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Abstract

Learning subtle yet discriminative features (e.g., beak

and eyes for a bird) plays a significant role in fine-grained

image recognition. Existing attention-based approaches lo-

calize and amplify significant parts to learn fine-grained

details, which often suffer from a limited number of parts

and heavy computational cost. In this paper, we propose

to learn such fine-grained features from hundreds of part

proposals by Trilinear Attention Sampling Network (TASN)

in an efficient teacher-student manner. Specifically, TASN

consists of 1) a trilinear attention module, which generates

attention maps by modeling the inter-channel relationship-

s, 2) an attention-based sampler which highlights attended

parts with high resolution, and 3) a feature distiller, which

distills part features into an object-level feature by weight

sharing and feature preserving strategies. Extensive exper-

iments verify that TASN yields the best performance under

the same settings with the most competitive approaches, in

iNaturalist-2017, CUB-Bird, and Stanford-Cars datasets.

1. Introduction

Fine-grained visual categorization (FGVC) focuses on

distinguishing subtle visual differences within a basic-level

category (e.g., bird [1, 34] and car [13, 20, 36]). Al-

though the techniques of convolutional neural network (C-

NN) [8, 15, 25] for general image recognition [14, 23] have

become increasingly practical, FGVC is still a challenging

task where discriminative details are too subtle to be well-

represented by traditional CNN. Thus the majority of effort-

s in the fine-grained community focuses on learning better

representation for such subtle yet discriminative details.

Existing attention/part-based methods [2, 7, 33, 40] try

to solve this problem by learning part detectors, cropping

∗This work was performed when Heliang Zheng was visiting Microsoft

Research as a research intern.
†Corresponding author.

Figure 1. An illustration of learning discriminative details by TAS-

N for a “bule jay.” As shown in (b), TASN learns such subtle

details by up-sampling each detail into high-resolution. And the

white concentric circles in (c) indicates fine-grained details.

and amplifying the attended parts, and concatenating part

features for recognition. Although promising performance

has been achieved, there are several critical issues in such

a pipeline. Specifically, 1) the number of attention is lim-

ited and pre-defined, which restricts the effectiveness and

flexibility of the model. 2) Without part annotations, it is

difficult to learn multiple consistent (i.e., attending on the

same part for each sample) attention maps. Although a

well-designed initialization [7, 16, 40] can benefit the mod-

el training, it is not robust and cannot handle the cases with

uncommon poses. Moreover, 3) training CNNs for each

part is not efficient. Such problems evolve as bottlenecks

for the study on attention-based methods.

To address the above challenges, we propose a trilin-

ear attention sampling network (TASN) which learns fine-

grained details from hundreds of part proposals and effi-

ciently distills the learned features into a single convolu-
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tional neural network. The proposed TASN consists of a

trilinear attention module, an attention-based sampler, and

a feature distiller. First, the trilinear attention module takes

as input feature maps and generates attention maps by self-

trilinear product, which integrates feature channels with

their relationship matrix. Since each channel of feature

maps is transformed into an attention map, hundreds of part

proposals can be extracted. Second, attention-based sam-

pler takes as input an attention map as well as an image, and

highlights attended parts with high resolution. Specifically,

for each iteration, the attention-based sampler generates a

detail-preserved image based on a randomly selected atten-

tion map, and a structure-preserved image based on an aver-

aged attention map. The former learns fine-grained feature

for a specific part, and the latter captures global structure

and contains all the important details. Finally, A part-net

and a master-net are further formulated as “teacher” and “s-

tudent,” respectively. Part-net learns fine-grained features

from the detail-preserved image and distills the learned fea-

tures into master-net. And the master-net takes as input the

structure-preserved image and refines a specific part (guid-

ed by the part-net) in each iteration. Such distillation is

achieved by weight sharing and feature preserving strate-

gies. Note that we adopt knowledge distilling introduced in

[10] instead of concatenating part features, because the part

number is large and not pre-defined.

