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Figure 1: Overview: From a stereo pair of one polarisation image and one RGB image (a) we merge stereo depth with

polarisation normals using a higher order graphical model (b) before estimating an albedo map and the final geometry (c).

Abstract

In this paper, we propose a hybrid depth imaging sys-

tem in which a polarisation camera is augmented by a sec-

ond image from a standard digital camera. For this modest

increase in equipment complexity over conventional shape-

from-polarisation, we obtain a number of benefits that en-

able us to overcome longstanding problems with the polar-

isation shape cue. The stereo cue provides a depth map

which, although coarse, is metrically accurate. This is used

as a guide surface for disambiguation of the polarisation

surface normal estimates using a higher order graphical

model. In turn, these are used to estimate diffuse albedo.

By extending a previous shape-from-polarisation method to

the perspective case, we show how to compute dense, de-

tailed maps of absolute depth, while retaining a linear for-

mulation. We show that our hybrid method is able to re-

cover dense 3D geometry that is superior to state-of-the-art

shape-from-polarisation or two view stereo alone.

1. Introduction

Surface reflection changes the polarisation state of light.

By measuring the polarisation state of reflected light, we are

able to infer information about the material properties and

geometry of the surface. Polarisation is a particularly attrac-

tive shape estimation cue because it is dense (surface orien-

tation information is available at every pixel), can be applied

to smooth, featureless, glossy surfaces (on which multiview

methods would fail to find correspondences) and it can be

captured in a single shot (using a polarisation camera). For

this reason, the shape-from-polarisation cue has recently

been rediscovered and significant progress has been made

in the past three years [2, 7, 9, 15, 16, 18, 24, 28, 29, 34].

Recent work has posed shape-from-polarisation in terms

of direct estimation of orthographic surface height [27–29].

This is attractive because it halves the degrees of freedom

(one height value per pixel rather than two values to rep-

resent surface orientation) and avoids the two step process

of surface orientation estimation followed by surface inte-

gration to obtain a height map. However, polarisation cues

do not provide any direct constraints on metric depth, only

on local surface orientation. Hence, the surfaces recovered

by these methods are globally inaccurate and subject to low

frequency distortion. Moreover, the orthographic assump-

tion is practically limiting.

For this reason, in this paper we consider a hybrid setup

in which a single polarisation image is augmented by a sec-

ond image from a standard RGB camera. This provides us

with a conventional stereo cue from which we can compute

coarse but metrically accurate depth estimates. This serves

a number of purposes. First, this provides coarse guide nor-
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mals that can be used for initial disambiguation of the po-

larisation cue. Second, it is used to regularise the final re-

construction, resolving scale ambiguity and reducing low

frequency bias. We make a number of novel contributions:

1. Use a higher order graphical model to capture integrabil-

ity constraints during disambiguation

2. Show how to automatically label pixels as diffuse or

specular dominant via our graphical model

3. Show how to incorporate gradient-consistency con-

straints into albedo estimation

4. Extend the linear formulation of Smith et al. [28] to the

perspective case, retaining linearity and also including

the stereo depth map as a guide surface

Our approach has a number of practical advantages over re-

cent state-of-the-art. Unlike Smith et al. [28] we do not

assume uniform albedo. Unlike Kadambi et al. [15, 16], we

do not use a depth (kinect) camera and so our capture envi-

ronment is not restricted. We compare to these and other

relevant state-of-the-art methods and obtain better recon-

structions. Compared to [7–9, 33], we only require a single

polarisation image.

1.1. Related work

Shape-from-polarisation. Both Miyazaki et al. [22] and

Atkinson and Hancock [3] used a diffuse polarisation model

to estimate surface normals from the phase angle and de-

gree of polarisation. They use a local, greeedy method that

propagates from the object boundary assuming global con-

vexity. This is very sensitive to noise, limits applicability

to objects with a visible occluding boundary and does not

consider integrability. Morel et al. [23] took a similar ap-

proach but used a specular polarisation model suitable for

metallic surfaces. Huynh et al. [13] also assumed convexity

to disambiguate the polarisation normals.

Polarisation and X. A variety of work seeks to augment

polarisation with an additional shape-from-X cue. Huynh

et al. [14] extended their earlier work to use multispectral

measurements to estimate both shape and refractive index.

