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Abstract

We propose a novel Generalized Zero-Shot learning

(GZSL) method that is agnostic to both unseen images and

unseen semantic vectors during training. Prior works in

this context propose to map high-dimensional visual fea-

tures to the semantic domain, which we believe contributes

to the semantic gap. To bridge the gap, we propose a novel

low-dimensional embedding of visual instances that is “vi-

sually semantic.” Analogous to semantic data that quanti-

fies the existence of an attribute in the presented instance,

components of our visual embedding quantifies existence of

a prototypical part-type in the presented instance. In paral-

lel, as a thought experiment, we quantify the impact of noisy

semantic data by utilizing a novel visual oracle to visually

supervise a learner. These factors, namely semantic noise,

visual-semantic gap and label noise lead us to propose a

new graphical model for inference with pairwise interac-

tions between label, semantic data, and inputs. We tabulate

results on a number of benchmark datasets demonstrating

significant improvement in accuracy over state-of-art under

both semantic and visual supervision.

1. Introduction

Zero-shot learning (ZSL) is emerging as an important

tool for large-scale classification [20], where one must ac-

count for challenges posed by non-uniform and sparse an-

notated classes [5], the prohibitive expense in labeling large

fractions of data [4], and the need to account for appearance

of novel objects for in-the-wild scenarios.

ZSL proposes to learn a model for classifying images

for “unseen” classes for which no training data is available

by leveraging semantic features, which are shared by both

seen and unseen classes. A few recent works [7, 24] point

out that, unseen image class recognition, while important,

overlooks real-world scenarios, where both seen and un-

seen instances appear. Consequently, generalized zero-shot

learning (GZSL) methods capable of recognizing both seen

and unseen instances at test time are required.

We propose to train a GZSL method, that takes labeled

seen class images and associated semantic side information

as input, while being agnostic to both unseen images and

unseen associated semantic vectors.

Challenges. We list challenges in this context:

Visual ! Semantic Gap. Visual feature representations

such as the final-layer outputs of deep neural networks are

high-dimensional and not semantically meaningful. This

limits the learner in identifying robust associations between

visual patterns and semantic data.

Semantic!Visual Gap. A fundamental drawback of seman-

tic data is that they are often not visually meaningful and it

is difficult for a learner to identify and suppress non-visual

semantic components during training.Additionally, seman-

tic information provided for some classes (ex. sofa-chair),

are nearly identical. This is challenging in a GZSL setting

particularly when one of such classes is among the unseen.

Novelty. At a conceptual level visual representation and su-

pervision fundamentally impacts accuracy. We re-examine

these concepts and propose novel methods in Sec. 3 to iden-

tify and bridge the visual-semantic gap.

Visually Semantic Embedding. By a visually semantic em-

bedding, we mean a mapping of visual instances to a rep-

resentation that mirrors how semantic data is presented for

an instance. In Sec. 3.1 we propose to train a model that

learns a finite list of parts based on a multi-attention model

and expresses the input as a finite probabilistic mixture of

part-types, which we then output as our representation. Our

intuition is informed by semantic data where for each in-

stance, an annotator could score existence of attributes from

a common vocabulary. Analogously, our embedding scores

existence of proto-typical part types in a presented instance.

3-Node Graphical Model. A key aspect of our setup, which

is presented in Sec. 3.1, is a graphical model[13] that has

semantic (S), input (X) and label (Y) variables in a 3-node

clique. This is based on the key insight that the labels are

not fully explained by either the input or the semantic in-

stance and thus we require a model that accounts for 3-way

connection (S $ X,X $ Y, Y $ S). This is a signifi-

cant departure from existing works [15], where the semantic

signal is given paramount importance and the structure is a

chain X $ S $ Y .

Following convention, we conduct experiments with se-

mantic supervision on benchmark datasets in Sec. 4. While

we demonstrate significant improvement over state-of-the-

art, we are driven to understand and quantify how semantic
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noise can explain GZSL performance loss.

Visually Semantic Supervision. As a thought experiment

we propose to train a novel visual oracle for GZSL super-

vision. Our intuition is that a visual oracle can reduce se-

mantic noise and provide more definitive feedback about

the presence/absence of prototypes. To ensure fair compar-

ison between semantic and visual feedback, we first learn a

common vocabulary of protypical parts and part-types un-

beknownst to the learner. Like a semantic signal, our visual

oracle for each input instance provides the learner only a list

of similarity scores, with no other additional description of

what the components in the list mean.

Visual supervision naturally leads us to propose visual

evaluation, which involves evaluating predicted visually se-

mantic outputs against the ground-truth. In Sec. 4, we show

that GZSL performance improves not only for our method

but also for a well-known baseline method [10] when we

substitute visual in place of semantic supervision.