Since the feature distiller transfers the knowledge from

part-net into master-net via optimizing the parameters, 1) s-

tochastic details optimization (i.e., randomly optimize one

part in each iteration) can be achieved, which makes it prac-

tical to learn details from hundreds of part proposals, and 2)

efficient inference can be obtained as we can use master-net

to perform recognition in the testing stage. To the best of

our knowledge, this work makes the first attempt to learn

fine-grained features from hundreds of part proposals and

represent such part features with a single convolutional neu-

ral network. Our contributions are summarized as follows:

• We propose a novel trilinear attention sampling net-

work (TASN) to learn subtle feature representations

from hundreds of part proposals for fine-grained im-

age recognition.

• We propose to optimize TASN in a teacher-student

manner, in which fine-grained features can be distilled

into a single master-net with high-efficiency.

• We conduct extensive experiments on three challeng-

ing datasets (iNaturalist, CUB Birds and Stanford

Cars), and demonstrate that TASN outperforms part-

ensemble models even with a single stream.

The remainder of the paper is organized as follows. We

describe related work in Section 2, and introduce our pro-

posed TASN model in Section 3. An evaluation on three

widely-used datasets is presented in Section 4, followed by

conclusions in Section 5.

2. Related Works

Attention Mechanism: As subtle yet discriminative de-

tails play an important role for Fine-Grained Image Recog-

nition, learning to attend on discriminative parts is the

most popular and promising direction. Thus various of

attention mechanisms have been proposed in recent years

[7, 19, 26, 35, 40]. DT-RAM [19] proposed a dynamic com-

putational time model for recurrent visual attention, which

can attend on the most discriminative part in dynamic steps.

RA-CNN [7] proposed a recurrent attention convolutional

neural network to recurrently learn attention maps in multi-

ple (i.e., 3) scales. And MA-CNN [40] takes one step fur-

ther to generate multiple (i.e., 4) consistency attention maps

in a single scale by designing a channel grouping module.

However, the attention numbers (i.e., 1, 3, 4, respectively)

are pre-defined, which counts against the effectiveness and

flexibility of the model.

Meanwhile, high-order attention methods are proposed

in visual question answering (VQA) and video classifica-

tion. Specifically, BAN [12] proposed a bilinear attention

module to handle the relationship between image region-

s and the words in question, and Non-local [30] calculates

the dot production of features to represent the spatial and

temporary relationship in video frames. Different from

these works, our trilinear attention module conducts bilinear

pooling to obtain the relationship among feature channels,

which is further utilized to integrate such features to obtain

third-order attention maps.

Adaptive Image Sampling: To preserve fine-grained

details for recognition, high input resolution (448×448 v.s.

224 × 224) is widely adopted [5, 33, 40] and it can signif-

icantly improve the performance [5]. However, high reso-

lution brings large computational cost. More importantly,

the importance of different regions are various, while di-

rectly zooming in images cannot promise different region-

s with different resolutions. STN [11] proposed a non-

uniformed sampling mechanism which performs well on

MNIST datasets [17]. But without explicit guidance, it is

hard to learn non-uniformed sampling parameters for so-

phisticated tasks such as fine-grained recognition, thus they

finally learned two parts without non-uniformed sampling.

SSN [22] firstly proposed to use saliency maps as the guid-

ance of non-uniformed sampling and obtained significant

improvements. Different from them, our attention sampler

1) conduct non-uniformed sampling based on trilinear at-

tention maps, and 2) decomposes attention maps into two

dimensions to reduce spatial distortion effects.

Knowledge Distilling: Knowledge distilling is firstly

proposed by Hinton et al. [10] to transfer knowledge from

an ensemble or from a large highly regularized model into a

smaller, distilled model. The main idea is using soft target-

s (i.e., the predicted distribution of ensemble/large model)

to optimize the small model, for it contains more informa-
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Figure 2. Overview of the proposed Trilinear Attention Sampling Network (TASN). The trilinear attention module in (b) takes as input

convolutional feature maps (denoted as “conv”), and generates attention maps (denoted as “att”). The attention sampling module in (c)

further takes as input an attention map as well as the original image to obtain sampled images. Specifically, average pooling and random

selection (in each iteration) are conducted over attention maps to obtain structure preserved image in (d) and detail preserved image in

(e), respectively. The part-net (in green) learns fine-grained features from (e) and generates a soft target to distill such features into the

master-net (in blue) via soft target cross entropy [10]. [Best viewed in color]

tion than the one-hot label. Such a simple yet effective idea

inspires many researchers and has been further studied by

[9, 38]. In this paper, we adopt this technique to distill the

learned details from part-net into master-net.