Drbohlav and Sara [10] showed how the Bas-relief ambigu-

ity [6] in uncalibrated photometric stereo could be resolved

using polarisation. However, this approach requires a po-

larised light source. Coarse geometry obtained by multi-

view space carving [20, 21] has been used to resolve po-

larisation ambiguities. Kadambi et al. [15, 16] combine a

single polarisation image with a depth map obtained by an

RGBD camera. The depth map is used to disambiguate the

normals and provide a base surface for integration. Our ap-

proach uses a simpler setup in that it does not require a

depth camera. Mahmoud et al. [17] and Smith et al. [28]

augment polarisation with a shape-from-shading cue. The

later shows how to solve directly for surface height (i.e. rel-

ative depth) by solving a large, sparse linear system of equa-

tions. However, they assume constant albedo and ortho-

graphic projection - all assumptions that we avoid. Follow-

up work showed how to estimate albedo independently [27].

Yu et al. [34] take a similar approach but avoid linearising

the objective function, instead directly minimising the true

nonlinear objective. This allows the use of reflectance and

polarisation models of arbitrary complexity. Ngo et al. [24]

derived constraints that allowed surface normals, light di-

rections and refractive index to be estimated from polarisa-

tion images under varying lighting. However, this approach

requires at least 4 light directions. Atkinson [2] combine

calibrated two source photometric stereo with polarisation

phase and resolve ambiguities via a region growing process.

Tozza et al. [29] generalised [28] to consider two source

photo-polarimetric shape estimation. Subsequently, Mecca

et al. [18] also proposed a differential formulation with a

well-posed solution for two light sources.

Multiview Polarisation. Some of the earliest work on po-

larisation vision used a stereo pair of polarisation measure-

ments to determine the orientation of a plane [30]. Rah-

mann and Canterakis [26] combined a specular polarisa-

tion model with stereo cues. Similarly, Atkinson and Han-

cock [5] used polarisation normals to segment an object into

patches, simplifying stereo matching. Note however that

this method is restricted to the case of an object rotating

on a turntable with known angle. Stereo polarisation cues

have also been used for transparent surface modelling [19].

Berger et al. [7] used polarisation stereo for depth estima-

tion of specular scenes. Cui et al. [9] incorporate a polarisa-

tion phase angle cue into multiview stereo enabling recov-

ery of surface shape in featureless regions. Chen et al. [8]

provide a theoretical treament of constraints arising from

three view polarisation. Yang et al. [33] propose a variant

of monocular SLAM using polarisation video. All of these

methods require multiple polarisation images whereas our

proposed approach uses only a single polarisation image

augmented by a standard RGB image from a second view.

2. Problem formulation

In this section we list our assumptions and introduce no-

tations, the perspective surface depth representation and ba-

sic polarisation theory.

2.1. Assumptions

Our method makes the following assumptions:

• Intrinsic parameters of both cameras known

• Dielectric material with known refractive index

• Distant point light source with known direction

• Diffuse reflectance follows Lambert’s law

• Object is smooth, i.e. C2-continuous (integrable)

These assumptions are all common to previous work. We

draw attention to the fact that we do not assume ortho-
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graphic projection, known albedo or that pixels have been

labelled as diffuse or specular dominant, making our ap-

proach more general than previous work.

2.2. Perspective depth representation

Our setup consists of a polarisation camera and an RGB

camera. We work in the coordinate system of the polarisa-

tion camera and parameterise the surface by the unknown

depth function Z(u), where u = (x, y) is a location in the

polarisation image. The 3D coordinate at u is given by:

P (u) =





x−x0

f
Z(u)

y−y0

f
Z(u)

Z(u)



 , (1)

where f is the focal length of the polarisation camera in the

x and y directions and (x0, y0) is the principal point. The

direction of the outward pointing surface normal is defined

as the cross product of the partial derivatives with respect to

x and y [11]:

n(u) =









−Z(u)·Zx(u)
fy

−
Z(u)·Zy(u)

fx
x−x0

fx

Z(u)·Zx(u)
fy

+ y−y0

fy

Z(u)·Zy(u)
fx

+ Z(u)2

fxfy









(2)

where Zx, Zy denotes the partial derivative of Z(u) w.r.t. x

and y. Note that the magnitude of n(u) is arbitrary, only its

direction is important. For this reason, we can cancel any

common factors. In particular, we can divide through by

Z(u) to remove quadratic terms and multiply through by

fxfy to avoid numerical instability caused by division by

fxfy (which is potentially very large):

n(u) =





−fyZx(u)
−fxZy(u)

(x− x0)Zx(u) + (y − y0)Zy(u) + Z(u)





(3)

We denote by n̄(u) = n(u)/‖n(u)‖, the unit length sur-

face normal.