2. Related Work

Zero-shot learning as a topic has evolved rapidly over the

last decade and documenting the extensive literature here is

not possible. As summarized in [24] many existing meth-

ods can be grouped into attribute methods as exemplified

in [15] that leverage attributes as an intermediate feature

space to link different classes, embedding methods [10] that

directly map visual domain to semantic space, and hybrid

methods [28], that map semantic and visual domain into a

shared feature space. Recent work [7, 24] introduces GZSL

problem and developed calibration and evaluation proto-

cols showing significant drop in accuracy between ZSL and

GZSL. Many recent works are beginning to focus attention

on the GZSL setup.

In this context, we propose an embedding based method

and describe closely related setups and concepts that have

appeared in the literature. We first categorize existing work

based on problem setup and different types of side infor-

mation utilized during training. There are a number of re-

cent works that propose approaches for both ZSL and GZSL

cases [17, 3, 30, 14, 25, 11, 8, 23, 16]. Among these, there

are works that leverage some form of unseen class informa-

tion during training [30, 14, 25, 11] to synthesize unseen

examples by means of GAN or VAE training. Other works

employ knowledge graphs [16, 23] incorporating both seen

and unseen classes during training to infer classifiers for un-

seen classes. Still others are transductive, namely, at test-

time [17] they leverage a batch of test examples to further

refine their model. While these proposed approaches that

leverage unseen class information are interesting, we take

the view that for applications involving recognition in-the-

wild scenarios, novel classes may only appear at test-time,

and it is important to consider such situations. Ultimately,

as a subject of future work, it would be interesting to incor-

porate cases where some unseen class information is known

during training, while leaving open the possibility of exis-

tence of novel classes at test-time.

Like us, there are works [8, 3] focusing on ZSL and

GZSL, while being agnostic to any unseen class informa-

tion during training. In [3], authors propose an encoder-

decoder network with the goal of mirroring learnt seman-

tic relations between different classes in the visual domain.

While the goal is similar, our approach is significantly dif-

ferent. We propose to mirror information provided by se-

mantic attributes visually by means of a low-dimensional

statistical embedding. Our embedding scores existence of

prototypical part types, where the prototypical part types

are learnt from training data.

In [8], the authors propose an approach that extends

methods of [12]. Their idea is to penalize approximation

error in reconstructing visual domain features from the se-

mantic domain, in addition to penalizing classification loss.

Their claim is that by doing so they can overcome semantic

information loss suffered in methods that are based on vi-

sual to semantic embedding and prevent situations where at-

tributes possibly corresponding to unseen examples maybe

lost during training. In contrast, our claim is precisely that

many semantic attributes are not visual and conventional vi-

sual features are not represented in the presented semantic

vectors. Consequently, we propose approaches that on the

one hand produces semantically closer visual representa-

tions through low-dimensional graphical models, and on the

other hand suppress semantic components that are visually

unrepresentative by means of discriminative loss functions.

In general we do not require high-dimensional estimation,

which these methods require.

In this context our approach bears some similarities to

[18] and [30]. In particular, [18] propose zoom-net as a

means to filter-out redundant visual features such as delet-

ing background and focus attention on important locations

of an object. [30] further extend this insight and propose vi-

sual part detector (VPDE-Net) and utilize high-dimensional

part feature vectors as an input for semantic transfer. [30]’s

proposal is to incorporate the resulting reduced representa-

tion as a means to synthesize unseen examples leveraging

knowledge of unseen class attributes. Different from these

works we develop methods to learn a statistical representa-

tion of mixture proportions of latent parts. Apart from being

low-dimensional the mixture proportions intuitively capture

underlying similarity of a part-type to other such part-types

found in other classes. The focus of semantic mapping is

then to transfer knowledge between mixture proportion of

part types and semantic similarity.

3. Proposed Approach

3.1. A Probabilistic Perspective of GZSL

Let us motivate our approach from a probabilistic mod-

eling perspective. This will in turn provide a basis for our
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Figure 1. Many existing works attempt to transfer high-dimensional visual features into semantic domain leading to significant visual-

semantic gap. To bridge the gap we propose a new latent visual embedding that is visually semantic. As illustrated our new representation

is low dimensional and its components are likelihoods of a part-type relative to proto-typical part-types found across all instances. We posit

that our embedding mirrors how semantic components score similarity of an attribute found in an instance in the visual domain.

Figure 2. Graphical Model of label, semantic signal, and input as a

cycle. Input is transformed into a finite collection of feature vector

parts indexed by items in a part-list. Feature parts are mapped into

structured probability space, with component πx(k|m) denoting

the probability of k-th type in item m in the part-list. Πk(x) =
[πx(k|m)] denoting visual embedding for part k.

discriminative learning method. [N ] denotes integers from

1 to N . Overloading notation we denote [ηk,m] to mean the

matrix as k, m range over their values. Following conven-

tion we denote random variables with upper case letters and

a realization by lower case letters. Let x 2 X be inputs

taking values in an arbitrary feature space and Y the space

of objects or classes. The set Y is partitioned into o 2 O
and u 2 U denoting the collection of observed class labels

and unobserved labels respectively. Associated with each

observed and unobserved class labels are semantic signals,

so, su 2 S , taking values in a general space respectively.