3. Method

In this section, we introduce the proposed Trilinear At-

tention Sampling Network (TASN), which is able to rep-

resent rich fine-grained features by a single convolutional

neural network. TASN contains three modules, i.e., a trilin-

ear attention module for details localization, an attention-

based sampler for details extraction, and a feature distiller

for details optimization.

An overview of the proposed TASN is shown in Figure 2.

Given an input image in (a), we first take it through several

convolutional layers to extract feature maps, which is fur-

ther transformed into attention maps by the trilinear atten-

tion module in (b). To learn fine-grained features for a spe-

cific part, we randomly select an attention map and conduct

attention sampling over the input image using the selected

attention map. The sampled image in (e) is named as detail-

preserved image since it can preserve a specific detail with

high resolution. Moreover, to capture global structure and

contain all the important details, we average all the attention

maps and again conduct attention sampling, such a sampled

image in (d) is called structure-preserved image. We further

formulate a part-net to learn fine-grained representation for

detail-preserved images, and a master-net to learn the fea-

tures for the structure-preserved image. Finally, the part-net

generates soft targets to distill the fine-grained features into

master-net via soft target cross entropy [10].

3.1. Details Localization by Trilinear Attention

In this subsection, we introduce our trilinear attention

module, which transfers convolutional feature maps into at-

tention maps. As shown in previous work [24, 39], each

channel of the convolutional features corresponds to a vi-

sual pattern, however, such feature maps cannot act as at-

tention maps due to the lack of consistency and robustness

[32, 40]. Inspired by [40], we transform feature maps in-

to attention maps by integrating feature channels according

to their spatial relationship. Note that such a process can

be implemented in a trilinear formulation, thus we call it

trilinear attention module.

Given an input image I, we extract convolutional fea-

tures by feeding it into multiple convolutional, batch nor-

malization, ReLU, and pooling layers. Specifically, we use

resnet-18 [8] as backbone. To obtain high-resolution feature

maps for precise localization, we remove the two down-

sampling processes from original resnet-18 by changing

convolutional stride. Moreover, to improve the robustness

of convolutional response, we increase the field of views [3]

by appending two sets of dilated convolutional layers with

multiple dilate rates. In the training stage, we added a soft-

max classifier to optimize such convolutional features.

Assume that the feature maps is a tube with a dimension

of c × h × w, where c, h and w indicate channel number-

s, height, and width respectively. We reshape this feature

into a matrix with a shape of c × hw, which is denoted as

X ∈ R
c×hw. Then our trilinear function can be basically

formulated as:

Mb(X) := (XX
T)X, (1)

where XX
T is the bilinear feature, which indicates the s-
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Figure 3. An illustration the trilinear product. X indicates con-

volutional feature maps, and we can obtain inter-channel relation-

ships by XX
T. After that, we integrate each feature map with

its related ones to get trilinear attention maps via conducting dot

production over XX
T and X.

patial relationship among channels. Specifically, Xi is the

ith channel of feature maps, and XX
T
i,j indicates the spa-

tial relationship between channel i and channel j. To make

feature maps more consistency and robust, we further inte-

grate spatial relationship into feature maps by conducting

dot production over XX
T and X, thus trilinear attention

maps can be obtained (which is shown in Figure 3).

We further studied different normalization methods to

improve the effectiveness of trilinear attention, and a de-

tailed discussion can be found in Section 4.2. To the end,

we adopt the following normalized trilinear attention:

M(X) := N (N (X)XT)X, (2)

where N (·) indicates softmax normalization over the sec-

ond dimension of a matrix. Note that these two normaliza-

tion functions have different meanings: The first one N (X)
is spatial normalization which keeps each channel of fea-

ture maps within the same scale. And the second one is re-

lationship normalization which is conducted over each re-

lationship vector (N (X)XT)i. We denote the output of

the trilinear function in Equation 2 as M ∈ R
c×hw, i.e.,

M = M(X). Finally, we reshape M into the shape of

c × h × w, thus each channel of M indicates an attention

map Mi ∈ R
h×w.

