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Figure 1. Example completion results of our method on images of a face, a building, and natural scenery with various masks (missing

regions shown in white). For each group, the masked input image is shown left, followed by sampled results from our model without any

post-processing. The results are diverse and plausible. (Zoom in to see the details.)

Abstract

Most image completion methods produce only one result

for each masked input, although there may be many reason-

able possibilities. In this paper, we present an approach for

pluralistic image completion – the task of generating mul-

tiple and diverse plausible solutions for image completion.

A major challenge faced by learning-based approaches is

that usually only one ground truth training instance per la-

bel. As such, sampling from conditional VAEs still leads

to minimal diversity. To overcome this, we propose a novel

and probabilistically principled framework with two paral-

lel paths. One is a reconstructive path that utilizes the only

one given ground truth to get prior distribution of missing

parts and rebuild the original image from this distribution.

The other is a generative path for which the conditional

prior is coupled to the distribution obtained in the recon-

structive path. Both are supported by GANs. We also in-

troduce a new short+long term attention layer that exploits

distant relations among decoder and encoder features, im-

proving appearance consistency. When tested on datasets

with buildings (Paris), faces (CelebA-HQ), and natural im-

ages (ImageNet), our method not only generated higher-

quality completion results, but also with multiple and di-

verse plausible outputs.

1. Introduction

Image completion is a highly subjective process. Sup-

posing you were shown the various images with missing

regions in fig. 1, what would you imagine to be occupying

these holes? Bertalmio et al. [4] related how expert con-

servators would inpaint damaged art by: 1) imagining the

semantic content to be filled based on the overall scene; 2)

ensuring structural continuity between the masked and un-

masked regions; and 3) filling in visually realistic content

for missing regions. Nonetheless, each expert will indepen-

dently end up creating substantially different details, even if

they may universally agree on high-level semantics, such as

general placement of eyes on a damaged portrait.

Based on this observation, our main goal is thus to gen-

erate multiple and diverse plausible results when presented

with a masked image — in this paper we refer to this task

as pluralistic image completion (depicted in fig. 1). This

is as opposed to approaches that attempt to generate only a

single “guess” for missing parts.

Early image completion works [4, 7, 5, 8, 3, 13] fo-

cus only on steps 2 and 3 above, by assuming that gaps

should be filled with similar content to that of the back-

ground. Although these approaches produced high-quality

texture-consistent images, they cannot capture global se-

mantics and hallucinate new content for large holes. More

recently, some learning-based image completion methods

[29, 14, 39, 40, 42, 24, 38] were proposed that infer seman-
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tic content (as in step 1). These works treated completion

as a conditional generation problem, where the input-to-

output mapping is one-to-many. However, these prior works

are limited to generate only one “optimal” result, and do

not have the capacity to generate a variety of semantically

meaningful results.

To obtain a diverse set of results, some methods utilize

conditional variational auto-encoders (CVAE) [34, 37, 2,

10], a conditional extension of VAE [19], which explicitly

code a distribution that can be sampled. However, specifi-

cally for an image completion scenario, the standard single-

path formulation usually leads to grossly underestimating

variances. This is because when the condition label is it-

self a masked image, the number of instances in the training

data that match each label is typically only one. Hence the

estimated conditional distributions tend to have very limited

variation since they were trained to reconstruct the single

ground truth. This is further elaborated on in section 3.1.

An important insight we will use is that partial images,

as a superset of full images, may also be considered as gen-

erated from a latent space with smooth prior distributions.

This provides a mechanism for alleviating the problem of

having scarce samples per conditional partial image. To do

so, we introduce a new image completion network with two

parallel but linked training pipelines. The first pipeline is a

VAE-based reconstructive path that not only utilizes the full

instance ground truth (i.e. both the visible partial image, as

well as its complement — the hidden partial image), but

also imposes smooth priors for the latent space of comple-

ment regions. The second pipeline is a generative path that

predicts the latent prior distribution for the missing regions

conditioned on the visible pixels, from which can be sam-

pled to generate diverse results. The training process for

the latter path does not attempt to steer the output towards

reconstructing the instance-specific hidden pixels at all, in-

stead allowing the reasonableness of results be driven by

an auxiliary discriminator network [11]. This leads to sub-

stantially great variability in content generation. We also

introduce an enhanced short+long term attention layer that

significantly increases the quality of our results.

We compared our method with existing state-of-the-art

approaches on multiple datasets. Not only can higher-

quality completion results be generated using our approach,

it also presents multiple diverse solutions.

The main contributions of this work are:

1. A probabilistically principled framework for image

completion that is able to maintain much higher sam-

ple diversity as compared to existing methods;

2. A new network structure with two parallel training

paths, which trades off between reconstructing the

original training data (with loss of diversity) and main-

taining the variance of the conditional distribution;

3. A novel self-attention layer that exploits short+long

term context information to ensure appearance consis-

tency in the image domain, in a manner superior to

purely using GANs; and

4. We demonstrate that our method is able to complete

the same mask with multiple plausible results that have

substantial diversity, such as those shown in figure 1.

