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Abstract

This paper presents a novel framework to recover de-

tailed human body shapes from a single image. It is a

challenging task due to factors such as variations in hu-

man shapes, body poses, and viewpoints. Prior methods

typically attempt to recover the human body shape using

a parametric based template that lacks the surface de-

tails. As such the resulting body shape appears to be with-

out clothing. In this paper, we propose a novel learning-

based framework that combines the robustness of paramet-

ric model with the flexibility of free-form 3D deformation.

We use the deep neural networks to refine the 3D shape

in a Hierarchical Mesh Deformation (HMD) framework,

utilizing the constraints from body joints, silhouettes, and

per-pixel shading information. We are able to restore de-

tailed human body shapes beyond skinned models. Ex-

periments demonstrate that our method has outperformed

previous state-of-the-art approaches, achieving better ac-

curacy in terms of both 2D IoU number and 3D metric dis-

tance. The code is available in https://github.com/

zhuhao-nju/hmd.git.

1. Introduction

Recovering 3D human shape from a single image is a

challenging problem and has drawn much attention in re-

cent years. A large number of approaches [8, 5, 6, 31, 17,

32, 23, 16, 21] have been proposed in which the human

body shapes get reconstructed by predicting the parameters

of a statistical body shape model, such as SMPL [20] and

SCAPE [3]. The parametric shape is of low-fidelity, and

unable to capture clothing details. Another collection of

methods[33, 35] estimate volumetric human shape directly

from the image using CNN, while the resulting volumetric

representation is fairly coarse and does not contain shape

details.

Source image HMR result HMD result

Figure 1: Our method (HMD) takes a single 2D im-

age of a person as input and predicts detailed human

body shape. As compared with the current state-of-the-art

method (HMR [16]), we have got the recovered body shapes

with surface details that better fit to the input image.

The limited performance of previous methods is caused

by the large variations of the human shape and pose. Para-

metric or volumetric shapes are not expressive enough to

represent the inherent complexity.

In this paper, we propose a novel framework to recon-

struct detailed human shape from a single image. The key

here is to combine the robustness of parametric model with

the flexibility of free-form deformation. In short, we build

on top of current SMPL model to obtain an initial paramet-

ric mesh model and perform non-rigid 3D deformation on

the mesh to refine the surface shape. We design a coarse-

to-fine refinement scheme in which a deep neural network
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is used in each stage to estimate the 3D mesh vertex move-

ment by minimizing its 2D projection error in the image

space. We feed window-cropped images instead of full im-

age to the network, which leads to more accurate and ro-

bust prediction of deformation. In addition, we integrate a

photometric term to allow high-frequency details to be re-

covered. These techniques combined lead to a method that

significantly improves, both visually and quantitatively, the

recovered human shape from a single image as shown in

Figure 1.

The contributions of this paper include:

• We develop a novel project - predict - deform strategy

to predict the deformation of the 3D mesh model by

using 2D features.

• We carefully design a hierarchical update structure, in-

corporating body joints, silhouettes, and photometric-

stereo to improve shape accuracy without losing the

robustness.

• We are the first to use a single image to recover detailed

human shape beyond parameters human model. As

demonstrated throughout our experiments, the addi-

tional free deformation of the initial parametric model

leads to quantitatively more accurate shapes with good

generalization capabilities to images in the wild.

2. Related Work

Previous approaches can be divided into two categories

based on the way the human body is represented: paramet-

ric methods and non-parametric methods.

As for parametric methods, they rely on a pre-trained

generative human model, such as the SCAPE [3] or

SMPL [20] models. The goal is to predict the parameters of

the generative model. The SCAPE model has been adopted

by Guan et al. [8] to recover the human shape and poses

from the monocular image as provided with some manu-

ally clicked key points and the constraint of smooth shad-

ing. Instead of relying on manual intervention, Dibra et al.