3.2. Details Extraction by Attention Sampling

In this subsection, we introduce our attention-based sam-

pler, which takes as input an image as well as trilinear atten-

tion maps, and generates a structure-preserved image and

a detail-preserved image. The structure-preserved image

captures the global structure and contains all the importan-

t details. Compared to the original image, the structure-

preserved one removed the regions without fine-grained de-

tails, thus the discriminative parts can be better represented

with high resolution. The detail-preserved image focuses on

a single part, which can preserve more fine-grained details.

Given an image I, we obtain structure-preserved im-

age Is and detail-preserved image Id by conducting non-

uniform sampling over different attention maps:

Is = S(I,A(M)), Id = S(I,R(M)), (3)

where M is the attention maps, S(·) indicates the non-

uniform sampling function, A(·) indicates average pool-

ing over channels, and R(·) indicates randomly selecting

a channel from the input. We calculate the average of all

attention maps to guide structure-preserved sampling, be-

cause such an attention map takes all the discriminative

parts into consideration. And we randomly select one at-

tention map for detail-preserved sampling, thus it can pre-

serve the fine-grained details of this attended area with high

resolution. With the training process going on, all atten-

tion maps have the opportunity to be selected, thus different

fine-grained details can be asynchronously refined.

Our basic idea for attention-based sampling is consider-

ing the attention map as probability mass function, where

the area with large attention value is more likely to be sam-

pled. Inspired by the inverse-transform [6], we implement

the sampling by calculating the inverse function of the dis-

tribution function. Moreover, we decompose attention maps

into two dimensions to reduce spatial distortion effects.

Taking structure-preserved sampling for example, we

first calculate the integral of the structure-preserved atten-

tion map A(M) over x and y axis:

Fx(n) :=

n∑

j=1

max
1≤i≤w

A(M)i,j ,

Fy(n) :=
n∑

i=1

max
1≤j≤h

A(M)i,j ,

(4)

where w and h are the width and height of the attention

map, respectively. Note that we use max(·) function to de-

compose the attention map into two dimensions, because it

is more robust than the alternative sum(·). We can further

obtain the sampling function by:

S(I,A(M))i,j = I
F

−1

x (i),F−1

y (j). (5)

where F−1(·) indicates the inverse function of F(·). In a

word, the attention map is used to calculate the mapping

function between the coordinates of the original image and

the sampled image.

Such a sampling mechanism is illustrated in Figure 4.

Given an attention map in (a), we first decompose the map

into two dimensions by calculating the max values over x
axis (b1) and y axis (b2). Then the integral of (b1) and (b2)

are obtained and shown in (c1) and (c2), respectively. We

further calculate the inverse function of (c1) and (c2) in a

digital manner, i.e., we uniformly sample points over the y
axis, and follow the red arrow (shown in (c1) and (c2)), and

the blue arrow to obtain the values over x axis. (d) shows the

5015



Figure 4. An example of attention-based non-uniform sampling.

(a) is an attention map with Gaussian distribution. (b1) and (b2)

are the marginal distributions over x and y axis, respectively. (c1)

and (c2) are the integrals of marginal distributions. (d) shows the

sampling points by the blue dot, and (e) illustrates the sampled

image. [Best viewed in color with zoom-in.]

sampling points by blue dots, and we can observe that the

regions with large attention values are allocated with more

sampling points. Finally, (e) shows the result of the sampled

image. Note that the example in Figure 4 is a structure-

preserved sampling case.

3.3. Details Optimization by Knowledge Distilling

In this subsection, we introduce our details distiller,

which takes as input a detail-preserved image and a

structure-preserved image, and transfers the learned details

from part-net to master-net in a teacher-student manner.

