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Abstract

This paper considers the domain adaptive person re-

identification (re-ID) problem: learning a re-ID model from

a labeled source domain and an unlabeled target domain.

Conventional methods are mainly to reduce feature distri-

bution gap between the source and target domains. How-

ever, these studies largely neglect the intra-domain vari-

ations in the target domain, which contain critical fac-

tors influencing the testing performance on the target do-

main. In this work, we comprehensively investigate into

the intra-domain variations of the target domain and pro-

pose to generalize the re-ID model w.r.t three types of the

underlying invariance, i.e., exemplar-invariance, camera-

invariance and neighborhood-invariance. To achieve this

goal, an exemplar memory is introduced to store features

of the target domain and accommodate the three invariance

properties. The memory allows us to enforce the invari-

ance constraints over global training batch without signif-

icantly increasing computation cost. Experiment demon-

strates that the three invariance properties and the pro-

posed memory are indispensable towards an effective do-

main adaptation system. Results on three re-ID domains

show that our domain adaptation accuracy outperforms the

state of the art by a large margin. Code is available at:

https://github.com/zhunzhong07/ECN

1. Introduction

Person re-identification (re-ID) [38, 41, 31, 14] is a

cross-camera image retrieval task, which aims to find

matched persons of a given query from the database. In
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spite of the impressive achievement of supervised learning

in the re-ID community, learning a re-ID model that gener-

alizes well on a target domain remains a challenge [7, 29].

Obtaining sufficient unlabeled data in the target domain is

relatively easy, and yet it is difficult to learn a deep re-ID

model without annotations. This work considers the prob-

lem of unsupervised domain adaptation (UDA), where we

are provided with labeled source domain and unlabeled tar-

get domain. Our goal is to learn a discriminative represen-

tation for the target set.

In the traditional setting of UDA, most methods are de-

veloped under the closed-set scenario, assuming that the

source and target domains share entirely the same classes

[27, 10]. However, this assumption cannot be applied to

UDA in person re-ID, because the classes from the two do-

mains are completely different. UDA in person re-ID is an

open set problem [3] which is more challenging than closed-

set one. During UDA in person re-ID, it is improper to di-

rectly align the distributions of the source and target do-

mains as in existing closed-set UDA methods. Instead, we

should learn to well separate the unseen classes from the

target domain.

Recent advanced methods address the UDA problem

in person re-ID mostly by reducing the gap between the

source and target domains on the image-level [7, 30, 1] or

the attribute feature-level [29, 16]. These methods only

consider the overall inter-domain variations between the

source and target domains, but ignore the intra-domain vari-

ations of the target domain. In fact, the target variations

are critically influencing factors for person re-ID. In this

study, we explicitly take into account the intra-domain vari-

ations of target domain and investigate three underlying in-

variances, i.e., exemplar-invariance, camera-invariance, and

neighborhood-invariance, as described below.

First, given a deep re-ID model trained on a labeled set,

we observe that the top-ranked retrieval results always are

more likely to be visually correlated to the query. A similar

phenomenon is observed in image classification [33]. This
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(a) Exemplar-invariance (b) Camera-invariance (c) Neighborhood-invariance
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Figure 1. Examples of three underlying invariances. (a) Exemplar-invariance: an exemplar is enforced to be apart from others. (b) Camera-

invariance: an exemplar and its camera-style transferred (CamStyle) images are encouraged to be close to each other, as well as CamStyle

images should be far away from others. (c) Neighborhood-invariance: an exemplar and its neighbors are forced to be close to each other.

