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Abstract

We propose a new deep architecture for person re-

identification (re-id). While re-id has seen much recent

progress, spatial localization and view-invariant represen-

tation learning for robust cross-view matching remain key,

unsolved problems. We address these questions by means

of a new attention-driven Siamese learning architecture,

called the Consistent Attentive Siamese Network. Our key

innovations compared to existing, competing methods in-

clude (a) a flexible framework design that produces atten-

tion with only identity labels as supervision, (b) explicit

mechanisms to enforce attention consistency among images

of the same person, and (c) a new Siamese framework that

integrates attention and attention consistency, producing

principled supervisory signals as well as the first mech-

anism that can explain the reasoning behind the Siamese

framework’s predictions. We conduct extensive evaluations

on the CUHK03-NP, DukeMTMC-ReID, and Market-1501

datasets and report competitive performance.

1. Introduction

Given an image or a set of images of a person of inter-

est in a “probe” camera view, person re-identification (re-

id) attempts to retrieve this person of interest among a set

of “gallery” candidates in another camera view. Due to its

broad appeal in several video analytics applications such as

surveillance, re-id has seen explosive growth in the com-

puter vision community [15, 44, 45].

While we have seen tremendous progress in re-id [4, 5,

28, 31, 32, 34, 36, 37], there are several problems that still

hinder the reliable, real-world use of person re-id. Probe

and gallery camera views in real-world applications typi-

cally have large viewpoint variations, causing substantial

view misalignment between probe and gallery images of

the same person. Illumination differences between the lo-

cations where the cameras are installed, as well as occlu-

sions in the captured data, add to re-id’s challenges. Ideally,

we want a method that can reliably spatially localize the
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Figure 1: We present the first framework for re-id that pro-

vides mechanisms to make attention and attention consis-

tency end-to-end trainable in a Siamese learning architec-

ture, resulting in a technique for robust cross-view match-

ing as well as explaining the reasoning for why the model

predicts that the two images belong to the same person.

person of interest in the image, while also providing a ro-

bust representation of the localized part in order to match

accurately to the gallery of candidates. This suggests we

consider the spatial localization and feature representation

problems jointly and formulate the learning objective in a

way that can facilitate end-to-end learning.

Attention is a powerful concept for understanding and

interpreting neural network decisions [9, 25, 27, 49], pro-

viding ways to generate attentive regions given image-level

labels and trained models, and to perform spatial localiza-

tion. Unlike its use as a weight matrix in some existing work

[2, 3, 35], here we refer to attention computed by means

of class-specific gradient backpropagation [27, 49]. Some

recent extensions [18] take this a step forward by training

models with attention providing end-to-end supervision, re-

sulting in improved spatial localization. These methods

were not designed for the re-id problem and consequently

did not have to consider localization and invariant represen-

tation learning jointly. While there have been some attempts

at joint learning with these two objectives [17, 21, 24, 38],

these methods do not explicitly enforce any sort of atten-

tion consistency between images of the same person. In-

tuitively, given same-person images from different views,
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there typically exist some common regions that are impor-

tant for matching, which should be reflected in how atten-

tion is modeled and used for supervision.

Furthermore, such attention consistency should lead to

consistent feature representations for the two different im-

ages, leading to invariant representations for robust cross-

view matching. These considerations naturally suggest the

design of a Siamese framework that jointly learns consistent

attention regions for images of the same person while also

producing robust, invariant feature representations. While

one recent paper approached these problems jointly [38],

this method requires specially-designed architectures for at-

tention modeling and considers the attention in each image

independently, ignoring the intuition that attentive regions

across images of the same person have to be consistent. It

also does not have an explicit mechanism to explain the rea-

soning behind the model’s prediction. To this end, we de-

sign and propose a new deep architecture for re-id, which

we call the Consistent Attentive Siamese Network (CASN),

addressing all the key questions and considerations dis-

cussed above (Figure 1). Specifically, we design a novel

two-branch architecture that (a) produces attentive regions

during training without requiring any additional supervision

other than identity labels or any specially-designed architec-

ture for modeling attention, (b) explicitly enforces these at-

tentive regions to be consistent for the same person, (c) uses

attention and attention consistency as an explicit and princi-

pled part of the learning process, and (d) learns to produce

robust representations for cross-view matching.