We denote by p the joint density or marginal densities wher-

ever appropriate.

Given training data (x1, y1, sy1
), . . . , (xn, yn, syn

) ⇢
X ⇥O⇥S , the task of GZSL is to accurately predict a label

with input drawn from x
d
⇠ pX(·). If we had knowledge of

joint probability density, the optimal predictor is the MAP

estimate, yMAP(x) = argmaxy maxs log(p(y, s | x)). Ex-

isting work [15] posits instead a chain X � S � Y , namely,

conditioned on semantic signals, the input and class la-

bels are independent or that the chain X � Y � S [27]

is true. Nevertheless, we take the view that, since seman-

tic information is not fully visual, visual features are not

fully semantic, and labels are not fully captured by either

visual or semantic signals, the three random variables form

a cycle in a graphical model. By means of potential func-

tions for graphical models we decompose log(p(y, s|x) /
φY X(y, x) + φXS(x, s)) + φSY (s, y).
Latent Graphical Model. Fig. 2 presents a detailed frame-

work of our model. The input X = x is mapped into a finite

set of feature vector parts, fm(x) 2 R
C indexed by discrete

part-list, m 2 [M ]. Feature parts are derived from a multi-

attention model with different items m,m0 2 [M ],m 6= m0

focusing on different regions in the image. We then model

each feature part vector as a C-dimensional Gaussian Mix-

ture Model, fm(x) ⇡
P

i πx(k|m)N (θk,m, γ2I), with

isotropic components. Note that the parameters, θk,m 2
R

C , are part and type dependent but shared among all in-

stances. We refer to θk,m’s as prototypical part-types. We

collect the parameters into a matrix Θm = [θk,m] 2 R
C⇥K .

Each mixture component, πx(k|m) represents the prob-

ability of type k conditioned on part m. In this way, the in-

put x is embedded into a collection of mixture components

Πm(x) = [πx(k|m)] and Π(x) = [Πm(x)]. We decompose

the likelihood as:

log(p(y, s | x)) / φSX(s,Π(x)) + φXY ([fm(x)], y) (1)

+ φY S(y, s)�
M
X

m=1

Lmix(Θm,Πm(x), fm(x))

� Lprt([fm(x)])

where, the last two terms respectively model mixture likeli-

hood and enforce diversity of multi-attention of parts. The

goal of training algorithm is to estimate the potential func-

tions, φ, the feature part backbone, fm(·), and the probabil-

ity maps, Πm(·) by leveraging training data.

Latent Visual Embedding Intuition. Note that, by design
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(see Fig. 2 and Eq. 1), the semantic random vector interacts

with the input only through the mixture component Π(x).
This is in contrast to existing works where the interaction

is high-dimensional. Our intuition is that, just like a com-

ponent of a semantic vector quantifies existence of an at-

tribute, in an analogous fashion, πx(k|m) quantifies exis-

tence of part-type k in part m. While prototypical parts

such as θk,m are high-dimensional, the corresponding mix-

ture component πx(k|m) is a scalar number. In this way

we propose to reduce the semantic-visual gap by removing

irrelevant visual features that are not transferable.

Visual Oracle Supervision (VOS). We consider visual or-

acles capable of providing feedback for learner predicted

visual embedding. We denote Πvo(x) as oracle feedback.

As to how to build a visual oracle will be discussed later.

We can consider structured and class-averaged VOS. In the

structured version, for each instance, x, VOS reveals the

probabilistic embedding Πvo(x); and in the class-averaged

case, only reveals Π̄vo = EX|Y [Πvo(x) | y]. The main dif-

ference in Eq. 1 is that we substitute oracle parameters for

the semantic signal, i.e., s with Πvo(x), Π̄vo etc.

Justification of Visual Oracle Supervision. In constructing

the visual oracle, our goal is driven by the need to quantify

semantic noise., To do so we need an oracle that provides

no more information than a “noiseless” semantic one. This

is not that hard since our visual oracle presents the learner

with mixture values Πvo(x) with out identifying what these

numbers mean or which classes, parts or locations they refer

to. All that a learner knows is that what the oracle is com-

municating information that has definitive visual meaning.