Specifically, for each iteration, the attention-based sam-

pler introduced in Section 3.2 can provide a structure-

preserved image (denoted as Is) and a detail-preserved one

(denoted as Id). We first obtain the fully connected (fc) out-

puts by feeding these two images into the same backbone

CNN (e.g., Resnet-50 [8]). The fc outputs are denoted as

zs and zd, respectively. Then the “softmax” classifier con-

verts zs and zd into a probability vector qs and qd, which

indicates the predicted probability over each class. Taking

zs for example:

q(i)s =
exp(z

(i)
s /T )

∑
j exp(z

(j)
s /T )

, (6)

where T is a parameter namely temperature, which is nor-

mally set to 1 for classification tasks. While in knowledge

distilling, a large value for T is important as it can produce

a soft probability distribution over classes. We obtain the

soft target cross entropy [10] for the master-net as:

Lsoft(qs, qd) = −

N∑

i=1

q
(i)
d logq(i)s , (7)

where N denotes the class number. Finally, the objective

function of the master-net can be drived by:

L(Is) = Lcls(qs, y) + λLsoft(qs, qd), (8)

Table 1. Detailed statistics of the three datasets used in this paper.

Dataset # Class # Train # Test

CUB-200-2011 [34] 200 5,994 5,794

Stanford-Car [13] 196 8,144 8,041

iNaturalist-2017 [27] 5,089 579,184 95,986

where Lcls represents the classification loss function, y is

a one hot vector which indicates the class label and λ de-

notes loss weight of the two terms. The soft target cross en-

tropy aims to distill the learned feature for fine-grained de-

tails and transfer such information to the master-net. As the

attention-based sampler randomly select one part in each

iteration, all the fine-grained details can be distilled to the

master-net in training process. Note that the convolutional

parameters are shared for part-net and master-net, which is

important for distilling, while the sharing of fully connected

layers is optional.

4. Experiments

4.1. Experiment setup

Datasets: To evaluate the effectiveness of our pro-

posed TASN, we conducted experiments on three exten-

sive and competitive datasets, namely Caltech-UCSD Birds

(CUB-200-2011) [34], Stanford Cars [13] and iNaturalist-

2017[27], respectively. The detailed statistics with catego-

ry numbers and the standard training/testing splits can be

found in Table 1. iNaturalist-2017 is the largest dataset for

the fine-grained task. Compared with other datasets for this

task, it contains 13 superclasses. Such a data distribution

can provide a more convincing evaluation for the general-

ization ability of a model.

Baselines: We compared our method to the following

baselines due to their state-of-the-art performance and high

relevance. Note that for a fair comparison, we did not in-

clude methods using 1) additional data (from the web or

other datasets), 2) human-annotated part locations and 3)

hierarchical labels (i.e., species, genus, and family). And

all of the compared methods in each table share the same

backbone unless specified otherwise.

• FCAN [21]: Fully convolutional attention network,

which adaptively selects multiple attentions by rein-

forcement learning.

• MDTP [31]: Mining discriminative triplets of patch-

es, which utilize geometric constraints to improve the

accuracy of patch localization.

• DT-RAM [19]: Dynamic computational time model

for recurrent visual attention, which attends on the

most discriminative parts by dynamic steps.

• SSN [22]: Saliency-based sampling networks, which

conduct non-uniformed sampling based on saliency

map in an end-to-end way.
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Table 2. Ablation experiments on attention module in terms of

recognition accuracy on the CUB-200-2011 dataset.

Attention Description Accuracy

X feature maps 83.5

XX
T
X trilinear attention 84.9

N (X)XT
X spacial norm 85.2

N (X)N (X)TX spacial norm 84.3

N (XX
T
X) spacial norm 84.5

N (XX
T)X relation norm 85.0

N (N (X)XT)X spacial + relation 85.3

• MG-CNN [29]: Multiple granularity descriptors,

which leverage the hierarchical labels to generate com-

prehensive descriptors.

• STN [11]: Spatial transformer network, which con-

ducts parameterized spatial transformation to obtain

zoomed in or pose normalized objects.

• RA-CNN [7]: Recurrent attention CNN, which recur-

rently attends on discriminative parts in multi-scale.

• MA-CNN [40]: Multiple attention CNN, which at-

tends on multiple parts by their proposed channel

grouping module in a weakly-supervised way.