The vector pointing towards the viewer from a point on

the surface is given by:

v(u) = −
[

x−x0

fx

y−y0

fy
1
]T

/
∥

∥

∥

[

x−x0

fx

y−y0

fy
1
]
∥

∥

∥
.

(4)

Note that this is independent of surface depth.

2.3. Polarisation theory

When unpolarised light is reflected by a surface it be-

comes partially polarised [31]. The polarisation informa-

tion can be estimated by capturing a sequence of images in

which a linear polarising filter mounting on camera lens is

rotated through a sequence of P ≥ 3 different angles ϑj ,

j ∈ {1, . . . , P}. The measured intensity at a pixel varies

sinusoidally with the polariser angle, it can be written as:

iϑj
(u) = iun(u)

(

1 + ρ(u) cos(2ϑj − 2φ(u))
)

. (5)

The polarisation image is thus obtained by decomposing the

sinusoid at every pixel location into three quantities [31]:

the phase angle, φ(u), the degree of polarisation, ρ(u), and

the unpolarised intensity, iun(u). The parameters of the si-

nusoid can be estimated from the captured image sequence

using non-linear least squares [4], linear methods [13] or via

a closed form solution [31] for the specific case of P = 3,

ϑ ∈ {0◦, 45◦, 90◦}.

A polarisation image provides a constraint on the surface

normal direction at each pixel. The exact nature of the con-

straint depends on the polarisation model used. In this pa-

per we will consider diffuse polarisation, due to subsurface

scattering (see [4] for more details), and specular polarisa-

tion due to direct reflection.

Degree of polarisation constraint. The degree of diffuse
polarisation ρd(u) at each point u can be expressed in terms
of the refractive index η and, in the perspective case, the
viewing angle θ(u) = arccos [n̄(u) · v(u)] ∈ [0, π

2 ] as fol-
lows (Cf. [4]):

ρd(u) = (6)

(η − 1/η)2 sin2 θ(u)

2+2η2−(η+1/η)2 sin2 θ(u)+4 cos θ(u)
√

η2− sin2 θ(u)
.

This expression can be inverted. From the measured degree
of polarisation, the viewing angle θ(u) (and hence one de-
gree of freedom of the surface normal) can be estimated by
rewriting (6) [28]. This relates the cosine of the viewing an-
gle to a function, f(ρ(u), η), that depends on the measured
degree of polarisation and the refractive index:

cos θ(u) = n(u) · v(u) = f(ρ(u), η) = (7)
√

η4(1−ρ2d)+2η2(2ρ2d+ρd−1)+ρ2d+2ρd−4η3ρd
√

1−ρ2d+1

(ρd + 1)2 (η4 + 1) + 2η2(3ρ2d + 2ρd − 1)

where we drop the dependency of ρd on (u) for brevity.

Similarly, the degree of polarisation of a specular reflection

is given by:

ρs(u) =
2 sin2 θ(u) cos θ(u)

√

η2 − sin2 θ(u)

η2 − sin2 θ(u)− η2 sin2 θ(u) + 2 sin4 θ(u)
.

(8)

This expression has two solutions possible solutions for

θ(u) given a measured degree of specular polarisation.

Phase angle constraint The phase angle determines the

azimuth angle of the surface normal α(u) ∈ [0, 2π] up to

a 180◦ ambiguity. For diffuse dominant reflectance this is

given by:

α(u) = φ(u) or (φ(u) + π), (9)
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and for specular dominant reflectance by:

α(u) = φ(u)±
π

2
. (10)

Diffuse shading constraint Under the assumption of per-

fect diffuse reflectance, the unpolarised intensity for diffuse

dominant pixels follows Lambert’s law:

id(u) =
a(u)n(u) · s

‖n‖
, (11)

where s ∈ R
3 is the known distant point source direction

and a(u) ∈ [0, 1] the diffuse albedo at pixel u.