To summarize, our key contributions include:

• We present a technique that makes spatial localization

of the person of interest a principled part of the learn-

ing process, providing supervision only by means of

person identity labels. This makes spatial localization

end-to-end trainable and automatically discovers com-

plete attentive regions.

• We present a new scheme that enforces attention con-

sistency as part of the learning process, providing su-

pervision that facilitates end-to-end learning of consis-

tent attentive regions of images of the same person.

• We present the first learning architecture that integrates

attention consistency and Siamese learning in a joint

learning framework.

• We present the first Siamese attention mechanism that

jointly models consistent attention across similar im-

ages, resulting in a powerful method that can help ex-

plain the reasoning behind the network’s prediction.

2. Related Work

Traditional person re-id algorithms involved hand-

crafted feature design followed by supervised distance met-

ric learning. See Karanam et al. [15] and Zheng et al. [45]

for detailed experimental and algorithmic studies.

Recent developments in deep learning [11, 12] have in-

fluenced the design of re-id algorithms as well, with deep

re-id algorithms achieving impressive performance on chal-

lenging datasets [5, 32, 34]. However, naive training of re-

id models without being spatial-localization-aware will not

result in satisfactory performance due to cross-view mis-

alignment, occlusions, and clutter. To get around these is-

sues, several recent methods adopt some form of localized

representation learning. Zhao et al. [43] decomposed per-

son images into different part regions and learned region-

specific representations followed by an aggregation scheme

to produce the overall image representation. Li et al. [17]

proposed to first learn and localize part body features by

means of spatial transformer networks [14], followed by a

combination of local and global features to learn a classifi-

cation network. Su et al. [31] used human pose information

as a supervisory signal to learn normalized human part rep-

resentations as part of an identification network. However,

these and several other recent methods [18] consider the

spatial localization problem in itself and produce represen-

tations and localizations that are not cross-view consistent.

On the other hand, our approach tackles spatial localization

and representation learning in a holistic, joint framework

while enforcing consistency, which is key to re-id.

Attention has been used in re-id to tackle localization

and misalignment problems. Liu et al. [24] proposed the

HydraPlus-Net architecture that learns to discover low- and

semantic-level attentive features for richer image represen-

tations. Li et al. [21] designed a scheme to simultane-

ously learn “hard” region-level and “soft” pixel-level at-

tentive features for a multi-granular feature representation.

Li et al. [19] learned multiple, predefined attention models

and showed that each model corresponds to a specific body

part, the outputs of which are then aggregated by means of a

temporal attention model. These methods typically have in-

flexible region-specific attention models as part of the over-

all framework to learn important regions in the image, and

more importantly, do not have an explicit mechanism to en-

force attention consistency. Our approach is markedly dif-

ferent from these and other methods [30, 40] in this category

in that we only need image-level labels to learn attention,

while also enforcing attention consistency by making it a

principled part of the learning process.

Consistency is an important aspect of re-id to account for

cross-view differences. While this has been studied under

the term “equivariance” in some prior work [16], for re-id,

it has been reflected in Siamese-like designs that attempt

to learn invariant feature representations [7, 8, 20, 28, 42].

These models learn features and distance metrics jointly

and do not address the spatial localization problem directly,

typically formulating a local parts-based approach to solve
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the problem. In scenarios involving occlusion and clutter,

this may not be an optimal solution, with attention leading

to better spatial localization. To this end, our method, as

opposed to these approaches, exploits attention during the

learning process while also learning consistent spatial lo-

calization and invariant feature representations jointly.