• MAMC [26]: Multi-attention multi-class constrain-

t network, which learns multiple attentions by conduct-

ing multi-class constraint over attended features.

• NTSN [37]: Navigator-Teacher-Scrutinizer Network,

which is a novel self-supervision mechanism to effec-

tively localize informative regions without the need of

bounding-box/part annotations.

• iSQRT-COV [18]: Towards faster training of global

covariance pooling networks by iterative matrix square

root normalization.

Implementation: We used open-sourced MXNet [4] as

our code-base, and trained all the models on 8 Tesla P-100

GPUs. The backbones are are pre-trained on Imagenet [23],

and all of the performances are single-crop testing result-

s for a single model unless specially stated. We used S-

GD optimizer without momentum and weight decay, and

the batch size was set to 96. The temperature in Equa-

tion 6 is 10, and the loss weight λ in Equation 8 is 2.

More implementation details can be referred to our code

https://github.com/researchmm/tasn.

4.2. Evaluation and analysis on CUB­200­2011

Trilinear attention. Table 2 shows the impact of dif-

ferent normalization functions for the part-net in term of

recognition accuracy. Specifically, we randomly select a

channel of attention maps in each iteration in training stage,

and conduct average pooling over attention maps for test-

ing. All the models use Resnet-50 as the backbone with

an input resolution of 224. It can be observed that trilin-

ear attention maps can significantly outperform the original

Table 3. Ablation experiments on sampling module in term of clas-

sification accuracy on the CUB-200-2011 dataset.

Approach master-net TASN

Resnet-50 [8] 81.6 81.6

uniformed sampler 84.1 85.8

sampler in SSN [22] 84.8 85.3

our sampler 85.5 87.0

Table 4. Ablation experiments on distilling module with different

input resolutions.

Resolution 224 280 336 392

Resnet-50 [8] 81.6 83.3 85.0 85.6

master-net 85.5 86.6 87.0 86.8

TASN 87.0 87.3 87.9 87.9

feature maps. Both the attention functions of N (X)XT
X

and N (XX
T)X can improve the gain of trilinear attention.

N (X)N (X)TX and N (XX
T
X) bring a drop of perfor-

mance, because such normalization functions is harmful for

preserving spatial information. To this end, we adopt the

last setting (of Table 2) in our TASN. Note that in the ter-

m N (X)XT, N (X) indicates the region that a channel is

focusing on and X
T denotes the feature of that region.

We further compared our trilinear attention module with

“self-attention” [28]. Specifically, we followed [28] to ob-

tain attention maps by X
T
X, and the results show that

the trilinear attention module can outperform self-attention

module with 0.7% points increases.

Attention-based sampler. To demonstrate the effective-

ness of our attention-based sampling mechanism, we com-

pared our sampling mechanism with 1) uniformed sampling

(by binarizing the attention maps) and 2) sampling oper-

ation introduced in SSN [22]. We set the input attention

maps to be same when comparing sampling mechanisms,

and experiments were conducted on two cases, i.e., with

and without part-net. All the models use Resnet-50 as the

backbone and the input resolution is set to 224. The result

in Table 3 shows that our sampling mechanism remarkably

outperforms the baselines. SSN sampler obtains a better re-

sult than uniformed sampler without part-net, while the fur-

ther improvements are limited when added part-net. These

observations show that the spatial distortion caused by SSN

sampler is harmful for preserving subtle details.

Knowledge distilling. Table 4 reveals the impact of de-

tails distilling module with different input resolutions. We

can observe consistency improvements by details distilling.

The performance of Resnet-50 [8] is saturated with 85.6%,

and 448 input can not further improve the accuracy. Without

distiller (i.e., master-net only), the performance is slightly

dropped with 392 input (compared to 336 input), since it

is difficult to optimize each detail with large feature reso-
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Figure 5. A comparison of feature maps X in (a) and trilinear attention maps N (N (X)XT)X in (b). Each column shows the same channel

of feature maps and trilinear attention maps, and we randomly select nine channels for comparison. Compared to first-order feature maps,

each channel of the trilinear attention maps focus on a specific part, without attending on background noises. [Best viewed in color]

Table 5. Comparison with sampling-based methods in terms of

classification accuracy on the CUB-200-2011 dataset.