indicates that the deep re-ID model has learned the appar-

ent similarity instead of semantic information from visual

data. In reality, each person exemplar could differ signif-

icantly from other exemplars even belonged to the same

identity. Thus, it is possible to enable the re-ID model to

capture the apparent representation of person by learning to

discriminate individual exemplars. Based on this, we intro-

duce the exemplar-invariance to learn apparent similarity on

unlabeled target data by enforcing each person exemplar to

be close to itself and far away from others. Second, as a

key influencing factor in person re-ID, camera-style varia-

tions [44] might significantly change the appearance of per-

son. Nevertheless, a person image generated by camera-

style transfer still belongs to the original identity. Taking

this into account, we enforce the camera-invariance [43] un-

der the assumption that a person image and the correspond-

ing camera-style transferred images should be close to each

other. Third, suppose we are provided an appropriate re-

ID model trained on the source and target domains. A tar-

get exemplar and its nearest-neighbors in the target set may

probably have the same identity. Considering this trait, we

present the neighborhood-invariance by encouraging an ex-

emplar and its corresponding reliable neighbors to be close

to each other. This helps us to learn a model that is more ro-

bust to overcome the image variations of the target domain,

such as pose, view and background changes. Examples of

these three invariances are shown in Fig. 1.

Based on the above aspects, we propose a novel unsu-

pervised domain adaptation method for person re-ID. Dur-

ing the training process, an exemplar memory is introduced

into the network to memorize the up-to-date representation

of each exemplar of the target set. The memory enables us

to enforce the invariance constraints over whole/global tar-

get training batch instead of the mini-batch. This helps us

to effectively perform the invariance learning of the target

domain during the network optimizing procedure.

In summary, the contribution of this work is three-fold:

• We comprehensively study three underlying invari-

ances of the target domain. Experiments show that

these properties are indispensable for improving the

transferable ability of re-ID models.

• We propose a memory module to effectively enforce

the three invariance properties into the system. The

memory helps us to take advantage of sample simi-

larity over the global training set. With the memory,

accuracy can be significantly improved, requiring very

limited extra computation cost and GPU memory.

• Our method outperforms the state-of-the-art UDA

approaches by a large margin on three large-

scale datasets: Market-1501, DukeMTMC-reID and

MSMT17.

2. Related Work

Unsupervised domain adaptation. An effective ap-

proach for addressing UDA is by aligning the feature dis-

tributions between the two domains. This alignment can

be achieved by reducing the Maximum Mean Discrepancy

(MMD) [11] between domains [17, 35], or training an ad-

versarial domain-classifier [2, 27] to encourage the features

of the source and target domains to be indistinguishable.

The above mentioned methods are designed under the as-

sumption of the closed-set scenario, where the classes of

the source and target domains are entirely identical. How-

ever, in practice, there are many scenarios that exist un-

known classes in the target domain. The unknown-class

samples from the target domain should not be aligned with

the source domain. This task is introduced by Busto and

Grall [3], referred as open set domain adaptation. To tackle

this problem, Busto and Grall [3] develop a method to learn

a mapping from the source domain to the target domain by

discarding unknown-class target samples. Recently, an ad-

versarial learning framework [22] is proposed to separate

target samples into known and unknown classes, and reject

unknown classes during feature alignment. In this paper,

we study the problem of UDA in person re-ID, where the

classes are totally different between the source and target

domains. This is a more challenging open set problem.

Unsupervised person re-identification. The art super-

vised methods have made great achievement in person re-ID

[14, 26, 39, 25], relying on rich-labeled data and the success

of deep networks [18, 12, 8]. However, the performance
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Figure 2. The framework of the proposed approach. During training, labeled source data and unlabeled target data are fed-forward into the

deep re-ID network to obtain up-to-date representations. Subsequently, two components are designed to optimize the network with source

data and target data, respectively. The first component is a classification module that calculates the cross-entropy loss for labeled source

data. The second component is an exemplar memory module that saves the up-to-date features for target data and computes the invariance

learning loss for unlabeled target data.

may drop significantly when tested on an unseen dataset.

To address this problem, several methods use the labeled

source domain to learn a deep re-ID model as an initial-

ized feature extractor. Then, these methods learn a metric

[36] or refine the re-ID model by unsupervised clustering

[9] on the target domain. However, these methods do not

take advantage of the labeled source data as a beneficial su-

pervision during adapting procedure. To overcome previous

drawbacks, many domain adaptation approaches are devel-

oped to adapt the model with both labeled source domain

and unlabeled target domain. These methods are mainly to

reduce the domain shifts between datasets on image-level

[7, 30, 1] and attribute feature-level [29, 16]. Despite their

effectiveness, these methods largely ignore the intra-domain

variations in target domain. Recently, Zhong et al. [43] first

propose a HHL method to learn camera-invariant network

for the target domain. However, HHL overlooks the latent

positive pairs in the target domain. This might lead the re-

ID model to be sensitive to other variations in the target

domain, such as pose and background variations.