Diffuse/specular dominance We assume that total re-

flectance is a mixture of subsurface diffuse reflectance, id,

and specular surface reflection, is (for which we do not as-

sume any particular reflectance model). This means that

observed sinusoid is a sum of two sinusoids with a phase

difference of π/2. The resulting sinusoid will be in phase

with either the diffuse or specular sinusoid depending on

which reflectance “dominates”. Concretely, if idρd > isρs
then the pixel is diffuse dominant and we neglect specular

reflectance, i.e. we assume iun = id.

3. Overview of method

Our proposed method comprises the following steps:

1. Estimate the disparity from stereo images and recon-

struct a coarse depth map by known camera matrix.

2. Compute guide surface normals by taking the gradient of

the coarse depth map.

3. Use guide surface normal to disambiguate the polarisa-

tion normals via a higher order graphical model.

4. Estimate diffuse albedo from disambiguated polarisation

normals.

5. Linearly estimate perspective depth from polarisation us-

ing coarse depth map as a constraint.

Our pipeline is illustrated in Fig. 1 and each step is de-

scribed in detail in the following sections.

4. Integrability-based disambiguation with a

higher order graphical model

The constraints in Section 2.3 restrict the surface nor-

mal at a pixel to six possible directions. If the pixel is dif-

fuse dominant, then the viewing angle is uniquely deter-

mined by the degree of polarisation and the azimuth angle

restricted to two possibilities by the phase angle, leading to

two possible normal directions. If the pixel is specular dom-

inant, the degree of polarisation restricts the viewing angle

to two possibilities, with the azimuth again also restricted

to two, given four possible normal directions in total. Pre-

vious work [15, 28] assumes that the labelling of pixels as

specular or diffuse dominant is known in advance. We do

not assume that the labels are known and propose an initial

resolution of this six-way ambiguity using a higher order

graphical model. The motivation for using a higher order

model is that a ternary potential can measure deviation from

integrability.

We set up an energy cost function to be mimised w.r.t. the

surface normal as follows:

E(n(u)) =
∑

u∈ν
Φ(n(u)) +

∑

(u,v)∈N

ϕ(L(u), L(v))

+
∑

(u,v,w)∈T

Ψ(n(u),n(v),n(w))
(12)

Here ν corresponds to all foreground pixels, N is the set of

adjacent pixels and T is the set of pixel triplets (u,v,w)
where u = (x, y), v = (x + 1, y) and w = (x, y + 1).
Before further explaining the energy terms, let us clarify

two important elements that will be used in following. 1).

The stereo setup produces a coarse depth map by computing

the disparity from the camera pair. We use the semi-global

matching method [12] to compute the disparity and recon-

struct a depth map with the camera matrices, as displayed

in Figure 2(a). Thus its surface normal can be computed

by simply taking the forward difference on the coarse depth

map. We denote these surface normal by n̂ where they are

noisy as shown in Figure 2(b). 2). We make a rough initial

estimate of the specular/diffuse dominant pixel labelling, L.

We simply set L(u) = 1 if the measured intensity is satu-

rated (Figure 2(c)). L will be subsequently updated (Figure

2(f)).

Unary cost The unary term aims to minimise the angle
between n(u) and n̂(u), where n(u) has up to six solu-
tions. We denote the first two solutions from diffuse com-
ponent in D and the rest from specular component in S . We
also take account the initial specular mask L i.e. Where the
diffuse normal will be assigned to low probability if its cor-
responding specular mask equal to one. The unary cost can
be written as

Φ(n(u)) =
{

k · f(u) if (L(u) = 1,n(u) ∈ D) or (L(u) = 0,n(u) ∈ S)

f(u) if (L(u) = 0,n(u) ∈ D) or (L(u) = 1,n(u) ∈ S)

where f(u) depends on the cosine of the angle between n(u) and

n̂(u) and is defined as

f(u) = exp(−n(u) · n̂(u)). (13)