Approach Resolution Accuracy

Resnet-50 [8] 224 81.6

Resnet-50 [8] 448 85.6

DT-RAM [19] 224 82.8

SSN [22] 227 84.5

TASN (ours) 224 87.0

lutions (a similar drop can also be observed on Resnet-50

with 672 inputs).

Moreover, to study the attention selection strategy (i.e.,

ranking selection vs. random selection), we ranked atten-

tion maps by their response, and sample high response ones

with large possibility, while the recognition performance

dropped from 87.0% to 86.8%. The reason is that ranking

makes some parts rarely picked, while such parts can also

benefit details learning. We also conducted experiments on

distilling two parts in each iteration, and the result is the

same as distilling one part each time.

Compared to sampling-based methods. We compare

our TASN with three sampling-based methods: 1) uni-

formed sampling with high resolution (i.e., zoom in), 2)

uniformed sampling with attention (i.e., crop) and 3) non-

uniformed sampling proposed in SSN [22]. As shown in

Table 5, higher resolution can significantly improve fine-

grained recognition performance by 4.9% relatively. How-

ever, 448 input increases the computational cost (i.e., flops)

by four times compared to 224 input. SSN [22] obtains a

better results than DT-RAM [19], and our TASN can fur-

ther obtain 2.9% relative improvement. Such improvements

mainly come from two aspects: 1) a better sampling mech-

anism considering spatial distortion (1.2%), and 2) a better

fine-grained details optimizing strategy (1.7%).

Compared to attention-based part methods. In Ta-

ble 6, we compare our TASN to attention-based parts meth-

ods. For a fair comparison, 1) high-resolution input is

adopted by all methods and 2) the same backbone numbers

are used. It can be observed that for VGG based method-

s, our TASN outperforms all the baselines even with only

one backbone. Moreover, after ensembling three backbones

Table 6. Comparison with part-based methods (all the results are

reported in high-resolution setting) in terms of classification accu-

racy on the CUB-200-2011 dataset.

Approach Backbone Accuracy

MG-CNN [29] 3×VGG-16 81.7

ST-CNN [11] 3×Inception-v2 84.1

RA-CNN [7] 3×VGG-19 85.3

MA-CNN [40] 3×VGG-19 85.4

TASN (ours) 1×VGG-19 86.1

TASN (ours) 3×VGG-19 87.1

MAMC [26] 1×Resnet-50 86.5

NTSN [37] 3×Resnet-50 87.3

TASN (ours) 1×Resnet-50 87.9

(trained with different parameter settings), TASN can im-

prove the performance by 1.9% over the best 3 parts model

MA-CNN [40]. Moreover, our 3 streams result can also

outperform 6 streams MA-CNN (86.5%) with a margin of

0.7%. We do not ensemble more streams as the model en-

semble is beyond this work. For Resnet-50 based method:

compared with the state-of-the-art single-stream MAMC

[26], our TASN achieves a remarkable improvement by

1.6%. Moreover, although NTSN [37] (K = 2) con-

catenates global feature with two part features, our single-

stream TASN still can achieve 0.6% points increases.

Combining with second-order feature learning meth-

ods. In Table 7, we exhibit that our TASN learns a strong

first-order representation, which can further improve the

performance of second-order feature methods. Specifical-

ly, compared to the best second-order methods iSQRT-COV

[18], our TASN 2k first-order feature outperforms their 8k

feature with an improvement by 0.7%, which shows the ef-

fectiveness of our TASN. Moreover, we transfer their re-

leased code to our framework and obtain an accuracy of

89.1%, which shows the compatibility of these two method-

s. Note that for a fair comparison, we follow their settings

and predict the label of a test image by averaging prediction

scores of the image and its horizontal flip.
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Table 7. Extensive experiments on combining second-order feature

learning methods.

Approach Dimension Accuracy

iSQRT-COV [18] 8k 87.3

iSQRT-COV [18] 32k 88.1

TASN (ours) 2k 87.9

TASN + iSQRT-COV 32k 89.1

Table 8. Component analysis in terms of classification accuracy on

the Stanford-Car dataset.