[6] have trained a convolutional neural network to predict

SCAPE parameters from a single silhouette. Similar to the

SCAPE model, Hasler et al. [11] have proposed a multi-

linear model of human pose and body shape that is gen-

erated by factorizing the measurements into the pose and

shape dependent components. The SMPL model [20] has

recently drawn much attention due to its flexibility and ef-

ficiency. For example, Bogo et al. [5] have presented an

automatic approach called SMPLify which fits the SMPL

model by minimizing an objective function that penalizes

the error between the projected model joints and detected

2D joints obtained from a CNN-based method together with

some priors over the pose and shape. Building upon this

SMPLify method, Lassner et al. [17] have formed an initial

dataset of 3D body fitting with rich annotations consisting

of 91 keypoints and 31 segments. Using this dataset, they

have shown improved performance on part segmentation,

pose estimation and 3D fitting. Tan et al. [31] proposed

an indirect learning procedure by first training a decoder to

predict body silhouettes from SMPL parameters and then

using pairs of real images and ground truth silhouettes to

train a full encoder-decoder network to predict SMPL pa-

rameters at the information bottleneck. Pavlakos et al. [23]

separated the SMPL parameters prediction network into two

sub-networks. Taking the 2D image as input, the first net-

work was designed to predict the silhouette and 2D joints,

from which the shape and pose parameters were estimated

respectively. The latter network combined the shape and

2D joints to predict the final mesh. Kanazawa et al. [16]

proposed an end-to-end framework to recover the human

body shape and pose in the form of SMPL model using only

2D joints annotations with an adversarial loss to effectively

constrain the pose. Instead of using joints or silhouettes.

Omran et al. [21] believed that a reliable bottom-up seman-

tic body part segmentation was more effective for shape and

pose prediction. Therefore, they predicted a part segmen-

tation from the input image in the first stage and took this

segmentation to predict SMPL parameterization of the body

mesh.

Non-parametric methods directly predict the shape rep-

resentation from the image. Some researchers have used

depth maps as a more general and direct representation for

shapes. For example, Varol et al. [34] trained a convolu-

tional neural network by building up a synthetic dataset of

rendered SMPL models to predict the human shape in the

form of depth image and body part segmentation. Güler et

al. [10, 9] have treated the shape prediction problem as a

correspondence regression problem, which would produce

a dense 2D-to-3D surface correspondence field for the hu-

man body. Another way of representing 3D shapes is to

embed the 3D mesh into a volumetric space [33, 35]. For

example, Varol et al. [33] restored volumetric body shape

directly from a single image. Their method focuses more

on robust body measurements rather than shape details or

poses.

While significant progress has been made in this very

difficult problem, the resulting human shape is still lack-

ing in accuracy and details, visually they all look like un-

dressed.

3. Hierarchical Deformation Framework

We present our hierarchical deformation framework to

recover detailed human body shapes by refining a template

model in a coarse-to-fine manner. As shown in Figure 2,

there are four stages in our framework: First, an initial

SMPL mesh is estimated from the source image. Starting

from this, the next three stages serve as refinement phases

which predict the deformation of the mesh so as to pro-
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Figure 2: The flow of our method goes from the bottom left to the top right. The mesh deformation architecture consists

of three levels: joint, anchor and per-vertex. In each level, the 3D mesh is projected to 2D space and sent together with the

source image to the prediction network. The 3D mesh gets deformed by the predicted results to produce refined human body

shapes.

duce a detailed human shape. We have used the HMR

method [16] to predict the initial human mesh model, which

has demonstrated state-of-the-art performance on human

shape recovery from a single image. However, like other

human shape recovery methods [23, 21, 5] that utilize the

SMPL model, the HMR method predicts the shape and pose

parameters to generate a skinned mesh model with limited

flexibility to closely fit the input image or express surface

details. For example, the HMR often predicts deflected joint

position of limbs when the human pose is unusual. There-

fore, we have designed our framework to refine both the

shape and the pose.

The refining stages are arranged hierarchically from

coarse to fine. We define three levels of key points on the

mesh, referred to as handles in this paper. We will describe

exactly how we define these handles in the next section. In

each level, we design a deep neural network to refine the

3D mesh geometry using these handles as control points.

We train the three refinement networks separately and suc-

cessively to predict the residual deformation based on its

previous phase.

To realize the overall refinement procedure, a challeng-

ing problem is how to deform the 3D human mesh from

handles in 2D space using deep neural networks. We ad-

dress this using Laplacian mesh deformation. In detail, the

motion vector for each handle is predicted from the net-

work driven by the joints and silhouettes of the 2D image.

Then the human mesh will get deformed with the Laplacian

deformation approach given the movements of the handles

while maintaining the local geometry as much as possible.

The deforming strategy has been used in multi-view shape

reconstruction problem [1, 38, 18, 24, 39, 26, 27], while we

are the first to predict the deformation from a single image

with the deep neural network.

3.1. Handle Definitions

In this section, we will describe the handles that we have

used in each level. They could be predefined in the tem-

plate model thanks to the uniform topology of SMPL mesh

model.