3. The Consistent Attentive Siamese Network

In this section, we introduce our proposed attention-

based deep architecture for person re-id, the Consistent At-

tentive Siamese Network (CASN), summarized in Figure

2. CASN includes an identification module and a Siamese

module that provide for a powerful, flexible approach to

deal with viewpoint variations, occlusions, and background

clutter. The identification module (Section 3.1), with its ex-

plicit attention guidance as supervision given only identity

labels, helps find reliable and accurate spatial localization

for the person of interest in the image and performs identity

(ID) prediction. The Siamese module (Section 3.2) provides

the network with supervisory signals from attention consis-

tency, ensuring that we obtain spatially consistent attention

regions for images of the same person, as well as learn-

ing view-invariant feature representations for robust gallery

matching. In the following, we describe each of these two

modules in more detail, leading up to the overall design of

the CASN.

Figure 2: The Consistent Attentive Siamese Network.

3.1. The Identification Module

We first introduce the architecture of the identification

module of the CASN. We begin by describing the baseline

architecture for training an identification (IDE) model [45],

followed by the overall identification module that integrates

attention guidance into the IDE architecture.

3.1.1 The IDE Baseline Architecture

The IDE baseline is based on the ResNet50 architecture

[11], following the work in [45] and recent papers that adopt

ResNet50 [19, 34, 36]. Convolutional layers from conv1

through conv5 are pretrained on ImageNet [10], following

which an IDE classifier comprised of two fully-connected

layers produces the identity prediction for the input image.

The identification baseline is visually summarized in Fig-

ure 3. Note that while Figure 3 shows the IDE architecture

[45], this can be easily swapped with any other baseline ar-

chitecture that can give the feature vector f . For instance,

to use the part-based convolutional baseline (PCB) archi-

tecture [34], one would simply swap the “Feature Extrac-

tion” block in Figure 3 with PCB’s backbone prior to ob-

taining f . PCB is a modification of IDE that replaces the

global average pooling operation in IDE with spatial pool-

ing for discriminative part-informed feature learning. The

baseline model is learned by optimizing the identification

loss, which essentially maximizes the likelihood of predict-

ing the correct class (identity) label for each training im-

age. Formally, given N training images {In}
N
n=1

belonging

to C different identities, with each image having an iden-

tity label {cn}
N
n=1

∈ {1, ..., C}, we optimize the following

multi-class cross-entropy loss:

Lide = −

N
∑

n=1

log
exp(ycn)
∑

j exp(yj)
(1)

where ycn is the prediction of class cn from the IDE classi-

fier for input image In.

⋯
Feature maps

conv1

Feature maps

conv5

Resnet50 

(pretrained)

FC FC

IDE

Classifier

𝒇
Identification Baseline

𝒚

𝐼
Feature 

Extraction
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Figure 3: The baseline. f is the feature vector after

Resnet50 conv5, y is the ID prediction vector with dimen-

sionality equal to the total number of training identities, and

yc is the prediction score of ID label c for the input image.

Note that the “Feature extraction” block here can come from

any baseline architecture, e.g., IDE or PCB [34].

3.1.2 Identification Attention

Spatial localization of the person of interest is a key first

step for a re-id algorithm, which should be reflected in the

end-to-end learning process. While much recent work has
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focused on generating attention regions given image-level

labels [9, 25, 27, 49], we need to make attention an explicit

part of the learning process itself, which can then guide the

network to better localize the person of interest.

To this end, we adopt the framework of Li et al. [18]

and introduce attention learning as part of our identification

module, helping the network generate spatially attentive re-

gions in person images without needing any extra informa-

tion as supervision other than identity labels, which are al-

ready available.

Figure 4: An attention

map with identification

loss (left) and identifica-

tion loss with attention

learning (right).