Visual and Semantic Test-Time Evaluation. At test-

time, following convention, for the semantic setting, we

assume that the codebook consisting of seen and unseen

semantic attribute vectors, {sy|y 2 Y} = {so|o 2
O} [ {su|u 2 U} are revealed to the learner. For a

test image, x, the learner must identify the hidden la-

bel. To do this, the learner computes Π(x), and esti-

mates the label by maximizing the visual-semantic potential

ŷ(x) = argmaxy2Y φSX(sy,Π(x)). In the visual evalua-

tion setting, the class-level {Π̄y
vo|y 2 Y} is revealed dur-

ing test time and the learner make prediction by maximiz-

ing the visual-semantic potential in the Π space ŷ(x) =
argmaxy2Y φSX(Π̄y

vo,Π(x)).

3.2. Model and Loss Parameterization

Part Feature model fm(·): Inspired by [29], we use a

multi-attention convolutional neural network (MA-CNN) to

map input images into a finite set of feature vector parts,

fm(x). Specifically, fm(x) = [fm,c] contains a feature ex-

tractor E and a channel grouping model G, where E(x) 2
R

W⇥H⇥C is a global feature map, and G(E(x)) 2 R
M⇥C

is a channel grouping weight matrix. We then calculate an

attention map Am(x) 2 R
W⇥H for the m-th part:

Am(x) = sigmoid
�

X

c

Gm,c(x)⇥ Ec(x)
�

(2)

The part feature fm(x) 2 R
C is then calculated as:

fm,c(x) =
X

w,h

[Am(x)� Ec(x)](w,h), 8c 2 [C] (3)

where � is the element-wise multiplication. We parame-

terized E(·) by the ResNet-34 backbone (to conv5 x), and

G(·) by a fully-connected layer.

Mixture model Π(·): Note that our Gaussian mixture

model implies:

EZ [fm(x)|Πm,Θm] = ΘmΠm(x)

This sets up a matrix factorization problem, with positiv-

ity constraints on the components of Πm(x). Observe that,

at test-time, since the matrices Θm are known, the solu-

tion to Π(x) reduces to solving a linear system of equations

with positivity constraints. Alternatively, we can employ a

Bayesian perspective (which is what we do) and compute:

πx(k|m) / \π(k|m)N (fm(x); θk,m, γ2I) (4)

where, \π(k|m) is the prior for prototype k in part m esti-

mated during training.

Part Feature Learning Loss Lprt: To encourage a part-

based representation fm(x) to be learned, we follow [29].

Since fm(x) can be decomposed into Am(x) � E(x), we

want to force the learned attention maps Am to be both com-

pact within the same part, and divergent among different

parts. We define Lprt([fm(x)]) to be:

Lprt([fm(x)]) =
X

m

(Ldis(Am(x)) + λLdiv(Am(x)))

(5)

where the compact loss Ldis(Am) and divergent loss

Ldiv(Am) are defined as (x is dropped for simplicity):

Ldis(Am) =
X

w,h

Aw,h
m [kw � w⇤k2 + kh� h⇤k2] (6)

Ldiv(Am) =
X

w,h

Aw,h
m [maxn,n 6=mAw,h

n � ζ] (7)

where Aw,h
m is the amplitude of Am at coordinate (w, h),

and (w⇤, h⇤) is the coordinate of the peak value of Am, ζ is

a small margin to ensure the training robustness.

Mixture Model Learning Loss Lmix: We pose this as

a standard max-likelihood estimation problem, and learn

θk,m, γ parameters using the EM algorithm to fit the feature

vectors fm,i , fm(xi), with xi being training examples.

We can write the negative log-likelihood for i-th sample:

Lmix(Θm,Πm, fm,i) = � log(
P

k π̄(k|m)N (fm,i;Θm, γ2I))

(8)
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where the parameters are optimized by the Expectation-

Maximization (EM) algorithm during training. Once they

are learned, the mixture component embedding Π(x) can

be inferred with Eq.(4).

Semantic-Label Potential φY S : In the GZSL problem,

we usually assume a deterministic one-to-one mapping be-

tween the semantic signals to class labels provided by a

semantic oracle (human annotator). The Semantic-Label

potential function is thus simply modeled by an indicator

function:

φY S(y, sy0) = I(y = y0) (9)

Visual-Label Potential φXY : To map visual representa-

tions to class labels, we construct a classification model D

that takes the concatenated part features [fm(x)] as input

and outputs a classification prediction, i.e. D([fm(x)]) 2
R

|O|, where |O| refers to the number of observed classes.

In our implementation, D(·) is simply a fully-connected

layer followed by a softmax. Let p̂(y) denote the one-hot

encoding of the ground-truth class label y for input image

x, the potential φXY is given by the negative cross-entropy

between label and prediction:

φXY ([fm(x)], y) = �CE(D([fm(x)]), p̂(y)) (10)

Visual-Semantic Potential φSX : Existing works often take

the raw feature vectors as the visual representation, i.e.