Difference from previous works. Indeed, the three in-

variance properties and the memory module have been sep-

arately presented in existing works. However, our work is

different from them. The exemplar-invariance and mem-

ory module have been presented in self-supervised learning

[33], few-shot learning [23, 28, 32] and supervised learning

[34]. Yet, we explore the feasibility of this idea in unsuper-

vised domain adaptation and overcoming the variations in

the target domain. The neighborhood-invariance is similar

to deep association learning (DAL) [4]. A difference from

DAL is that we design a soft classification loss to align the

top-k neighbors instead of calculating the triplet loss be-

tween the mutual top-1 neighbors. Importantly, comparing

with HHL [43] and DAL [4], we comprehensively consider

three invariance constraints. It is worthy of discovering the

mutual benefit among the three invariance properties.

3. The Proposed Method

Preliminary. In the context of unsupervised domain

adaptation (UDA) in person re-ID, we are provided with

a fully labeled source domain {Xs, Ys}, including Ns per-

son images. Each person image xs,i is associated with an

identity ys,i. The number of identities is M for source do-

main. In addition, we are provided with an unlabeled target

domain Xt, containing Nt person images. The identity an-

notation of the target domain is not available. Our goal is

to learn a transferable deep re-ID model using both labeled

source domain and unlabeled target domain, which gener-

alizes well on the target testing set.

3.1. Overview of Framework

The framework of our method is shown in Fig. 2. In our

model, the ResNet-50 [12] pre-trained on ImageNet [6] is

utilized as the backbone. Specifically, we keep the layers of

ResNet-50 till the Pooling-5 layer as the base network and

add a 4096-dimensional fully convolutional (FC) layer af-

ter Pooling-5 layer. The new FC layer is named FC-4096,

followed by batch normalization [13], ReLU [19], Dropout

[24] and two components. The first component is a clas-

sification module for supervised learning with the labeled

source data. It has an M -dimensional FC layer (named

as FC-#id) and a softmax activation function. We use the

cross-entropy loss to calculate the loss for the source do-

main. The other component is an exemplar memory mod-

ule for invariance learning with the unlabeled target data.

The exemplar memory is served as a feature-storage that

saves the up-to-date output of FC-4096 layer for each target

image. We calculate the invariance learning loss of the tar-

get domain by estimating the similarities between the target

samples within mini-batch and whole target samples saved

in the exemplar memory.
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3.2. Supervised Learning for Source Domain

Due to the identities of source images are available, we

treat the training process of the source domain as a clas-

sification problem [38]. The cross-entropy loss is used to

optimize the network, formulated as,

Lsrc = −
1
ns

ns
∑

i=1

log p(ys,i|xs,i), (1)

where ns is the number of source images in a training batch.

p(ys,i|xs,i) is the predicted probability that the source im-

age xs,i belongs to identity ys,i, which is obtained by the

classification module.

The model trained using labeled source data produces

a high accuracy on the same distributed testing set. How-

ever, the performance will deteriorate seriously when the

testing set has a different distribution to the source domain.

Next, we will introduce an exemplar memory based method

to overcome this problem by considering the intra-domain

variations of target domain in the training of network.

3.3. Exemplar Memory

In order to improve the generalization ability of the net-

work on the target testing set, we propose to enforce in-

variance learning into the network by estimating the sim-

ilarities between target images. To achieve this goal, we

first construct an exemplar memory for storing the up-to-

date features of all target images. The exemplar memory is

a key-value structure [34], which has the key memory (K)