Given an input image In
with its identity label cn,

we first obtain the atten-

tion (localization) map from

the IDE classifier predic-

tion by means of Grad-CAM

[27]. However, a re-id model

trained only with IDE loss

would focus only on the

most discriminative regions

important for satisfying the

current classification objec-

tive, and may not generalize

well. To better illustrate this

concept, consider the Grad-

CAM attention map example shown in Figure 4 (left) for an

image from Market1501 [44]. The gray pants of the per-

son attract the most attention, but the blue jacket is also

useful information that is ignored in the attention map on

the left. To obtain more complete attention maps and fo-

cus on the foreground subject, we use the notion of at-

tention learning. Specifically, given In and cn, we com-

pute its attention map Mn and mask out the most discrim-

inative regions in In (corresponding to high responses in

Mn) by means of the soft-masking operation Σ(· ) to get

In = In ∗ (1 − Σ(Mn)), where ∗ is pixel-wise multipli-

cation and Σ(· ) = sigmoid(α(Mn − β)). This produces

an In that excludes all high-response image pixels. If Mn

perfectly spatially localizes the person of interest, In will

contain no pixels contributing to the corresponding identity

prediction ycn . We use this notion to provide supervision to

the identification module to produce more complete spatial

localization. Specifically, we define the identification atten-

tion loss Lia for the identification module as the prediction

score of masked input image In:

Lia = ycn (2)

A comparison of the attention maps retrieved from a model

trained only with the identification loss and one with iden-

tification loss and attention learning is shown in Figure 4,

where we see more foreground subject coverage with atten-

tion learning on the right. To summarize, in the identifica-

tion module, we first use the IDE baseline architecture to

obtain identity predictions. Attention maps are computed

with Grad-CAM and refined using the identification atten-

tion objective on masked images that exclude high-attention

regions to perform more complete spatial localization.

3.1.3 Discussion

While the IDE architecture can provide a good baseline

feature representation for matching [15, 36, 45] and our

proposed identification module discussed above can fur-

ther lead to reasonable spatial localization by design, sev-

eral problems still remain unaddressed. First, the identifica-

tion module has no mechanism to ensure we obtain con-

sistent attention regions for different images of the same

person. This can be inferred from the design itself, which

lacks any guiding principle to result in attention consis-

tency. Intuitively, this is key to robust re-id since there

are typically common regions in different images of the

same person that need to be brought out as important dur-

ing matching. Second, the identification module has no

mechanism to learn invariant identity-aware representations

across different camera views. Furthermore, attention con-

sistency should correspond to consistent feature representa-

tions, suggesting it should inform representation learning.

Finally, the attention component of the identification mod-

ule is not particularly suitable during inference since we do

not know the identity of a test image to compute its atten-

tion map. While a workaround to this problem would be to

use the top-k predictions to compute attention, this clearly

would be a sub-optimal solution.

The problems with the identification module lead us to

the design of the Siamese module of the CASN, which at-

tempts to address these issues in a principled manner.

3.2. The Siamese Module

In this section, we introduce the Siamese module to com-

plement the identification module of the proposed CASN.

Given a pair of input images, we first consider a binary clas-

sification problem (Section 3.2.1), whose objective func-

tion is then used to formulate a Siamese attention mech-

anism (Section 3.2.2) to enforce attention consistency and

consistency-aware invariant representation learning.

3.2.1 Binary Classification

Given a pair of input images, we construct a binary clas-

sification objective for predicting whether or not the pair

belongs to the same class. Given feature vectors f1 and f2

for the images I1 and I2 in the input pair (see Figure 3),

we compute the difference f− = f1 − f2, which forms

the input for a classifier that uses the binary cross-entropy

objective (BCE) to get the class prediction for the current

input pair. Note that since we set out to compute attention
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in the spirit of GradCAM [27], we needed a classification

objective to compute Siamese attention described next, and

we chose BCE for this purpose. The BCE classifier is struc-

turally similar to the IDE classifier in Section 3.1.1, with

two fully connected layers. The output prediction vector z

of the BCE classifier is a 2-dimensional vector, which in-

dicates whether or not the input pair belongs to the same

identity. The BCE classification objective that is optimized

is defined, for a batch of P input pairs, as:

Lbce = −
∑

p

log

(

exp
(

zcp
)

exp(z0) + exp(z1)

)

cp ∈ {0, 1}, p = 1, . . . , P

(3)

where zcp is the same (cp = 1) or different (cp = 0) identity

prediction of the BCE classifier for input pair p.