E(x) or fm(x), and suffer from a large discrepancy be-

tween the visual and semantic domains. To mitigate such

a gap, we propose to adopt the latent mixture component

embedding Π(x).

Semantic Oracle. In the common GZSL setting where the

semantic signals are obtained from a human annotator, we

construct a Semantic Mapping model V (Π(x)) to project

Π(x) into S , where V (·) is further parameterized by a neu-

ral network. Given an imput image x and its semantic at-

tribute sy , the potential φSX is modeled as:

φSX(sy,Π(x)) = �
P

y02O[ηI(y
0 = y) + s>y0V (Π(x))� s>y V (Π(x))]+

(11)

where η is a margin parameter.

Visual Oracle. As discussed by Sec.3.1, we want to evalu-

ate the efficacy of the proposed latent embedding. We thus

considers a visual oracle which directly provides Πvo(x) as

a visually semantic supervision, which is a list of visual part

similarity scores. In this case, we no longer need V (·) since

both Π(x) and Πvo(x) are already in the same space. The

potential φSX is thus:

φSX(Πvo(x),Π(x)) = �|Πvo(x)�Π(x)|2F , (12)

where | · |F is the Frobenius norm.

3.3. Implementation Details

Our model takes input image size as [448 ⇥ 448] and

and the output of E(x) is in the size of 14 ⇥ 14 ⇥ 512.

There are 4 parts in the model and in each part, the number

of types M is set to 16. λ in Eq.(5) and ζ in Eq.(7) is em-

pirically set to 5 and 0.02. In the semantic-oracle scenario,

the smenatic mapping model V (·) is implemented by a two

fc-layer neural network with ReLU activation.

In the visual-oracle scenario, the visual oracle is built to

provide Πvo(x). It consists of the part feature model fm(·)
and a classifier D, where the feature extractor E(·) in fm(·)
is parameterized by the VGG-19 convolutional layers. We

choose VGG instead of ResNet backbone to avoid that the

learner learns to recover the same parameters in the oracle

via the Πvo(x). The oracle is first trained by maximizing

φXY �Lprt([fm(x)]) to learn a discriminating fm(·). Then

the EM optimization over
PM

m=1 Lmix(ΘmΠm, fm(x)) is

done to generate Πov(x) for our model. During training, the

oracle provide instance level Πvo(x) and in the test time,

only class-averaged Π̄vo is revealed to the learner to make

the prediction.

4. Experiments

Datasets. We evaluate the performance of our model

on three commonly used benchmark datasets for GZSL:

Caltech-UCSD Birds-200-2011 (CUB) [22], Animals with

Attributes 2 (AWA2) [24] and Attribute Pascal and Yahoo

(aPY) [9]. CUB is a fine-grained dataset which contains

200 different types of birds. CUB has 11,788 images and

312-dim annotated semantic attributes. AWA2 is a coarse-

grained dataset which has 37,322 images from 50 differ-

ent animals. 85 binary and continuous class attributes are

provided. aPY is also a coarse-grained dataset with 64 se-

mantic attributes. It has 15,339 images of 20 Pascal classes

and 12 Yahoo classes. We did not choose SUN [26] dataset

for the reason that the scene images in SUN cannot be eas-

ily decomposed into visual parts which are compact and

consistent across different scenes, and consequently not ex-

pected to benefit from our formulation. The statistics of the

datasets are summarized in Table 2.

Setting. We evaluate performance for both GZSL and ZSL

settings. Following the protocol in [24], in the GZSL set-

ting, the average-class Top-1 accuracy on unseen classes

(ts), seen classes (tr) and the harmonic mean (H) of ts and

tr are evaluated; In the ZSL setting, we report the average-

class Top-1 accuracy on both Standard Split (SS) and Pro-

posed Split (PS).

We examine impact of different concepts such as visual

representation, semantic vs. visual supervision on GZSL

performance. As summarized by Table 3, two variants of

the proposed model are evaluated: (1) Ours(S): We bench-

mark performance of proposed latent visual embedding in

the conventional GZSL setting. That is, we train a map-
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Methods
CUB AWA2 aPY