2. Related Work

Existing work on image completion either uses informa-

tion from within the input image [4, 5, 3], or information

from a large image dataset [12, 29, 42]. Most approaches

will generate only one result per masked image.

Intra-Image Completion Traditional intra-image comple-

tion, such as diffusion-based methods [4, 1, 22] and patch-

based methods [5, 7, 8, 3], assume image holes share similar

content to visible regions; thus they would directly match,

copy and realign the background patches to complete the

holes. These methods perform well for background comple-

tion, e.g. for object removal, but cannot hallucinate unique

content not present in the input images.

Inter-Image Completion To generate semantically new

content, inter-image completion borrows information from

a large dataset. Hays and Efros [12] presented an image

completion method using millions of images, in which the

image most similar to the masked input is retrieved, and cor-

responding regions are transferred. However, this requires

a high contextual match, which is not always available. Re-

cently, learning-based approaches were proposed. Initial

works [20, 30] focused on small and thin holes. Context en-

coders (CE) [29] handled 64×64-sized holes using GANs

[11]. This was followed by several CNN-based methods,

which included combining global and local discriminators

as adversarial loss [14], identifying closest features in the

latent space of masked images [40], utilizing semantic la-

bels to guide the completion network [36], introducing ad-

ditional face parsing loss for face completion [23], and de-

signing particular convolutions to address irregular holes

[24, 41]. A common drawback of these methods is that they

often create distorted structures and blurry textures incon-

sistent with the visible regions, especially for large holes.

Combined Intra- and Inter-Image Completion To over-

come the above problems, Yang et al. [39] proposed

multi-scale neural patch synthesis, which generates high-

frequency details by copying patches from mid-layer fea-

tures. However, this optimization is computational costly.

More recently, several works [42, 38, 35] exploited spatial

attention [16, 46] to get high-frequency details. Yu et al.

[42] presented a contextual attention layer to copy similar

features from visible regions to the holes. Yan et al. [38]

and Song et al. [35] proposed PatchMatch-like ideas on fea-

ture domain. However, these methods identify similar fea-
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tures by comparing features of holes and features of visible

regions, which is somewhat contradictory as feature trans-

fer is unnecessary when two features are very similar, but

when needed the features are too different to be matched

easily. Furthermore, distant information is not used for new

content that differs from visible regions. Our model will

solve this problem by extending self-attention [43] to har-

ness abundant context.

Image Generation Image generation has progressed sig-

nificantly using methods such as VAE [19] and GANs [11].

These have been applied to conditional image generation

tasks, such as image translation [15], synthetic to realis-

tic [44], future prediction [27], and 3D models [28]. Per-

haps most relevant are conditional VAEs (CVAE) [34, 37]

and CVAE-GAN [2], but these were not specially targeted

for image completion. CVAE-based methods are most use-

ful when the conditional labels are few and discrete, and

there are sufficient training instances per label. Some re-

cent work utilizing these in image translation can produce

diverse output [47, 21], but in such situations the condition-

to-sample mappings are more local (e.g. pixel-to-pixel), and

only change the visual appearance. This is untrue for image

completion, where the conditional label is itself the masked

image, with only one training instance of the original holes.

In [6], different outputs were obtained for face completion

by specifying facial attributes (e.g. smile), but this method

is very domain specific, requiring targeted attributes.

3. Approach

Suppose we have an image, originally Ig , but degraded

by a number of missing pixels to become Im (the masked

partial image) comprising the observed / visible pixels. We

also define Ic as its complement partial image comprising

the original missing pixels. Classical image completion

methods attempt to reconstruct the original unmasked im-

age Ig in a deterministic fashion from Im (see fig. 2 “Deter-

ministic”). This results in only a single solution. In contrast,

our goal is to sample from p(Ic|Im).

3.1. Probabilistic Framework

In order to have a distribution to sample from, a cur-

rent approach is to employ the CVAE [34] which estimates

a parametric distribution over a latent space, from which

sampling is possible (see fig. 2 “CVAE”). This involves a

variational lower bound of the conditional log-likelihood of

observing the training instances:

log p(Ic|Im) ≥− KL(qψ(zc|Ic, Im)||pφ(zc|Im))

+ Eqψ(zc|Ic,Im)[log pθ(Ic|zc, Im)] (1)

where zc is the latent vector, qψ(·|·) the posterior im-

portance sampling function, pφ(·|·) the conditional prior,

Input

Encoder

Decoder

Output

Reconstructed
Target

Inference

Concat/Add

Sample

Deterministic CVAE Instance Blind Ours

Figure 2. Completion strategies given masked input. (Determinis-

tic) structure directly predicts the ground truth instance. (CVAE)

adds in random sampling to diversify the output. (Instance Blind)

only matches the visible parts, but training is unstable. (Ours) uses

a generative path during testing, but is guided by a parallel recon-

structive path during training. Yellow path is used for training.

pθ(·|·) the likelihood, with ψ, φ and θ being the deep net-

work parameters of their corresponding functions. This

lower bound is maximized w.r.t. all parameters.