and the value memory (V). In the exemplar memory, each

slot stores the L2-normalized feature of FC-4096 in the key

part, while storing the label in the value part. Given an un-

labeled target data including Nt images, we regard each im-

age instance as an individual category. Thus, the exemplar

memory contains Nt slots, in which each slot storing the

feature and label of a target image. In the initialization, we

initialize the values of all the features in the key memory

to zeros. For simplicity, we assign the corresponding in-

dexes as the labels of target samples and store them in the

value memory. For example, the class of i-th target image

in value memory is assigned to V[i] = i. The labels in the

value memory are fixed throughout training process. Dur-

ing each training iteration, for a target training sample xt,i,

we forward it through the deep reID network and obtain

the L2-normalized feature of FC-4096, f(xt,i). During the

back-propagation, we update the feature in the key memory

for the training sample xt,i through,

K[i]← αK[i] + (1− α)f(xt,i), (2)

whereK[i] is the key memory of image xt,i in i-th slot. The

hyper-parameter α ∈ [0, 1] controls the updating rate. K[i]
is then L2-normalized via K[i]← ‖K[i]‖2.

3.4. Invariance Learning for Target Domain

The deep re-ID model trained with only source domain

is usually sensitive to the intra-domain variations of the tar-

get domain. The variations are critical influencing factors

for the performance. Therefore, it is necessary to consider

the image variations of the target domain during transferring

the knowledge from source domain to target domain. In this

study, we investigate three underlying invariances of tar-

get data for UDA in person re-ID, i.e., exemplar-invariance,

camera-invariance and neighborhood-invariance.

Exemplar-invariance. The appearance of each person

image may be very different from others even shared the

same identity. In other words, each person image can be

close to itself while far away from others. Therefore, we

enforce exemplar-invariance into the re-ID model by learn-

ing to distinguish individual person images. This allows the

re-ID model to capture the apparent representation of per-

son. To achieve this goal, we regard the Nt target images

as Nt different classes, and classify each image into its own

class. Given a target image xt,i, we first compute the cosine

similarities between the feature of xt,i and features saved in

the key memory. Then, the predicted probability that xt,i

belongs to class i is calculated using softmax function,

p(i|xt,i) =
exp(K[i]Tf(xt,i)/β)

∑Nt
j=1

exp(K[j]Tf(xt,i)/β)
, (3)

where β ∈ (0, 1] is temperature fact that balances the scale

of distribution.

The objective of exemplar-invariance is to minimize the

negative log-likelihood over target training image, as

Lei = − log p(i|xt,i). (4)

Camera-invariance. Camera style variation is an im-

portant factor in person re-ID. A person image may en-

counter with significant changes in appearance under differ-

ent cameras. The re-ID model trained using labeled source

data can capture the camera-invariance for source domain,

but may suffer from the image variations caused by target

cameras. Since the camera settings of the two domains will

be very different. To overcome this problem, we propose

to equip the network with camera-invariance [43] of tar-

get domain, based on the assumption that an image and

its camera-style transferred counterparts should be close

to each other. In this paper, we suppose the camera-ID

of each image is known, since the camera-ID can be eas-

ily obtained when collecting person images from video se-

quences. Given the unlabeled target data, we consider each

camera as a style domain and adopt StarGAN [5] to train a

camera style (CamStyle) transfer model [44] for the target

domain. With the learned CamStyle transfer model, each

real target image collected from camera c is augmented with

C − 1 images in the styles of other cameras while remain-
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ing the original identity. C is the number of cameras in the

target domain.

To introduce the camera-invariance into the model, we

regard that each real image and its style-transferred coun-

terparts share the same identity. Thus, the loss function of

camera-invariance is explained as,

Lci = − log p(i|x̂t,i), (5)

where x̂t,i is a target sample randomly selected from the

style-transferred images of xt,i. In this way, images in dif-

ferent camera styles of the same sample are forced to be

close to each other.

Neighborhood-invariance. For each target image, there

may exist a number of positive samples in the target data.

If we could exploit these positive samples in the training

process, we are able to further improve the robustness of

re-ID model in overcoming the variations of target domain.

To achieve this objective, we first calculate the cosine sim-

ilarities between f(xt,i) and the features stored in the key

memory K. Then, we find the k-nearest neighbors of xt,i

in K and define the indexes of them asM(xt,i, k). k is the

size ofM(xt,i, k). The nearest one inM(xt,i, k) is i.