ts tr H ts tr H ts tr H

SJE[2] 23.5 59.2 33.6 8.0 73.9 14.4 3.7 55.7 6.9

SAE[12] 7.8 54.0 13.6 1.1 82.2 2.2 0.4 80.9 0.9

SSE[28] 8.5 46.9 14.4 8.1 82.5 14.8 0.2 78.9 0.4

GFZSL[21] 0.0 45.7 0.0 2.5 80.1 4.8 0.0 83.3 0.0

CONSE[19] 1.6 72.2 3.1 0.5 90.6 1.0 0.0 91.2 0.0

ALE[1] 23.7 62.8 34.4 14.0 81.8 23.9 4.6 73.7 8.7

SYNC[6] 11.5 70.9 19.8 10.0 90.5 18.0 7.4 66.3 13.3

DEVISE[10] 23.8 53.0 32.8 17.1 74.7 27.8 4.9 76.9 9.2

PSRZSL[3] 24.6 54.3 33.9 20.7 73.8 32.3 13.5 51.4 21.4

SP-AEN[8] 34.7 70.6 46.6 23.3 90.9 37.1 13.7 63.4 22.6

Ours(S) 33.4 87.5 48.4 41.6 91.3 57.2 24.5 72.0 36.6

Ours(Π) 39.5 68.9 50.2 45.6 88.7 60.2 43.6 78.7 56.2
Table 1. gZSL learning results on CUB, AWA2 and aPY. ts = test classes (unseen classes), tr = train classes (seen classes), H = harmonical

mean. The accuracy is class-average Top-1 in %. The highest accuracy is in red color and the second is in blue (better viewed in color).

Dataset Num Att Y O U Image

CUB[22] 312 200 150 50 11788

AWA2[24] 85 50 40 10 37322

aPY[9] 64 32 20 12 15339
Table 2. Statistics for CUB[22], AWA2[24] and aPY[9]. Number

of semantic attributes, number of class for all(Y), seen(O) and

unseen(U ), and the number of images are listed.

ping to project the learned latent representation Π into the

semantic space S (Eq.11) under the supervision provided

by the semantic oracle, and during test time the semantic

attributes for unobserved classes {so|o 2 O} are also re-

vealed. For this model, solely semantic supervision is lever-

aged, as same as all the competing methods. (2) Ours(Π):

We quantify the drawbacks of semantic information for

GZSL by replacing semantic signals with visual signals Πvo

generated by our visual oracle, which is then used for both

supervision and evaluation.

Training Details. To train our models, we take an alterna-

tive optimization approach where in each epoch, we update

the weights in two steps. In step 1, only the weights of G(·)
is updated by minimizing Lprt. In step 2, we freeze the

weights of G(·) and update all the other modules. The se-

mantic model (Ours(S)) and the visual oracle is trained by

φXY while Ours(Π) model is trained by φSX+φXY in step

2. Adam optimizer is used to optimize the loss in each step.

The learning rate for step 1 and step 2 is set to 1e-6 and

1e-5, respectively.

Our models are trained for 80, 60 and 70 epochs on CUB,

AWA2 and aPY, respectively. As for the visual oracle, it

is trained to 70 epochs on AWA2 and 60 epochs on CUB

and aPY. The feature extractor E(·) is initialized with Ima-

geNet pretrained weights. The learning rate for V (·) and η

in Eq.(11) is selected via cross-validation. For the optimiza-

tion of Lmix, the EM algorithm is terminated if the loss did

not change or after 300 steps.

Competing Methods. To validate the benefits of the pro-

posed latent visual embedding, we compare against other

Method Supervision Evaluation Representation

Others SO S F
Ours(S) SO S Π

Ours(Π) Πvo Π Π

Table 3. Comparison of the supervision, evaluation embedding and

feature representations for our model and others. S: semantic em-

bedding; Π: latent visual part similarity embedding; F : raw visual

feature embedding; SO: semantic oracle; Πvo: visual oracle.

state-of-the-art methods which also utilize semantic super-

vision and visual representation. Ten competitors are com-

pared: SJE[2], ALE[1], and DEVISE[10] which use struc-

tured loss to learn a linear compatibility between visual and

semantic space; SSE[28] learns the compatibility function

in a latent common space for visual and semantic embed-

ding; GFZSL[21] models the the class-conditional distribu-

tion as multi-variate Gaussian; CONSE[19] and SYNC[6]

learns maps the unseen image into semantic representa-

tion via combination of seen classes or phantom classes;

SAE[12] learns the mapping from semantic to visual em-

bedding; PSRZSL[3] and SP-AEN[8] try to preserve the

semantic relations in the mapping by encoder-decoder net-

work or adversarial training.

4.1. Generalized Zero Shot Learning Evaluation

The results for the GZSL setting are shown in Table. 1.

Observe that the proposed methods, Ours(S) and Ours(Π)

consistently outperforms state-of-the-art methods in the

GZSL setting. Specifically, the harmonic mean of the accu-

racy for seen (tr) and unseen (ts) classes with Ours(S) and

Ours(Π) reaches 48.4%, 50.2% on CUB, 57.2%, 60.2% on

AWA2, and 36.6%, 56.2% on aPY, which dominate other

competing methods and often surpass the third-best result

by a very large margin, e.g. a > 20% improvement on

AWA2, and a > 10% improvement on aPY. While several

competing methods (e.g. [21, 12, 19, 28]) only perform well

on the seen classes and obtain close-to-zero accuracy on un-

seen classes, we are able to classify both seen and unseen
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Methods
CUB AWA2 aPY