The parameter k < 1 penalises surface normal disambiguations

that are not consistent with the corresponding specular mask. We

set k = 0.1 in our experiments.
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Pairwise cost We encourage pairwise pixels in N to have

similar diffuse or specular labels and penalise where the labels

changed. We define

ϕ(L(u), L(v)) = |L(u)− L(v)|. (14)

Ternary cost In order to encourage the disambiguated surface

normals to satisfy the integrability constraint, we use a ternary cost

to measure deviation from integrability. For an integrable surface,

the mixed second order partial derivatives on the gradient field

should be equal [25]. Specifically, ∂p

∂y
= ∂q

∂x
. Where p, q are

the partial derivatives in the x and y direction respectively. The

surface gradient is directly linked to the surface normal by

p(u) = −nx(u)/nz(u) and q(u) = −ny(u)/nz(u)

We take three-pixel neighbourhoods (u,v,w) to compute the gra-

dient of p, q, where

∂p(u)

∂y
= p(w)− p(u) ,

∂q(u)

∂x
= q(v)− q(u)

In reality, due to noise and the discretisation to the pixel grid, the

gradient field may not have exactly zero curl, but we seek the sur-

face normals that give minimum curl values. Hence, the ternary

cost is defined by:

Ψ(n(u),n(v),n(w)) = ‖p(w)− p(u)− (q(v)− q(u))‖ .

Graphical model optimisation We use higher order belief-

propagation to minimise (12) as implemented in the OpenGM

toolbox [1]. The optimum surface normal n′ will be labeled as

one of the six possible disambiguations and we update our specu-

lar mask L according to:

L(u) =

{

0 if n(u) ∈ D

1 if n(u) ∈ S
.

The surface normals that result from this disambiguation process

are still noisy (they use only local information) and may be subject

to low frequency bias meaning that integrating them into a depth

map does not yield good results. Hence, in Section 6 we solve

globally for depth, using the stereo depth map as a guide to remove

low frequency bias.

5. Albedo estimation with gradient consistency

We now use the surface normals estimated by the graphical

model optimisation to compute an albedo map. In principal, the

albedo can be computed from these normals and the unpolarised

intensity simply by rearranging (11). However, this purely local

estimation is unstable and noise in the normals leads to artefacts

in the estimated albedo map. We propose a simple but very ef-

fective regularisation to resolve this problem. We encourage the

gradient of the estimated albedo map to be similar to the gradient

of the unpolarised intensities at points where the intensity gradi-

ent is above a threshold and zero elsewhere. In other words, we

encourage the albedo gradients to be sparse and hence the albedo

piecewise uniform.

(a)

(d)(c)

(b) (e)

(f)

Figure 2: (a) Depth map from disparity map. (b) Guide

surface normal from stereo depth map. (c) Preset specu-

lar mask. (d) One possible polarisation normal. (e) The

corrected normal via our graphical model. (f) The updated

specular mask via graphical model.

The estimated albedo minimises the following energy function

E(u) = ELamb(u) + λIEsmooth(u). (15)

The first term penalises the difference between rendered Lamber-

tian intensity and estimated unpolarised intensity:

ELamb(u) =
∥

∥a(u)n′ · (u)s− Id(u)
∥

∥

2

2
(16)

where Id is diffuse dominant pixels from the estimated unpolar-

isation intensity, α represents a pixel-wise albedo map, n′ is the

optimum surface normal map from the previous section and s the

light source. We can easily choose the diffuse pixels by excluding

the specular mask where L(u) = 1.

The second term penalises the difference between the estimated

albedo gradient and the sparsified unpolarised intensity gradient.

We denote the neighbour of u in x direction with v and y direction

with w, thus the smooth term can be written as

Esmooth(u) = ‖a(u)− a(v)− g(Id(u)− Id(v))‖

+ ‖a(u)− a(w)− g(Id(u)− Id(w))‖
(17)

where g(.) is a threshold function that returns 0 if the input is < t,
otherwise it returns the input albedo map only contains values on

the diffuse pixels, we fill the hole on specular pixels with nearest

neighbour method. In Figure 3 we see how the smoothness term

affects the estimated albedo map and depth.

6. Linear perspective depth from polarisation

Finally, with albedo known and coarse depth values from two

view stereo, we are ready to estimate dense depth from polarisa-

tion. We generalise a perspective camera model from Smith et

al. [28], note that it differs via the use of the coarse depth values
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