Joint handles. We select 10 joints as the control points –

head, waist, left/right shoulders, left/right elbows, left/right

knees, and left/right ankles. The vertices around the joints

under the T-pose SMPL mesh are selected as handles, as

shown in Figure 3. We take the geometric center of each set

of handles as the position of its corresponding body joint.

The motion of each joint handle is represented as a 2D vec-

tor, which refers to the vector from the joint position of

projected mesh to ground truth joint position on the image

plane.

Anchor handles. We select 200 vertices on the human

template mesh under T-pose as anchor handles. To select

the anchors evenly over the template, we firstly build a vec-

tor set C = {v1, v2, ......, vn} with vi concatenated by the

position and surface normal of the vertex i and n is the num-

ber of SMPL model vertices. Then K-means is applied to

cluster set C into 200 classes. Finally, we set the closest

vertex to the center of each cluster as the anchor handles.

Besides, we have removed the vertices in the face, fingers,

toes from the T-pose SMPL model to prevent the interfer-

ence of high-frequency shape. To be noticed that, for each

anchor, it is only allowed to move along the surface normal
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joint handles anchor handles vertex handles

Figure 3: The handles definition in different levels for mesh

deformation.

direction, so we just need to predict a single value indicating

the movement of the anchor point along the normal direc-

tion.

Vertex-level handles. The vertices in the SMPL mesh

are too sparse to apply pixel-level deform, so we subdi-

vide each face of the mesh into 4 faces. The subdivision

increases the number of vertices of the template mesh to

27554, and all these vertices are regarded as handles.

3.2. Joint and Anchor Prediction

Network. Both joint and anchor prediction networks use

the VGG [30] structure which consists of a feature extractor

and a regressor. The network takes the mesh-projected sil-

houette and source image as input, which are cropped into

patches as centered with our predefined handles. Specifi-

cally, for a 224 × 224 input image, the image is cropped

into patches with the size of 64 × 64 for joint prediction,

and 32 × 32 for anchor prediction. Comparing to the full

image or silhouette as input, the handle cropped input al-

lows the network to focus on the region of interest. We will

demonstrate the effectiveness of the cropped input in Sec-

tion 4.3.

Loss. The output of the joint net is 2D vector represent-

ing the joint motion in the image plane. L2 loss is exploited

to train the joint net with the loss function formulated as:

Ljoint = ||p− p̂||2 (1)

where p is the predicted motion vector from the network

and p̂ is the displacement vector from the mesh-projected

joint position to its corresponding ground truth joint. Both

vectors are 2-dimensional.

As for the anchor net, our immediate goal is to minimize

the area of the mismatched part between the projected sil-

houette and the ground truth silhouette. However, as it is

hard to compute the derivatives of area size with respect to

the motion vector for back-propagation in the training pro-

cess, we transform the mismatched area size to the length

of the projected line segment along vertex normal direction

which falls into the mismatched region. The searching ra-

dius of the segment line is 0.1m. The length of this line seg-

ment is regarded as the ground truth anchor movement, and

L2 loss is used to train the network. This conversion makes

it easy to calculate the gradient for the loss function. If the

ground truth movement of one anchor handle is zero, this

handle would be disabled, which means the anchor would

be regarded as common vertices in the Laplacian edit. We

compulsively set the anchors which are far from the silhou-

ette margin to be inactive, and the overall shape would be

deformed equably since the Laplacian deforming will keep

the local geometry as much as possible.

Besides, instead of using the RGB image as input, the

joint and anchor prediction network could also take ground

truth silhouette of the human figure as input if available.

The silhouette provides more explicit information for the

human figure, which prevents the network from getting con-

fused by the cluttered background environment. We will

demonstrate its effectiveness on joint and anchor deforma-

tion prediction in the experiment section. In this paper, we

consider the RGB-only as input by default, and use ‘+Sil.’

to indicate the case where the additional silhouette is used.

3.3. Vertex-level Deformation

To add high-frequency details to the reconstructed hu-

man models, we exploit the shading information contained

in the input image. First, we project the current 3D human

model into the image space, from which we will get the

coarse depth map. We then train a Shading-Net that takes

the color image and current depth map as input and predicts

a refined depth map with surface details. We have built

up a relatively small dataset which contains color images,

over-smoothed depth maps, and corresponding ground truth

depth maps that have good surface details. More detailed

explanations on this dataset could be found in Section 3.4.

We adopt a multi-stage training scheme with limited super-

vised data.