SS PS SS PS SS PS

SJE[2] 55.3 53.9 69.5 61.9 32.0 32.9

SAE[12] 33.4 33.3 80.7 54.1 8.3 8.3

SSE[28] 43.7 43.9 67.5 61.0 31.1 34.0

GFZSL[21] 53.0 49.3 79.3 63.8 51.3 38.4

CONSE[19] 36.7 34.3 67.9 44.5 25.9 26.9

ALE[1] 53.2 54.9 80.3 62.5 30.9 39.7

SYNC[6] 54.1 55.6 71.2 46.6 39.7 23.9

DEVISE[10] 53.2 52.0 68.6 59.7 35.4 39.8

PSRZSL[3] - 56.0 - 63.8 - 38.4

SP-AEN[8] - 55.4 - 58.5 - 24.1

Ours(S) 63.7 66.7 90.7 69.1 52.1 50.1

Ours(Π) 68.8 71.9 92.4 84.4 54.4 65.4
Table 4. Zero shot learning results on CUB, AWA2 and aPY. SS =

standard split, PS = proposed split. The results are class-average

Top-1 accuracy in %. The highest accuracy is in red color and the

second is in blue (better viewed in color).

improving upon existing works in the GZSL setting.

State-of-art comparison with Semantic Supervision. Note

that under identical conditions of semantic supervision,

the gain in our method (ours(S)) can be attributed primar-

ily to our latent visual embedding (Π(·)). Different from

the conventional visual representation, which is a high-

dimensional deep CNN feature vector, and not semantically

meaningful, Π(·) intrinsically describes the input image by

a common vocabulary of prototypical parts. These proto-

typical parts are estimated by the latent mixture model with

training images and the components of Π quantify the exis-

tence of a prototypical part in the instance. Such a represen-

tation resembles the semantic similarity of semantic vectors

and leads to mitigating the visual-semantic gap.

Semantic vs. Visual Supervision. Observe that Ours(Π)

consistently achieves better performance than Ours(S), e.g.

1.8%, 3.0% and 19.6% absolute improvement in the har-

monic mean on the three datasets. This comparison shows

that, although the proposed latent visual embedding Π is

able to reduce the Visual!Semantic gap, the semantic at-

tributes are noisy in that they contain information that are

difficult to transfer from the visual domain (e.g. ’smelly’,

’agility’, ’weak’). Using semantic supervision and evalua-

tion for GZSL thus fundamentally limits attaining high ac-

curacy. By switching to visual supervision and evaluation

provided by our visual oracle, we see the potential to fur-

ther improve GZSL accuracy. This comparison is fair since

our visual oracle provides only a list of similarity scores

without any other identifying high-dimensional features to

the learner. This is similar to the case of a semantic oracle

providing attribute annotations.

Issue with aPY. Finally, observe that on aPY most existing

methods fail to recognize unseen classes achieving nearly

zero accuracy, while we get a significant improvement from

Ours(S) and Ours(Π). The reason is that aPY attributes

Figure 3. Example of types in each part on CUB dataset. Each two

rows belong to a part and each two columns belong to a type. In m-

th part, the example can be labeled with a scalar π(k|m) indicating

its probability of belonging to the k-th type. The example in the

type has the largest π(k|m) among all types. Note that these types

are semantically meaningful and visually distinguishable.

are extremely noisy and are not visually representative (e.g.

bus-car attributes nearly identical). Thus, the semantic su-

pervision cannot provide useful information for training a

GZSL model.

4.2. Zero Shot Learning Evaluation

We next evaluate the results for the traditional ZSL set-

ting, where only unseen classes are included during test-

ing. The results are reported in Table 4. Observe that many

competing methods, which are ineffective in the GZSL set-

ting (e.g. [21, 12, 19, 28]), realize a huge performance gain

in the ZSL setting. However, Ours(S) and Ours(Π) is ro-

bust and still outperforms the competing methods. Again,

this can be attributed to our proposed latent visual embed-

ding. Ours(S) model consistently obtains superior perfor-

mance, improving the state-of-the-art accuracy from 55.3%

to 63.7% for SS on CUB, from 80.7% to 90.7% for SS on

AWA2, and from 51.3% to 52.1% for SS on aPY. A similar

improvement can also be observed on the PS split. This

observation shows that, with the same level of semantic

supervision, our low-dimensional latent visual embedding

is more semantically meaningful than the traditional high-

dimensional visual features, and thus effectively bridges the

Visual!Semantic gap. Additionally, with the visual super-

vision provided by our visual oracle, Our(Π) obtains even

better performance on all datasets and splits, which reveals

the drawbacks of leveraging primarily semantic attributes

for supervision and evaluation.