Approach Backbone Accuracy

Baseline 1×VGG-19 88.6

master-net 1×VGG-19 90.3

TASN 1×VGG-19 92.4

TASN (ensemble) 2×VGG-19 93.1

TASN (ensemble) 3×VGG-19 93.2

Table 9. Comparison in terms of classification accuracy on the

Stanford-Car dataset.

Approach Backbone Accuracy

FCAN [21] 3×VGG-16 91.3

MDTP [31] 3×VGG-16 92.5

RA-CNN [7] 3×VGG-19 92.5

MA-CNN [40] 3×VGG-19 92.6

TASN (ours) 1×VGG-19 92.4

TASN (ours) 3×VGG-19 93.2

MAMC [26] 1×Resnet-50 92.8

NTSN [37] 3×Resnet-50 93.7

TASN (ours) 1×Resnet-50 93.8

4.3. Evaluation and analysis on Stanford­Car

Table 8 shows the result of VGG-19 baseline, our master-

net, a single TASN model, and TASN ensemble results. We

can observe 1.9% relative improvements by structure pre-

served sampling and further improvements of 2.3% by the

full model. Table 9 compares TASN with attention-based

parts methods. Specifically, TASN with single VGG-19

achieves comparable results with 3 streams part method-

s. And our ensembled 3 streams TASN outperforms the

best 3 streams part learning methods MA-CNN [40]. Com-

pared to their 5 streams result (92.8%), our result is still

better. For Resnet-50 based method, we compare our TAS-

N to the state-of-the-art method MAMC [26], and achieve

1.1% improvements. Moreover, our single-stream TASN

can achieve slightly better performance than NTSN [37],

which concatenates a global feature with two part features.

4.4. Evaluation and analysis on iNaturalist 2017

We also conduct our TASN on the largest fine-grained

dataset, i.e., iNaturalist 2017. We compare to Resnet [8]

baseline and the best sampling method SSN [22]. All the

Table 10. Comparison in terms of classification accuracy on the

iNaturalist 2017 dataset.

Super Class # Class Resnet [8] SSN [22] TASN

Plantae 2101 60.3 63.9 66.6

Insecta 1021 69.1 74.7 77.6

Aves 964 59.1 68.2 72.0

Reptilia 289 37.4 43.9 46.4

Mammalia 186 50.2 55.3 57.7

Fungi 121 62.5 64.2 70.3

Amphibia 115 41.8 50.2 51.6

Mollusca 93 56.9 61.5 64.7

Animalia 77 64.8 67.8 71.0

Arachnida 56 64.8 73.8 75.1

Actinopterygii 53 57.0 60.3 65.5

Chromista 9 57.6 57.6 62.5

Protozoa 4 78.1 79.5 79.5

Total 5089 59.6 65.2 68.2

models use Resnet-101 as the backbone with an input reso-

lution of 224. As there are 13 superclasses in this dataset,

we re-implement SSN [22] with their released code to ob-

tain the performance on each superclass. The results are

shown in Table 10, and we can observe that TASN outper-

forms Resnet baseline and SSN on every superclass. It is

notable that compared to Resnet-101, TASN significantly

improves the performance, especially on Reptilia (improved

by 24.0%, relatively) and Aves (improved by 21.8%, rela-

tively), which indicates that such superclasses contain more

fine-grained details.

5. Conclusion

In this paper, we proposed a trilinear attention sampling

network for fine-grained image recognition, which can learn

rich feature representations from hundreds of part propos-

als. Instead of ensembling multiple part CNNs, we adopted

knowledge distilling method to integrate fine-grained fea-

tures into a single stream, which is not only efficient but

also effective. Extensive experiments in CUB-Bird, iNat-

uralist 2017 and Stanford-Car demonstrate that TASN is

able to outperform part-ensemble models even with a sin-

gle stream. In the future, we will further study the pro-

posed TASN in the following directions: 1) attention selec-

tion strategy, i.e., learning to select which details should be

learned and distilled instead of randomly selecting, 2) con-

duct attention-based sampling over convolutional features

instead of only over images, and 3) extend our work to oth-

er vision tasks, e.g., object detection and segmentation.
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