAN and our method seem to have similar quality, we refer to two metrics, Inception Score [34] and intra-class diversity [5] to compare them.

We adopt Inception Score to evaluate realism and inter-class diversity of images. Generated images that are close to real images of class y should have a posterior probability $p(y|x)$ with low entropy. Meanwhile, images of diverse classes should have a marginal probability $p(y)$ with high entropy. Hence, Inception Score, formulated as $\exp(\mathbb{E}_x KL(p(y|x)||p(y)))$, gets a high value when images are realistic and diverse.

To get conditional class probability $p(y|x)$, we first train a classifier with Inception-ResNet-v1 [37] architecture on real data. Then we randomly generate 53k samples (100 for each class) of FaceScrub and 5k samples (500 for each class) of CIFAR-10, and apply them to the pre-trained classifier. The marginal $p(y)$ is obtained by averaging all $p(y|x)$. The results are listed in Table 1.

We emphasize that our method will generate more diverse samples in one class. Since Inception Score only measures inter-class diversity, intra-class diversity of samples should also be taken into account. We adopt the metric proposed in [5], which measures the average negative MS-SSIM [40] between all pairs in the generated image set X. Table 2 shows the inter-class diversity of cVAE-GAN and our method on FaceScrub and CIFAR-10.
There are certain classes where irrelevant images are shown in Figure 4. In Figure 4 (a), each row presents samples with linearly transformed the make-up. In Figure 4 (b), each row presents samples for all different identities, e.g., grow a beard, wrinkle, or take off illuminations. These two experiments suggest that each row change consistently with poses, expressions and characteristics. It’s validated in the following ways: (1) the variation unique to training images within the label c, and keep it fixed. Then a set of zi for class c is obtained by first getting a series of random codes sampled from N(0, I) and then mapping them to class c. In specific, we first sample z1 ∼ N(0, I) and z2 ∼ N(0, I). Then a set of random codes z(i) are obtained by linear interpolation, i.e., z(i) = αz1 + (1 − α)z2, α ∈ [0, 1]. We map each z(i) to class c with zα(i) = z(i) ∘ σc + µc. Finally each zα(i) is concatenated code from a learned distribution and keep it fixed. Then a set of label irrelevant ones are obtained by linearly interpolating between z1 and z2, where z1 and z2 are sampled from N(0, I).

We conduct experiments on FaceScrub and the generated images are shown in Figure 4. In Figure 4 (a), each row presents samples generated by linearly transformed zα of a certain class c and a fixed zu. All three rows share the same zu, and each column shares the same random code z(i) and just maps it to different class c with zα(i) = z(i) ∘ σc + µc. It shows that as zα varies, one may change differently for different identities, e.g., grow a beard, wrinkle, or take off the make-up. In Figure 4 (b), each row presents samples with linearly transformed zu a fixed zα of class c, and each column shares a same zu. We can see that images from each row change consistently with poses, expressions and illuminations. These two experiments suggest that zα is relevant to c, while zu reflects more common label irrelevant characteristics.

We are also interested in each dimension in zu and conduct an experiment by varying a single element in it. We find three dimensions in zu which reflect the meaningful the common characteristics, such as the expression, elevation and azimuth.

\[
d_{\text{intra}}(X) = 1 - \frac{1}{|X|^2} \sum_{(x', x) \in X \times X} \text{MS-SSIM}(x', x) \quad (12)
\]

4.3. Analysis on disentangled latent space

We now evaluate our proposal on the disentangled latent space, which is represented by label relevant dimensions za and irrelevant ones zu. For the class c is supposed to capture the variation unique to training images within the label c, while zu should contain the variation in common characteristics for all classes. It’s validated in the following ways: (1) fixing zu and varying za. In this setting, we directly sample a zu ∼ N(0, I), and keep it fixed. Then a set of zu for class c is obtained by first getting a series of random codes sampled from N(0, I) and then mapping them to class c. In specific, we first sample z1 ∼ N(0, I) and z2 ∼ N(0, I). Then a set of random codes z(i) are obtained by linear interpolation, i.e., z(i) = αz1 + (1 − α)z2, α ∈ [0, 1]. We map each z(i) to class c with za(i) = z(i) ∘ σc + µc. Finally each za(i) is a vector from a learned distribution and keep it fixed. Then a set of label irrelevant za are obtained by linearly interpolating between z1 and z2, where z1 and z2 are sampled from N(0, I).