4.3. Analysis and Discussion

Visualization of discovered Latent Prototypical Part

Types. To verify that our parameterized Π is able to learn
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Methods
CUB AWA2 aPY

ts tr H SS PS ts tr H SS PS ts tr H SS PS

Ours(Πflat) 38.4 69.8 49.6 66.8 69.5 42.6 88.7 57.6 91.7 84.0 36.5 88.7 51.7 53.6 62.9

Ours(Π) 39.5 68.9 50.2 68.8 71.9 45.6 88.7 60.2 92.4 94.4 43.6 78.7 56.2 54.4 65.4
Table 5. Test accuracy for different visual representations on CUB, AWA2 and aPY. Ours(Πflat): our model with flatten visual represen-

tation. Ours(Π): our model with structured visual representation. The accuracy class-average Top-1 in %. Both gZSL (ts, tr, H) and ZSL

(SS, PS) performances are reported.

Methods
CUB AWA2

ts tr H ts tr H

DEVISE (S) 23.8 53.0 32.8 17.1 74.7 27.8

DEVISE (Πvo) 24.6 53.3 33.7 28.3 75.3 41.2
Table 6. gZSL performances for DEVISE[10] using semantic su-

pervision and visual oracle supervision (Πvo).

diverse parts and discriminating types, we visualize some

exemplar parts and types from CUB dataset in Figure 3. We

observe that the examples in each type are visually similar

to each other, but distinguishable to humans across differ-

ent classes. When provided with the examples in each type,

humans can score the existence of a type, i.e., πx(k|m),
thereby bypassing the proposed visual oracle. Noticeably,

the part feature model fm(·) is able to detect some semantic

parts. For example, in Figure 3, Part-1 detects the face (or

eye), Part-2 detects the beak and Part-3 tends to detect the

body texture representation of birds. These semantic parts

are easier to be linked to the semantic attributes, and hence

our visual semantic embedding is able to close the gap be-

tween the high-dimensional visual feature and the semantic

space.

It is worth noting that in Part-4, different semantic parts,

like head, chin, wins and legs, are discovered in differ-

ent types. We find it reasonable since the same semantic

parts may not appear in different classes. The situation

could be even more common in coarse-grained recognition,

like a chair is not likely to have an engine. Moreover, our

model tries to learn the most discriminating part via the loss

φXY (fm(x), y). The same semantic part which is the most

discriminating to one class is possibly not important to an-

other class. This phenomenon also won’t cause any problem

for supervision because the visual oracle is based on visual

features, while for a human being this is unlikely to arise.

Structured vs. Flat Visual Supervision In our formula-

tion, both the feature model fm(x) and the mixture model

Π(x) are structured. That is, each part feature fm(x) is rep-

resented by a unique mixture model Πm conditioned on the

part m. The visual oracle’s supervision Πvo is also struc-

tured in a similar way. However, a different strategy is to

take a flat representation and supervision: drop the part-

based representation by replacing fm(x) with the global

feature E(x), and collapse the structured Πvo into a sin-

gle list representation. Such a flat supervision requires no

part-wise features and its result is reported in Table 5. We

observe that flattening the latent structured visual embed-

ding as a single vector, which mirrors the common usage of

semantic attributes, suffers from a slight performance drop

from Ours(Π) since the rich part structure information is

lost. However, note that, compared to the noisy semantic

supervision (see competitors in Table 1 and 4), the flat vi-

sual supervision still dominates competing methods.

Visual vs. Semantic Supervision. To further justify the

effectiveness of the proposed latent visual embedding for

GZSL supervision, we took an existing state-of-the-art ap-

proach, DEVISE[10], and re-trained it under the visual su-

pervision Πvo. As shown in Table 6, the proposed visual

supervision also boosts DEVISE’s GZSL performance, es-

pecially on AWA2, e.g. a 13.4% absolute improvement in

the harmonic mean. The result demonstrates that the pro-

posed latent visual embedding, as a supervision type, is ef-

fective and generalizable even to non-attention methods.

5. Conclusion

In this paper we proposed a novel Zero-Shot learning

(ZSL) method. Our method unlike many existing works

neither synthesizes unseen examples nor uses any unseen

semantic information during training. We claim that se-

mantic gap exists because visual features employed in prior

work is not semantic leading to significant drop in accu-

racy. To bridge this semantic gap we proposed a new sta-

tistical model for embedding a visual instance into a low-

dimensional probability matrix. Our insight is based on the

fact that analogous to how a semantic component measures

the likeliness of the attribute arising in an object, so also,

our mixture component conveys visual likeliness by scor-

ing how similar a part type is relative to proto-typical part

types of other instances in the training set. To further reduce

semantic noise we propose a novel visual oracle for super-

vision in lieu of semantic supervision. We tabulate results

on a number of benchmark datasets demonstrating signifi-

cant improvement in accuracy over state-of-art under both

semantic and visual supervision.
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