We endow the neighborhood-invariance into the network

under the assumption that the target image xt,i should be-

long to the classes of candidates in M(xt,i, k). Thus, we

assign the weight of the probability that xt,i belongs to the

class j as,

wi,j =

{

1
k , j 6= i

1, j = i
, ∀j ∈M(xt,i, k). (6)

The objective of neighborhood-invariance is formulated as

a soft-label loss,

Lni = −
∑

j 6=i

wi,j log p(j|xt,i), ∀j ∈M(xt,i, k). (7)

Note that, to distinguish between exemplar-invariance and

neighborhood-invariance, xt,i is not classified to its own

class in Eq. 7.

Overall loss of invariance learning. By jointly con-

sidering the exemplar-invariance, camera-invariance and

neighborhood-invariance, the overall loss of invariance

learning over target training images can be written as,

Ltgt = −
1
nt

nt
∑

i=1

∑

j wi,j log p(j|x
∗
t,i), (8)

where j ∈ M(x∗
t,i, k). x∗

t,i is an image randomly sam-

pled from the union set of xt,i and its camera style-

transferred images. nt is the number of target images

in the training batch. In Eq. 8, when i = j, we op-

timize the network with the exemplar-invariance learning

and camera-invariance learning by classifying x∗
t,i into its

own class. When i 6= j, the network is optimized with

the neighborhood-invariance learning by leading x∗
t,i to be

close to its neighbors inM(x∗
t,i, k).

3.5. Final Loss for Network

By combining the losses of source and target domains,

the final loss for the network is formulated as,

L = (1− λ)Lsrc + λLtgt, (9)

where λ ∈ [0, 1] controls the importance of the source loss

and the target loss. To this end, we introduce a loss function

for UDA person re-ID, in which, the loss of source domain

aims to maintain a basic representation for person. As well

as, the loss of target domain attempts to take the knowledge

from labeled source domain and incorporate the invariance

properties of target domain into the network.

3.6. Discussion on the Three Invariance Properties

We analyze the advantage and disadvantage for each in-

variance. The exemplar-invariance enforces each exemplar

away from each other. It is beneficial to enlarge the distance

between exemplars from different identities. However, ex-

emplars of the same identity will also be far apart, which

is harmful to the system. On the contrast, neighborhood-

invariance encourages each exemplar and its neighbors to

be close to each other. It is beneficial to reduce the dis-

tance between exemplars of the same identity. However,

neighborhood-invariance might also pull closer images of

different identities, because we could not guarantee that

each neighbor shares the same identity with the query exem-

plar. Therefore, there exists a trade off between exemplar-

invariance and neighborhood-invariance, where the former

aims to lead the exemplars from different identities to be far

away while the latter attempts to encourage exemplars of the

same identity to be close to each other. Camera-invariance

has the similar effect as the exemplar-invariance and also

leads the exemplar and its camera-style transferred samples

to share the same representation.

4. Experiment

4.1. Dataset

We evaluate the proposed method on three large-scale

person re-identification (re-ID) benchmarks: Market-1501

[37], DukeMTMC-reID [21, 40] and MSMT17 [30]. Per-

formance is evaluated by the cumulative matching charac-

teristic (CMC) and mean Average Precision (mAP).

4.2. Experiment Setting

Deep re-ID model. We adopt ResNet-50 [12] as the

backbone of our model and initialize the model with the pa-

rameters pre-trained on ImageNet [6]. We fix the first two

residual layers to save GPU memory. The input image is

resized to 256 ×128. During training, we perform random

flipping, random cropping and random erasing [42] for data

augmentation. The probability of dropout is set to 0.5. We
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β
Duke→Market-1501 Market-1501→ Duke

Rank-1 mAP Rank-1 mAP

0.01 47.3 20.0 29.1 13.2

0.03 72.3 40.3 59.7 35.7

0.05 75.1 43.0 63.3 40.4

0.1 71.4 36.8 59.3 35.8

0.5 52.3 23.1 45.4 24.2

1.0 47.8 20.8 40.2 19.3

Table 1. Evaluation with different values of β in Eq. 3.

train the model with a learning rate of 0.01 for ResNet-50

base layers and of 0.1 for the others in the first 40 epochs.

The learning rate is divided by 10 for the next 20 epochs.