Following the training scheme proposed in [29], we

firstly train a simple UNet based encoder-decoder net-

work [28] on our captured depth dataset taking the over-

smoothed depth map and its corresponding color image as

input. The network is trained as supervised by the ground

truth depth maps. Next, we apply this network on the real

images of our human body dataset to obtain enhanced depth

maps. As we only have limited supervised data, the network

may not generalize well to our real images. Therefore, to fi-

nally get depth maps with great surface details consistent

with the color images, we train our Shading-Net, which is

also a U-Net based network on real images. The network is

trained with both the supervision loss using the depth maps

output by the first U-Net and also a photometric reconstruc-

tion loss [36] that aims to minimize the error between the

original input image and the reconstructed image. The per-

pixel photometric loss Lphoto is formulated as below:

Lphoto = ||ρ

9∑

k=1

lkHk(n)− I||2 (2)

where ρ is the albedo computed by a traditional intrin-

sic decomposition method [4]. Similar to [25, 42], we use
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the second spherical harmonics (SH) for illumination rep-

resentation under the Lambertian surface assumption. Hk

represents the basis of spherical harmonics. l1, l2...l9 de-

note the SH coefficients, which are computed under a least

square minimization as:

l∗ = argmin
l

||ρ

9∑

k=1

lkHk(ncoarse)− I||2
2

(3)

We use the coarse depth map rendered from the currently

recovered 3D model to compute the surface normal ncoarse.

3.4. Implementation Details

We use the pre-trained model in the HMR-net, then train

Joint-Net, Anchor-Net, and Shading-Net successively. We

use the ‘Adam’ optimizer to train these networks, with the

learning rate as 0.0001. The handle weight in Laplacian edit

is 10 for joint deforming and is 1 for anchor deforming.

To provide better training data to the Shading-Net, we

have captured a small depth dataset with a Kinect V2 sensor.

It consists of 2200 depth frames with three human subjects

wearing different clothes under various poses. The captured

depth maps are further enhanced using traditional shading

refinement techniques [22, 41] to recover small surface de-

tails, which can be taken as ground truth depth maps for

supervised learning. We have magnified the shape details

by 10 times during the test time.

4. Experiment

4.1. Datasets

We have assembled three datasets for the experiment:

the WILD dataset which has a large number of images with

sparse 2D joints and segmentation annotated, and two other

small datasets for evaluation in 3D metrics.

WILD Dataset. We assemble a quite large dataset

for training and testing by extracting from 5 human

datasets including MPII human pose database (MPII) [2],

Common Objects in Context dataset (COCO) [19], Hu-

man3.6M dataset (H36M) [13, 12], Leeds Sports Pose

dataset (LSP) [14] and its extension dataset (LSPET) [15].

As most of the images are captured in an uncontrolled setup,

we call it the WILD dataset. The Unite the People (UP)

dataset [17] provides ground truth silhouettes for the im-

ages in LSP, LSPET, and MPII datasets. As we focus on

human shape recovery of the whole body, images with par-

tial human bodies are removed based on the following two

rules:

• All joints exist in the images.

• All joints are inside the body silhouette.

For COCO and H36M dataset, we further filter out the

data with low-quality silhouettes. We separate the training

and testing data according to the rules of each dataset. The

numbers of the data we use are listed in Table 2.

The main drawback of WILD dataset is the lack of 3D

ground truth shape. Though the UP dataset provides the

fitted SMPL mesh for some data, the accuracy is uncertain.

To help evaluate the 3D accuracy, we make two other small

datasets with ground truth shape:

RECON Dataset We reconstruct 25 human mesh mod-

els using the traditional multi-view 3D reconstruction meth-

ods [7]. We render each model to 6 views and the views are

randomly selected from 54 candidate views, of which the

azimuth ranges from 0◦ to 340◦ with intervals 20◦, and the

elevation ranges from −10◦ to +10◦ with intervals of 10◦.

We use various scene images from the Places dataset[37] as

background.

SYN Dataset We render 300 synthetic human mesh

models in PVHM dataset [40] following their rendering

setup, with the random scene images from Places dataset

as background. The meshes of PVHM include the inner

surface, which is a disturbance for surface accuracy estima-

tion. To filter out the inner surface, we project the mesh to

6 orthogonal directions and remove the faces which are not

seen in all 6 directions.

For RECON dataset and SYN dataset, the reconstructed

3D meshes are scaled so that the mean height of the human

body are close to the general body height of the common

adult. In this way, we could measure the 3D error in mm.