3.2.2 The Siamese Attention Mechanism

As discussed previously, identification attention alone does

not ensure attention consistency and identity-aware invari-

ant representations. To this end, we propose a new Siamese

attention mechanism with explicit guidance towards atten-

tion consistency. Consider two images I1 and I2 of the same

identity and the corresponding BCE classifier prediction z1.

We first localize the attentive regions in the two images that

contribute to this BCE prediction. To this end, we compute

the gradient of the prediction score with respect to the fea-

ture vector f−, i.e., ∂z1
∂f−

. We then find the features in f−

that have a positive influence on the final BCE prediction by

means of an indicator vector α constructed as:

αi =

{

1, if ∂z1
∂f

−

i

> 0

0, otherwise
, i = {0, ..., dim(f−)} (4)

Based on the indicator vector α, the importance scores

for the input feature vectors f1 and f2 can be calculated as

the dot products of α and the feature vectors: s1 = (α,f1)
and s2 = (α,f2). In the same spirit as Grad-CAM [27],

gradients backpropagated from s1 and s2 are first glob-

ally average-pooled to find the channel importance weights

αk
1
= GAP

(

∂s1
∂A1

)

and αk
2
= GAP

(

∂s2
∂A2

)

, where A1 and

A2 are feature maps of image I1 and I2 at the last convo-

lutional layer. The attention maps can then be computed as

M1 = ReLU
(
∑

k α
k
1
Ak

1

)

and M2 = ReLU
(
∑

k α
k
2
Ak

2

)

.

Visualizations of the attention maps, extracted from the

BCE loss, are shown in Figure 5. For images of the same

person, we want the attention maps M1 and M2 to provide

consistent importance to corresponding regions in the im-

ages. For instance, as we can see in Figure 5(b), the atten-

tion map in Image 1 focuses on the full body of the per-

son while the one in Image 2 mostly focuses on the lower

part. To provide an explicit attention-consistency-aware su-

pervisory signal and guide the network to discover consis-

tent cross-view importance regions, we introduce the notion

of spatial attention constraints based on the attention maps

derived from the BCE classification objective.

(a) (b) (c)

(d) (e) (f)

Figure 5: Demonstration of attention maps from BCE loss.

(a-c): positive pairs, (d-f): negative pairs.

Given the attention maps M1 and M2, we first apply

the max-pooling operation to compute the highest response

across each horizontal row of pixels, giving us the two im-

portance vectors Mm1 and Mm2. To enforce attention con-

sistency, we explicitly constrain them to be as close as pos-

sible. To avoid alignment issues as in Figure 5(c), we find

the first and the last element of the vertical vector larger

than a certain threshold t in Mm1 and Mm2, and then re-

size the remaining elements to be of the same dimensions.

We define the Siamese attention loss that enforces attention

consistency as:

Lsa = Lbce + α‖M∗

m1
−M∗

m2
‖2 (5)

where Lbce is defined in Equation 3, M∗

m1
and M∗

m2
are

resized vectors of Mm1 and Mm2 after alignment, ‖M∗

m1
−

M∗

m2
‖2 is the l2 distance between M∗

m1
and M∗

m2
, and α is

a weight parameter controlling the importance of the BCE

loss vis-a-vis the spatial attention constraints.

A visual summary of our proposed Siamese attention

mechanism is shown in Figure 6. For input pairs belonging

to the same identity, attention maps are retrieved from the

BCE classifier predictions, following which they are max-

pooled to gather localization statistics for enforcing spatial

attention consistency.

3.3. Overall Design of the CASN

With the identification and Siamese modules discussed

in the previous sections, we now present our overall frame-

work that integrates these two modules. Our proposed

CASN, depicted in Figure 2, is a two-branch architecture.