The SGD optimizer is used to train the model. We set the

mini-batch size to 128 for both source images and target

images. We initialize the updating rate of key memory α

to 0.01 and increase α linearly with the number of epochs,

i.e., α = 0.01 × epoch. Without specification, we set the

temperature fact β = 0.05, number of candidate positive

samples k = 6 and weight of losses λ = 0.3. We train

the model with exemplar-invariance and camera-invariance

learning at the first 5 epochs and add the neighborhood-

invariance learning for the rest epochs. In testing, we ex-

tract the L2-normalized output of Pooling-5 layer as the im-

age feature and adopt the Euclidean distance to measure the

similarities between query and gallery images.

Baseline. We set the model as the baseline when trained

the network using only the classification component.

4.3. Parameter Analysis

We first analyze the sensitivities of our approach to three

important hyper-parameters, i.e., the temperature fact β, the

weight of losses λ, and the number of candidate positive

samples k. By default, we vary the value of one parameter

and keep the others fixed.

Temperature fact β. In Table 1, we investigate the ef-

fect of the temperature fact β in Eq. 3. Using a lower value

for β leads to a lower entropy, which commonly achieves

better results. However, the network does not converge if

the temperature fact is too low, e.g., β = 0.01. The best

results are produced when β is around 0.05.

The weight of source and target losses λ. In Fig. 3 we

compare different values of λ in Eq. 9. When λ = 0, our

method reduces to the baseline that trained the model only

with labeled source data. It is clearly shown that, when con-

sidering invariance learning for target domain (λ > 0), our

approach significantly improves the baseline at all values.

It is worth noting that our approach outperforms the base-

line by a large margin even trained the model using only

unlabeled target data (λ = 1). This demonstrates the effec-

tiveness of our approach and the importance of overcoming

the variations in target domain. When λ is between 0.3 to
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Figure 4. Evaluation with different number of candidate positive

samples in neighborhood-invariance learning.

0.8, our result is impacted just marginally and the best re-

sults are obtained. This shows that our method is insensitive

to λ in an appropriate range.

Number of positive samples k. In Fig. 4, we show

the results of using different number of positive sam-

ples in neighborhood-invariance learning. When k = 1,

our approach reduces to the model trained with exemplar-

invariance and camera-invariance learning. When adding

neighborhood-invariance learning into the system (k > 1),

our results achieve consistent improvement. The rank-1 ac-

curacy and mAP first improve with the increase of k and

achieve best results when k is between 6 to 8. Assigning

a too large value to k reduces the results. This is because

an excess of false positive samples may include during

neighborhood-invariance learning, which could have dele-

terious effects on performance.

According to the analysis above, we set β = 0.05, λ =
0.3 and k = 6 in the following experiment.

4.4. Evaluation

Performance of baseline. Table 2 reports the results of

the baseline. When trained with labeled target training set

and tested on the target testing set, the baseline (called Su-

pervised Learning) achieves high accuracy. However, we

observe a serious drop in performance when the baseline is

trained using labeled source set only (called Source Only)

and directly applied to the target testing set. For exam-

ple, when tested on Market-1501, the baseline trained on
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Methods
Market-1501 DukeMTMC-reID

Src. R-1 R-5 R-10 R-20 mAP Src. R-1 R-5 R-10 R-20 mAP

Supervised Learning N/A 87.6 95.5 97.2 98.3 69.4 N/A 75.6 87.3 90.6 92.9 57.8

Source Only

D
u

k
eM

T
M

C 43.1 58.8 67.3 74.3 17.7

M
ar

k
et

-1
5

0
1 28.9 44.0 50.9 57.5 14.8

Ours w/ E 48.7 67.4 74.0 80.2 21.0 34.2 51.3 58 64.2 18.7

Ours w/ E+C 63.1 79.1 84.6 89.1 28.4 53.9 70.8 76.1 80.7 29.7

Ours w/ E+N 58.0 69.9 75.6 80.4 27.7 39.7 53.0 58.1 62.9 23.6

Ours w/ E+C+N 75.1 87.6 91.6 94.5 43.0 63.3 75.8 80.4 84.2 40.4

Table 2. Methods comparison when tested on Market-1501 and DukeMTMC-reID. Supervised Learning: Baseline model trained with

labeled target data. Source Only: Baseline model trained with only labeled source data. E: Exemplar-invariance. C: Camera-invariance.