4.2. Accuracy Evaluations

We measure the accuracy of the recovered shape with

several metrics (corresponding to the second row in Ta-

ble 1). For all test sets, we report the silhouette Intersection

over Union (sil IoU), which measures the matching rate of

the projected silhouette of the predicted 3D shape and the

image silhouette. For the WILD dataset, we measure the

difference between the projected 2D joints of the predicted

3D shape and the annotated ground truth joints. The joints

of the mesh are extracted by computing the geometric cen-

ter of the corresponding joint handle vertices. For the RE-

CON dataset and SYN dataset, we also report the 3D error

(3D err), which is the average distance of vertices between

the predicted mesh and the ground truth mesh. We find the

closest vertices in the resulting mesh for each vertex in the

ground truth mesh and compute the mean of their distances

as the 3D error.

4.3. Staging Analysis

We show the staging results in Figure 4 (right four

columns) and report the quantitative evaluation of each

stage in Table 1. The results in different phases are named

as HMD-joint, HMD-anchor, and HMD-vertex (final re-

sult). We can see that the shape has got refined stage by

stage. In the joint deformation phase, the joint correction
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Source image SMPLify BodyNet HMR HMD-joint HMD-anchor HMD-vertex HMD (+Sil.)

Figure 4: We compare our method with previous approaches. The results of our method in different stages are shown: joint

deformed, anchor deformed and vertex deformed (final result). Comparing to other methods, our method recovers more

accurate joints and the body with shape details. The human body shape fits better to the input image, especially in body

limbs. The rightmost column shows we can get more accurate recovered shapes when ground truth human silhouette is

enforced (labeled as HMD (+Sil.)). Note that the images are cropped for the compact layout.

Figure 5: The results selected based on the rank of silhouette IoU. We could see in columns of the left side, the person with

a simple pose like standing yields really good fit. As we go from left to right columns, sports in the images are getting more

complicated and the corresponding human shape is harder to predict. And in the right side columns, our method fails to

predict humans with accessories (helmet, gloves) and under extremely twisting poses.
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source view side view

source image ground truth ours ground truth ours

source view side view

source image ground truth ours ground truth ours

Figure 6: We show some recovered meshes and the ground truth meshes on the RECON (left) and SYN dataset (right). The

meshes are rendered in the side view by rotating the mesh 90◦ around the vertical axis.

HMR HMD HMD-rInput HMR HMD HMD-r Input HMR HMD HMD-r Input

Figure 7: We show some textured results in the side view. We directly map the texture in the image to the mesh, and render

them to the novel view, as shown in HMR and HMD. In HMD-r, we simply dilute the foreground region in the image to the

background, then map the diluted image to the mesh. The novel view is set by rotating original view with 45◦ around the

vertical axis crossing the mesh center. The red dotted box means bad part, the yellow one means better but defective part, the

green one means fine part.

takes effects to correct the displacement of joints. In the an-

chor deformation phase, silhouette supervision plays a key

role in fitting the human shape. In the vertex deformation

stage, the shape details are recovered to produce a visually

plausible result.

Ablation study. We report the result of the ablation ex-

periment in Table 3, where (w) means the window-cropped

input, and (f) means the full image input. We demonstrate

two following statements: (1) By comparing the perfor-

mance between full image input (No. 3 and 5) and window-

crop image input (No. 3 and 5) in the table, we could see

that the window-crop input predicts much higher silhouette

IoU and lower joint error comparing to full image input,

while the model size of the window-crop network is only

41% of the full image network. The reason why it has got

better result is that the window-crop network inherently fo-

cuses on the handle as the input center, so the problem turns

to predicting the local fit for each handle, which is easier to

learn. (2) By comparing the performance between the in-

tegration of ‘joint + anchor’ deformation (No. 6) and only

anchor or joint deformation (No. 3 and 5), we find that

the combination achieves the best performance, and shows

larger improvement than the pure anchor deformation.

Prediction with silhouette. Our method takes the RGB

image as input by default, while we could also take addi-

tional silhouettes as input. They can share the same frame-

work and the difference is explained in Section 3.2. We

show the qualitative comparison result in the last column in

Figure 4 and the quantitative result in the last three rows in

Table 1. As expected, the prediction with silhouette pro-

duces better results in all metrics.