For our purposes, the chief difficulty of using CVAE [34]

directly is that the high DoF networks of qψ(·|·) and pφ(·|·)
are not easily separable in (1) with the KL distance eas-

ily driven towards zero, and is approximately equivalent

to maximizing Epφ(zc|Im)[log pθ(Ic|zc, Im)] (the “GSNN”

variant in [34]). This consequently learns a delta-like prior

of pφ(zc|Im) → δ(zc − z∗c), where z∗c is the maximum

latent likelihood point of pθ(Ic|·, Im). While this low vari-

ance prior may be useful in estimating a single solution,

sampling from it will lead to negligible diversity in image

completion results (as seen in fig. 9). When the CVAE vari-

ant of [37], which has a fixed latent prior, is used instead, the

network learns to ignore the latent sampling and directly es-

timates Ic from Im, also resulting in a single solution. This

is due to the image completion scenario when there is only

one training instance per condition label, which is a partial

image Im. Details are in the supplemental section ??.

A possible way to diversify the output is to simply not

incentivize the output to reconstruct the instance-specific Ig
during training, only needing it to fit in with the training set

distribution as deemed by an learned adversarial discrimi-

nator (see fig. 2 “Instance Blind”). However, this approach

is unstable, especially for large and complex scenes [35].

Latent Priors of Holes In our approach, we require that

missing partial images, as a superset of full images, to also

arise from a latent space distribution, with a smooth prior

of p(zc). The variational lower bound is:

log p(Ic) ≥− KL(qψ(zc|Ic)||p(zc))

+ Eqψ(zc|Ic)[log pθ(Ic|zc)] (2)
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Figure 3. Overview of our architecture with two parallel pipelines. The reconstructive pipeline (yellow line) combines information from

I m and I c , which is used only for training. The generative pipeline (blue line) infers the conditional distribution of hidden regions, that

can be sampled during testing. Both representation and generation networks share identical weights.

where in [19] the prior is set as p(zc) = N (0, I). However,

we can be more discerning when it comes to partial images

since they have different numbers of pixels. A missing par-

tial image Ic with more pixels (larger holes) should have

greater latent prior variance than a missing partial image

Ic with fewer pixels (smaller holes). Hence we generalize

the prior p(zc) = Nm(0, σ2(n)I) to adapt to the number of

pixels n.

Prior-Conditional Coupling Next, we combine the la-

tent priors into the conditional lower bound of (1). This

can be done by assuming zc is much more closely related to

Ic than to Im, so qψ(zc|Ic, Im)≈qψ(zc|Ic). Updating (1):

log p(Ic|Im) ≥− KL(qψ(zc|Ic)||pφ(zc|Im))

+ Eqψ(zc|Ic)[log pθ(Ic|zc, Im)] (3)

However, unlike in (1), notice that qψ(zc|Ic) is no longer

freely learned during training, but is tied to its presence in

(2). Intuitively, the learning of qψ(zc|Ic) is regularized by

the prior p(zc) in (2), while the learning of the conditional

prior pφ(zc|Im) is in turn regularized by qψ(zc|Ic) in (3).

Reconstruction vs Creative Generation One issue with

(3) is that the sampling is taken from qψ(zc|Ic) during train-

ing, but is not available during testing, whereupon sampling

must come from pφ(zc|Im) which may not be adequately

learned for this role. In order to mitigate this problem, we

modify (3) to have a blend of formulations with and without

importance sampling. So, with simplified notation:

log p(Ic|Im) ≥λ
�
Eqψ [log p

r
θ(Ic|zc, Im)]− KL(qψ||pφ)

	

+ (1− λ)Epφ [log p
g
θ(Ic|zc, Im)] (4)

where 0 ≤ λ ≤ 1 is implicitly set by training loss co-

efficients in section 3.3. When sampling from the impor-

tance function qψ(·|Ic), the full training instance is available

and we formulate the likelihood prθ(Ic|zc, Im) to be focused

on reconstructing Ic. Conversely, when sampling from the

learned conditional prior pφ(·|Im) which does not contain

Ic, we facilitate creative generation by having the likeli-

hood model p
g
θ(Ic|zc, Im) ∼= ℓ

g
θ(zc, Im) be independent of

the original instance of Ic. Instead it only encourages gen-

erated samples to fit in with the overall training distribution.

Our overall training objective may then be expressed as

jointly maximizing the lower bounds in (2) and (4), with

the likelihood in (2) unified to that in (4) as pθ(Ic|zc) ∼=
prθ(Ic|zc, Im). See the supplemental section ??.

3.2. Dual Pipeline Network Structure

This formulation is implemented as our dual pipeline

framework, shown in fig. 3. It consists of two paths: the

upper reconstructive path uses information from the whole

image, i.e. Ig={Ic, Im}, while the lower generative path

only uses information from visible regions Im. Both repre-

sentation and generation networks share identical weights.

Specifically:

• For the upper reconstructive path, the complement par-

tial image Ic is used to infer the importance function

qψ(·|Ic)=Nψ(·) during training. The sampled latent

vector zc thus contains information of the missing re-

gions, while the conditional feature fm encodes the in-

formation of the visible regions. Since there is suf-

ficient information, the loss function in this path is

geared towards reconstructing the original image Ig .

• For the lower generative path, which is also the test
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