N: Neighborhood-invariance. Src.: Source domain.

labeled Market-1501 training set achieves a rank-1 accu-

racy of 87.6%. However, the rank-1 accuracy declines to

43.1% when trained the baseline on labeled DukeMTMC-

reID training set. A similar drop can be observed when

tested on DukeMTMC-reID. This decline in accuracy is

mainly caused by the domain shifts between datasets.

Ablation experiment on invariance learning. To inves-

tigate the effectiveness of the proposed invariance learning

for target domain, we conduct ablation studies in Table 2.

First, we show the effect of exemplar-invariance learning

by adding exemplar-invariance learning into the baseline.

As shown in Table 2, “Ours w/ E” consistently improves the

results over baseline (Source Only). Specifically, the rank-

1 accuracy improves from 43.1% to 48.7% and 28.9% to

34.2% when tested on Market-1501 and DukeMTMC-reID,

respectively. This demonstrates that exemplar-invariance

learning is an effective way to improve the discrimination

of person descriptors for the target domain.

Next, we validate the effectiveness of camera-invariance

learning over the model trained with exemplar-invariance

learning (Ours w/ E). In Table 2, we observe significant

improvement when adding camera-invariance learning into

the system. For example, “Ours w/ E+C” achieves a rank-

1 accuracy of 63.1% when regarding DukeMTMC-reID as

source domain and tested on Market-1501. This is higher

than “Ours w/ E” by 14.4% in rank-1 accuracy. The im-

provement demonstrates that the image variations caused

by target cameras severely impact the performance in test-

ing set. Injecting camera-invariance learning into the model

could effectively improve the robustness of the system to

camera style variations.

We also evaluate the effect of neighborhood-invariance

learning. As reported in Table 2, “Ours w/ E+N” consis-

tently improves the results of “Ours w/ E”. Using exemplar-

invariance and neighborhood-invariance during training, the

model (Ours w/ E+N) has 39.7% rank-1 accuracy and

23.6% mAP when using Market-1501 as source domain

and tested on DukeMTMC-reID. This increases the re-

sults of “Ours w/ E” by 5.5% in rank-1 accuracy and by

4.9% in mAP, respectively. Furthermore, when integrating

Method
DukeMTMC-reID → Market-1501

R-1 Time (mins) Memory (MB)

Ours w/ mini-batch 67.2 ≈ 59.3 ≈5,000

Ours w/ memory 75.1 ≈ 60.6 ≈5,260

Table 3. Computational cost analysis of the exemplar memory.

neighborhood-invariance learning into a better model (Ours

w/ E+C), our approach would gain more improvement in

performance. For example, “Ours w/ E+C+N” achieves

rank-1 accuracy of 75.1% when regarding DukeMTMC-

reID as source domain and tested on Market-1501, improv-

ing the rank-1 accuracy of “Ours w/ E+C” by 12%. Simi-

lar improvement is observed when tested on DukeMTMC-

reID. This is because that more reliable positive samples

would be mined from unlabeled target set by integrating

neighborhood-invariance learning into a more discrimina-

tive model.

The benefit of the exemplar memory. We use the pro-

posed exemplar memory and the mini-batch to implement

the proposed invariance learning, respectively. For mini-

batch based method, input samples are composed of the

target samples, corresponding CamStyle samples and cor-

responding k-nearest neighbors. As shown in Table 3, the

exemplar memory based method clearly outperforms the

mini-batch based method. It is noteworthy that using the ex-

emplar memory introduces limited additional training time

(≈ + 1.3 mins) and GPU memory (≈ + 260 MB) compared

to using the mini-batch.

4.5. Comparison with Stateoftheart Methods

We compare our approach with state-of-the-art unsu-

pervised learning methods when tested on Market-1501,

DukeMTMC-reID and MSMT17.