During training, we pass as input a pair of images belong-

ing either to the same or different identity. After feature
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Figure 6: Demonstration of the Siamese Attention Mechanism. Yellow arrows denote backward operation and green arrows

denote forward operation. The BCE loss Lbce and spatial constraints are added as Siamese Attention loss Lsa. Note that the

“Feature extraction” block here can come from any baseline architecture, e.g., IDE or PCB.

extraction (see Figure 3), the feature vectors are input to the

identification module and Siamese module separately. In

the identification module, the feature vectors are first passed

to the IDE classifier for identity classification, following

which an attention map for the input image in the current

branch is retrieved from its identity label. The identification

attention loss then guides the identification module to dis-

cover complete attention regions for the input image. The

Siamese module takes as input the element-wise subtrac-

tion of the feature vectors from two branches, which is then

input to the BCE Classifier to retrieve the image-pair atten-

tion maps from the BCE loss. Given this, we enforce the

spatial constraint objective to ensure spatial consistency of

attentive regions across the two images in the input pair.

We optimize our proposed CASN for all the objectives

described here jointly, with the overall CASN training ob-

jective given as:

L = Lide + λ1Lia + λ2Lsa (6)

where Lide is the IDE classification loss, Lia is the iden-

tification attention loss, and Lsa is the Siamese attention

loss. Note that the feature extraction blocks across the two

branches in Figure 2 share weights. The proposed CASN

addresses all problems discussed previously in a principled

fashion, allowing us to (a) generate attention maps with at-

tention consistency, (b) learn identity-aware invariant rep-

resentations by design, and (c) use attention maps during

inference for identities not seen during training. Further-

more, compared to existing attention mechanisms employed

in person re-id, our framework is flexible by design in that

it can be used in conjunction with any base architecture or

baseline re-id algorithm. For instance, in Section 4, we

show performance improvements with both the IDE [39]

and the PCB [34] baselines. Furthermore, we only need

identity labels during training (which are used by compet-

ing algorithms as well), but crucially, do not need any spe-

cially designed architecture sub-modules to make attention

a part of the learning process.

4. Experiments and Results

Datasets. We use Market-1501 [44], CUHK03-NP [20, 48],

and DukeMTMC-ReID [26, 46]. Market-1501 [44] collects

person images from 6 camera views, containing 12,936

training images with 751 different identities. Gallery and

query sets have 19,732 and 3,368 images respectively with

750 different identities. CUHK03-NP is a new training-

testing split protocol for CUHK03 [20], first proposed in

[48], splitting the training and testing sets into 767 and 700

identities. DukeMTMC-ReID [46] is an image-based re-

id dataset generated from DukeMTMC [26] that randomly

splits training and testing sets equally into 702 identities.

Implementation Details. We resize all images to

288×144, use SGD with momentum of 0.9, learning rate

of 0.03, and a total of 40 epochs, with the learning rate de-

creased by a factor of 10 at epoch 30. The parameter α in

Equation 5 is set to 0.2, and λ1 and λ2 in Equation 6 are

set to 0.5 and 0.05 respectively. For the PCB baseline, we

follow the same protocol as in [34] and resize images to

384×128. We set the batch size to 16, use two NVIDIA

GTX-1080Ti GPUs, and implement all code in Pytorch [1].

Evaluation Protocol. After training, we use query and

gallery as pair inputs to obtain attention maps from BCE

classifier predictions. The l2 distance of the attention maps

(Equation 5 in Section 3.2.2) and l2 distance of the feature

vectors are normalized and summed for final ranking. We

report the rank-1 Cumulative Match Characteristic (CMC)

and mean average precision (mAP) results.

4.1. Comparison to the State of the Art

In Tables 1 and 2, we compare the performance of our

method with several recently proposed algorithms applied

to the CUHK03-NP, DukeMTMC-ReID, and Market-1501

datasets. Note that all our results are evaluations without re-

ranking [48] and the PCB [34] architecture as the backend.

CUHK03-NP. We report experimental results on both de-

tected and labeled person images. The new train-test split,

containing only around 7,300 training images, is much
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more prone to overfitting when compared to the other

datasets. However, results show that our method surpasses

the state of the art substantially for rank-1 (+4.7%, +5.7%)

on detected and labeled sets respectively, demonstrating the

strong generalization ability of the CASN. More crucially,

compared to a recently proposed attention-based method,

HA-CNN [21], our CASN achieves 29.8% and 25.8% rank-

1 and mAP improvements (on detected sets) respectively.