4.4. Comparison with Other Methods

We compare our method with other methods with qual-

itative results shown in Figure 4 and quantitative results in

Table 1. We use the trained model of BodyNet and HMR

provided by the authors. As BodyNet requires 3D shape

for training, they don’t use COCO and H36M datasets. To

be fair, the evaluation on the WILD datasets only uses the

data from LSP, LSPET, and MPII, which are the intersec-

tion of datasets used in all estimated methods. Compar-

ing to SMPL based methods (SMPLIify and HMR), our

method has got the best performance in all metrics on all

three datasets. As compared with BodyNet, a volumetric

based prediction method, we have got comparable scores in

3D error on RECON dataset. The reason is that the Bo-
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Table 1: Quantitative Evaluation

—–WILD dataset—– ————RECON dataset———— ————–SYN dataset————–

method sil IoU 2D joint err sil IoU 3D err full* 3D err vis* sil IoU 3d err full* 3d err vis*

SMPLify[5] 66.3 10.19 73.9 52.84 51.69 71.0 62.31 60.67

BodyNet[33] 68.6 — 72.5 43.75 40.05 70.0 54.41 46.55

HMR[16] 67.6 9.90 74.3 51.74 42.05 71.7 53.03 47.75

HMD - joint 70.7 8.81 78.0 51.08 41.42 75.9 49.25 45.70

HMD - anchor 76.5 8.82 85.0 44.60 39.73 79.6 47.18 44.62

HMD - vertex — — — 44.10 41.76 — 44.75 41.90

HMD(s) - joint 73.0 8.31 79.2 50.49 40.88 77.7 48.41 45.16

HMD(s) - anchor 82.4 8.22 88.3 43.50 38.63 85.7 44.59 42.68

HMD(s) - vertex — — — 43.22 40.98 — 41.48 39.11

* ‘full’ means the full body shape is used for error estimation, and ‘vis’ means only the visible part with respect to the input image

viewpoint is used for error estimation.

The statistic unit of 3D error is millimeter; the 2D joint error is measured by pixel. The methods beyond the cutting line use only RGB

image as input, while the methods under the cutting line use ‘RGB + silhouette’ as input. Some statistic is blank: the joint position

cannot be derived directly from the mesh produced by BodyNet; The sil IoU and 2D joint error after vertex deformation stay the same

as anchor deformed results.

Table 2: WILD dataset components

data source LSP LSPET MPII COCO H36M

train num 987 5376 8035 4004 5747

test num 703 0 1996 606 1320

Table 3: Ablation Experiments

num method sil IoU 2D joint err

1 baseline(initial shape) 67.6 9.90

2 joint (f) 68.3 9.85

3 joint (w) 70.7 8.81

4 anchor (f) 70.1 9.89

5 anchor (w) 71.3 9.75

6 joint (w) + anchor (w) 76.5 8.82

The 2D joint error is measured by pixel.

dyNet produces more conservative shapes instead of focus-

ing on the recovery of a complete human model. In some

cases, the body limbs have not got reconstructed by the Bo-

dyNet when they are not visible from the image, while we

always have the complete body recovered even though some

parts of limbs haven’t appeared in the image. This makes it

easy to have a better registration to the ground truth mesh

resulting in smaller 3D error. However, their scores on

SYN datasets are lower than the other two datasets, since

the human subjects from the SYN dataset generally have

slim body shapes in which case the BodyNet results are de-

graded.

4.5. 3D Error Analysis

Figure 6 shows our recovered 3D model on the RECON

and SYN datasets together with the ground truth mesh. We

show that the inherent pose and shape ambiguities cannot

be resolved with the image from a single viewpoint. As

we can see in Figure 6, the human shapes seen from the

side view are quite different from the ground truth model

even though they could fit closely to the input image. The

estimated depth cue from a single image is sometimes am-

biguous for shape recovery. This observation explains the

reason why the improvement of our method in 2D metrics

is relatively larger than the improvement in 3D metrics.

4.6. View Synthesis

We show some view synthesis results by mapping the

texture in the image to the recovered mesh model in Figure

7. From the side view, we can see that our method yields

better textured model as the mesh matches the image well.

By diluting the foreground region to the background (HMD-

r), the texture in the margin parts are further improved.

5. Conclusion

In this paper, we have proposed a novel approach to re-

construct detailed human body shapes from a single image

in a coarse-to-fine manner. Starting from an SMPL model

based human recovery method, we introduce free-form de-

formations to refine the body shapes with a project-predict-

deform strategy. A hierarchical framework has been pro-

posed for restoring more accurate and detailed human bod-

ies under the supervision of joints, silhouettes, and shad-

ing information. We have performed extensive comparisons

with state-of-the-art methods and demonstrated significant

improvements in both quantitative and qualitative assess-

ments.

The limitation of our work is that the pose ambiguities

are not solved, and there are still large errors in predicted

body meshes especially in depth direction.
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