Table 4 reports the comparisons when tested on Market-

1501 and DukeMTMC-reID. We use DukeMTMC-reID as

the source set when tested on Market-1501 and vice versa.

We compare with two hand-crafted feature based methods

without transfer learning: LOMO [15] and BOW [37], three

unsupervised methods that use a labeled source data to ini-

tialize the model but ignore the labeled source data during
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Methods
Market-1501 DukeMTMC-reID

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

LOMO [15] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8

Bow [37] 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3

UMDL [20] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3

PTGAN [30] 38.6 - 66.1 - 27.4 - 50.7 -

PUL [9] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4

SPGAN [7] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3

CAMEL [36] 54.5 - - 26.3 - - - -

MMFA [16] 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7

SPGAN+LMP [7] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2

TJ-AIDL [29] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0

CamStyle [45] 58.8 78.2 84.3 27.4 48.4 62.5 68.9 25.1

HHL [43] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2

Ours (ECN) 75.1 87.6 91.6 43.0 63.3 75.8 80.4 40.4

Table 4. Unsupervised person re-ID performance comparison with state-of-the-art methods on Market-1501 and DukeMTMC-reID.

learning feature for target domain: CAMEL [36], UMDL

[20] and PUL [9], and six unsupervised domain adaptation

approaches: PTGAN [30], SPGAN [7], MMFA [16], TJ-

AIDL [29], CamStyle [45], HHL [43]. We first compare

with hand-crafted feature based methods which do not re-

quire learning on neither labeled source set nor unlabeled

target set. These two hand-crated features have demon-

strated the effectiveness on small datasets, but fail to pro-

duce competitive results on large-scale datasets. For exam-

ple, the rank-1 accuracy of LOMO is 12.3% when tested

on DukeMTMC-reID. This is much lower than transferring

learning based methods. Next, we compare with three unsu-

pervised methods. Benefit from initializing model from the

labeled source data and learning with unlabeled target data,

the results of these three unsupervised approaches are com-

monly superior to hand-crafted methods. For example, PUL

obtains rank-1 accuracy of 45.5% when using DukeMTMC-

reID as source set and tested on Market-1501, surpassing

BOW by 9.7% in rank-1 accuracy. Compare to state-of-the-

art domain adaptation approaches, our approach clearly out-

performs them by a large margin on both datasets. Specif-

ically, our method achieves rank-1 accuracy = 75.1% and

mAP = 43.0% when using DukeMTMC-reID as source

set and tested on Market-1501, and, obtains rank-1 accu-

racy = 63.3% and mAP = 40.4% when using Market-1501

as source set and tested on DukeMTMC-reID. The rank-

1 accuracy is 12.9% higher and 16.4% higher than current

best results (HHL [43]) when tested on Market-1501 and

DukeMTMC-reID, respectively.

We also evaluate our approach on a larger and more chal-

lenging dataset, i.e., MSMT17. Since it is a newly released

dataset, there is only one unsupervised method (PTGAN

[30]) reported on MSMT17. As shown in Table 5, our ap-

proach clearly surpasses PTGAN when using Market-1501

and DukeMTMC-reID as source domains. For example, our

Methods Src.
MSMT17

R-1 R-5 R-10 mAP

PTGAN [30] Market 10.2 - 24.4 2.9

Ours (ECN) Market 25.3 36.3 42.1 8.5

PTGAN [30] Duke 11.8 - 27.4 3.3

Ours (ECN) Duke 30.2 41.5 46.8 10.2

Table 5. Performance evaluation when tested on MSMT17.

method produces rank-1 accuracy = 30.2% and mAP =

10.2% when using DukeMTMC-reID as source set. This

is higher than PTGAN by 18.4% in rank-1 accuracy and by

6.9% in mAP.

5. Conclusion

In this paper, we propose an exemplar memory based

unsupervised domain adaptation (UDA) method for person

re-ID task. With the exemplar memory, we can directly

evaluate the relationships between target samples. And

thus we could effectively enforce the underlying invariance

constraints of the target domain into the network training

process. Experiment demonstrates the effectiveness of the

invariance learning for improving the transferable ability of

deep re-ID model. Our approach produces a new state of

the art in UDA accuracy on three large-scale domains.
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