We now evaluate our proposal on the disentangled latent space, which is represented by label relevant dimensions za and irrelevant ones zu. For the class c is supposed to capture the variation unique to training images within the label c, while zu should contain the variation in common characteristics for all classes. It’s validated in the following ways: (1) fixing zu and varying za. In this setting, we directly sample a zu ∼ N(0, I), and keep it fixed. Then a set of zu for class c is obtained by first getting a series of random codes sampled from N(0, I) and then mapping them to class c. In specific, we first sample z1 ∼ N(0, I) and z2 ∼ N(0, I). Then a set of random codes z(i) are obtained by linear interpolation, i.e., z(i) = αz1 + (1 − α)z2, α ∈ [0, 1]. We map each z(i) to class c with za(i) = z(i) ∘ σc + µc. Finally each za(i) is a vector from a learned distribution and keep it fixed. Then a set of label irrelevant za are obtained by linearly interpolating between z1 and z2, where z1 and z2 are sampled from N(0, I).

We conduct experiments on FaceScrub and the generated images are shown in Figure 4. In Figure 4 (a), each row presents samples generated by linearly transformed za of a certain class c and a fixed zu. All three rows share the same zu, and each column shares the same random code z(i) and just maps it to different class c with za(i) = z(i) ∘ σc + µc. It shows that as za varies, one may change differently for different identities, e.g., grow a beard, wrinkle, or take off the make-up. In Figure 4 (b), each row presents samples with linearly transformed zu a fixed za of class c, and each column shares a same zu. We can see that images from each row change consistently with poses, expressions and illuminations. These two experiments suggest that za is relevant to c, while zu reflects more common label irrelevant characteristics.

We are also interested in each dimension in zu and conduct an experiment by varying a single element in it. We find three dimensions in zu which reflect the meaningful the common characteristics, such as the expression, elevation and azimuth.

4.4. Semi-supervised image generation

According to the details in Section 3.6, the experiments on semi-supervised image generation are conducted. We find our method can learn well disentangled latent representation when the unlabeled extra data are available. To validate that, we randomly select 200 identities of about 21k images from CASIA [42] dataset and remove their labels to form unlabeled dataset D_u. Note that the identities in D_u are totally different with those in FaceScrub. After training the whole network on labeled dataset D_l, we finetune it on D_u using the training algorithm illustrated in Section 3.6.

To demonstrate the semi-supervised generation results, two different images are given to Encoder^S and Encoder^U to generate the code za and zu, respectively. Then, the decoder is required to synthesize a new image based on the concatenated code from za and zu. The Figure 6 shows face synthesis results using images whose identities have not appeared in D_u. The first row and first column show a set of original images providing zu and za respectively, while images in the middle are generated ones using za of the corresponding row and zu of the corresponding column. It is obvious that the identity depends on za, while other characteristics like the poses, illumination, expressions are reflected on zu. This semi-supervised generation shows za and zu can also be disentangled on identities outside the labeled training data D_l, which provides the great flexibility for image generation.

4.5. Image inpainting

Our method can also be applied to image inpainting. It means that given a partly corrupted image, we can ex-
tract meaningful latent code to reconstruct the original image. Note that in cVAE-GAN [3], an extra class label c should be provided for reconstruction while it’s needless in our method. In practice, we first corrupt some patches for a image x, namely right-half, eyes, nose and mouth, and bottom-half regions, then input those corrupted images into the two encoders to get z_s and z_u, then the reconstructed image x' is generated using a combined z_s and z_u. The image inpainting result is obtained by $\hat{x} = x' \odot M + (1 - M) \odot x$, where M is the binary mask for the corrupted patch. Figure 7 shows the results of image inpainting. cVAE-GAN struggles to complete the images when it comes to a large part of missing regions (e.g. right-half and bottom-half parts) or pivotal regions of faces (e.g. eyes), while our method provides visually pleasing results.

5. Conclusion

We propose a latent space disentangling algorithm on VAE baseline. Our model learns two separated encoders and divides the latent code into label relevant and irrelevant dimensions. Together with a discriminator in pixel domain, we show that our model can generate high quality and diverse images, and it can also be applied in semi-supervised image generation in which unlabelled data with unseen classes are given to the encoders. Future research includes building more interpretable latent dimensions with help of more labels, and reducing the correlation between the label relevant and irrelevant codes in our framework.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Project 61302125, and by Natural Science Foundation of Shanghai under Project 17ZR1408500. Li Sun (sunli@ee.ecnu.edu.cn) is the corresponding author.
References