Table 1: CUHK03-NP (detected and labeled).

Detected Labeled

R-1 mAP R-1 mAP

BoW+XQDA [44] 6.4% 6.4% 7.9% 7.3%

LOMO+XQDA [22] 12.8% 11.5% 14.8% 13.6%

IDE [45] 21.3% 19.7% 22.2% 21.0%

PAN [47] 36.3% 34.0% 36.9% 35.0%

DPFL [41] 40.7% 37.0% 43.0% 40.5%

HA-CNN [21] 41.7% 38.6% 44.4% 41.0%

MLFN [4] 52.8% 47.8% 54.7% 49.2%

DaRe+RE [37] 63.3% 59.0% 66.1% 61.6%

PCB+RPP [34] 63.7% 57.5% - -

MGN [36] 66.8% 66.0% 68.0% 67.4%

CASN (IDE) 57.4% 50.7% 58.9% 52.2%

CASN (PCB) 71.5% 64.4% 73.7% 68.0%

Table 2: DukeMTMC-ReID and Market-1501 (SQ).

DukeMTMC-ReID Market-1501

R-1 mAP R-1 mAP

BoW+KISSME [44] 25.1% 12.2% 44.4% 20.8%

LOMO+XQDA [22] 30.8% 17.0% 43.8% 22.2%

SVDNet [33] 76.7% 56.8% 82.3% 62.1%

HA-CNN [21] 80.5% 63.8% 91.2% 75.7%

DuATM [28] 81.8% 64.6% 91.4% 76.6%

PCB+RPP [34] 83.3% 69.2% 93.8% 81.6%

DNN CRF [6] 84.9% 69.5% - -

MGN [36] 88.7% 78.4% 95.7% 86.9%

CASN (IDE) 84.5% 67.0% 92.0% 78.0%

CASN (PCB) 87.7% 73.7% 94.4% 82.8%

DukeMTMC-ReID. We report competitive results in Ta-

ble 2. Again, compared to recently proposed attention-

based methods, HA-CNN [21] and DuATM [28], our CASN

achieves 7.2% and 5.9% rank-1 accuracy improvements and

9.9% and 9.1% mAP improvements respectively.

Market-1501. We report competitive results with CASN

in Table 2. However, compared to recently proposed

attention-based methods, e.g., HA-CNN [21] and DuATM

[28] (shown in the table), and CAN [23] (R-1: 60.3%,

mAP: 35.9%), HPN [24] (R-1: 76.9%), MSCAN [17] (R-

1: 80.3%, mAP: 57.5%) our method produces much higher

results with both rank-1 and mAP.

As can be noted from these results, the proposed CASN

substantially outperforms existing attention-based meth-

ods for re-id. More importantly, unlike these competing

attention-based methods, CASN does not require any spe-

cially designed deep architecture for modeling attention,

relying only on identity labels for supervision. This al-

lows the CASN to be highly flexible for use in conjunc-

tion with any baseline CNN architecture, such as VGGNet

[29], DenseNet [12], or SqueezeNet [13]. For instance, with

DenseNet and the IDE baseline, CASN achieves a rank-1

and mAP performance of 57.2% and 52.0% respectively on

CUHK03-NP (detected), which are close to CASN’s results

with ResNet50 and IDE, discussed next.

4.2. Ablation Study and Discussion

In this section, we further study the role of the identifica-

tion attention and Siamese attention mechanisms individu-

ally, and how they influence the performance of the CASN.

In Table 3, we report evaluation results of our proposed

model on CUHK03-NP (detected), DukeMTMC-ReID and

Market-1501, starting from baseline IDE and PCB archi-

tectures and working up to the full CASN model. From

Table 3, we can see clear performance improvements over

the baseline with individual attention modules. For instance

on CUHK03-NP, IDE+IA improves the rank-1 and mAP

performance of baseline IDE by 9.0% and 9.2% whereas

IDE+SA improves the rank-1 accuracy by 9.4% and 10.2%

respectively. This provides evidence for our initial hypoth-

esis that spatial localization, via end-to-end trainable atten-

tion mechanisms, should be an important and integral part

of the framework design. Furthermore, adding both atten-

tion modules improves performance as measured by both

rank-1 accuracy and mAP, demonstrating the importance of

using both identification and Siamese modules.

Table 3: Ablation study. IA: Identification Attention, SA:

Siamese Attention, SQ: Single-Query.

Loss type CUHK03-NP DukeMTMC-ReID Market-1501 (SQ)

R-1 mAP R-1 mAP R-1 mAP

IDE [34] 43.8% 38.9% 73.2% 52.8% 85.3% 68.5%

IDE + IA 54.8% 48.1% 83.2% 66.0% 91.0% 76.9%

IDE + SA 55.2% 49.1% 83.5% 66.0% 91.6% 77.7%

CASN(IDE) 57.4% 50.7% 84.5% 67.0% 92.0% 78.0%

PCB [34] 61.3% 54.2% 81.7% 66.1% 92.4% 77.3%

PCB + IA 68.5% 62.4% 87.3% 73.4% 93.9% 81.8%

PCB + SA 69.9% 64.2% 86.8% 73.5% 94.1% 82.6%

CASN(PCB) 71.5% 64.4% 87.7% 73.7% 94.4% 82.8%

Comparisons of the attention maps acquired from the

models trained with BCE loss and BCE loss with Siamese

Attention loss are shown in Figure 7(a-b). Clearly, with

the proposed Siamese attention mechanism, we obtain more

consistent attention maps of the same person image pair in

Figure 7(b) compared to Figure 7(a). Furthermore, we also

demonstrate these attention maps for the testing image pairs
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(a) Attention maps retrieved from BCE loss (training)

(b) Attention maps retrieved from BCE loss with Siamese Attention loss (training)

(c) Attention maps retrieved from model trained with Siamese Attention (Rank 1 gallery match for query images)

Figure 7: Demonstrating the efficacy of the proposed Siamese attention by means of attention maps for same-person images.

in Figure 7(c), where we again see attention consistency

among the query and retrieved gallery images. These exam-

ples demonstrate the effectiveness of our proposed Siamese

attention mechanism, and also provide a powerful inter-

pretability tool. With such attention maps, we can now

explain why our Siamese network predicts a certain input

image pair to be similar or dissimilar, leading to intuitive

explanations for person re-id. In more detail, Figure 8(a)

shows two query images (one on each row), along with their

rank-1 (left column) and ground-truth matches (right col-

umn). Each rank-1 match is a wrong match (failure case)

while the ground-truth has a lower rank, and we can un-

derstand the reasoning from our attention maps. For in-

stance, on the first row, we see reasonable attention con-

sistency between the query and rank-1 (notice both show

women in dresses), explaining why the wrong match was

ranked 1, unlike the ground-truth, where we see attention

focused on different regions, leading to lower rank (rank 3

in this example). In Fig 8(b), we demonstrate the efficacy of

our proposed Siamese attention (two examples, one on each

row). The left column shows {query, ground-truth} and the

ground truth’s rank without Siamese attention. The right

column shows these results with Siamese attention. We can

see that Siamese attention results in better attention consis-

tency, which is also reflected in the improved rank.

5. Conclusions

We proposed the first learning architecture that integrates

attention consistency modeling and Siamese representation

learning in a joint learning framework, called the Consistent

Attentive Siamese Network (CASN), for person re-id. Our

framework provides for principled supervisory signals that

guide our model towards discovering consistent attentive re-

gions for same-identity images while also learning identity-

aware invariant representations for cross-view matching.

We conducted extensive evaluations on three popular person

Figure 8: (a) Our attention maps can explain wrong (high

rank, e.g., rank 1) and ground-truth matches (low rank, e.g.,

rank 3). (b) Siamese attention gives rank improvements,

providing reasoning with attention consistency.

re-id datasets and demonstrated competitive performance.

While computing attention as in Section 3.2.2 is specific

to standing poses that are common in existing benchmarks,

our framework is extensible to enforce different kinds of

consistency given data- or domain-specific priors for real-

world generalizability.
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